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FOREWORD

This IMA Volume in Mathematics and its Applications

EMERGING APPLICATIONS OF ALGEBRAIC GEOMETRY

contains papers presented at two highly successful workshops, Optimiza-
tion and Control, held January 16–20, 2007, and Applications in Biology,
Dynamics, and Statistics, held March 5–9, 2007. Both events were integral
parts of the 2006-2007 IMA Thematic Year on “Applications of Algebraic
Geometry.” We are grateful to all the participants for making these work-
shops a very productive and stimulating events. The organizing committee
for the first workshop are Dimitris Bertsimas (Sloan School of Management,
Massachusetts Institute of Technology), J. William Helton (Mathematics,
University of California - San Diego), Jean Bernard Lasserre (LAAS-CNRS,
France), and Mihai Putinar (Mathematics, University of California - Santa
Barbara), and for the second workshop, Serkan Hosten (Mathematics, San
Francisco State University), Lior Pachter (Mathematics, University of Cal-

We owe special thanks to Mihai Putinar and Seth Sullivant for their
superb role as editors of these proceedings. We take this opportunity to
thank the National Science Foundation for its support of the IMA.

Series Editors

Douglas N. Arnold, Director of the IMA

Arnd Scheel, Deputy Director of the IMA

v

ifornia - Berkeley), and Seth Sullivant (Mathematics, North Carolina State
University). The IMA thanks them for their excellent work.



PREFACE

Algebraic geometry, that noble and refined branch of pure mathemat-
ics, resurfaces into novel applications. The present volume contains only
a portion of these emerging new facets of modern algebraic geometry, re-
flected by the interdisciplinary activities hosted during the academic year
2006–2007 by the IMA- the Institute for Mathematics and its Applications,
at the University of Minnesota, Minneapolis.

What has algebraic geometry to do with non-convex optimization,
the control theory of complicated engineering systems, phylogenetic tree
reconstruction, or the statistical analysis of contingency tables? The answer
is: quite a lot. And all this is due to innovative ideas and connections
discovered in the last decade between pure and applied mathematics. The
reader of the present volume will find detailed and informative answers to
all of the above questions, presented in a self-contained form by experts
working on the boundary of algebraic geometry and one specific area of its
applications.

Two major conferences organized at IMA: Optimization and Con-
trol (January 2007) and Applications in Biology, Dynamics, and Statistics
(March 2007) gathered mathematicians of all denominations, engineers, bi-
ologists, computer scientists and statisticians, linked by the common use
of a few basic methods of algebraic geometry. Among the most important
of these methods: Positivstellensätze over the real field, elimination the-
ory, and invariant theory, all with a computational/numerical component
predominant in the background.

In order to explain why optimization and control theory appear nat-
urally connected to real algebraic geometry one has to go back a century
ago and recall that both the positivity of regular functions (polynomials
for instance) and of linear transformations in a inner product space are the
byproduct of a universal structure: they are representable by simple oper-
ations involving sums of squares in the respective algebras. Heuristically
speaking, when proving inequalities one most often completes squares. It
was Hilbert who unveiled the central role of sums of squares decomposi-
tions (see his 17-th problem) and their logical ramifications. On the al-
gebraic side, his ideas were crystalized and developed by Emil Artin into
the theory of real closed fields. Second, Hilbert’s footprint was cast in the
spectral theorem for self-adjoint linear transformations, which is essentially
equivalent to an infinite sum of squares decomposition of a specific bilin-
ear form. Third, Hilbert’s program of revising the logical foundations of
mathematics found a solid validation in the discovery due to Tarski, that
any proposition of the first order involving only real variables is decidable
(in particular implying that one can verify that every system of polynomial
inequalities in Rd has a solution). Progress in real algebraic geometry ren-
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viii PREFACE

dered Tarski’s theorem even more precise with the discovery of the so-called
Positivstellensätze, that is theorems which quantify in algebraic certificates
the existence of solutions of polynomial inequalities (e.g.: b2−c ≥ 0 implies
that there exists a real x satisfying x2 − 2bx + c = 0).

It comes then as no surprise that the extremal problem

p∗ = min{p(u); u ∈ S},

where p is a polynomial and S is a subset of Rd defined by finitely many
polynomial inequalities can be converted into algebraic identities which
depend only on the coefficients of p and the minimal value p∗. At this point
optimization theorists (and by extension control theory engineers) became
aware that one can solve such extremal problems by global algebraic means,
rather than by, for instance, the time consuming inner point technique.

An unexpected turn into this history was marked by an application
of duality theory of locally convex spaces leading to the simplification of
the known Positivstellensätze, by interpreting them as solvability criteria
for some associated moment problems. In their own, moment problems
have a glorious past and an unexpected vitality. Once the relation be-
tween real algebraic geometry and moment problems was clarified, this has
greatly enhanced the applications of real algebraic geometry to optimiza-
tion. These days we witness a proliferation of relaxation methods in poly-
nomial minimization problems based on the introduction of new, virtual
moment variables. The articles contained in this volume amply illustrate
this new direction of research.

The emergence of algebraic geometry as a tool in statistics began with
the work of Diaconis and Sturmfels whose research led to the construction
of Markov chains for performing Fisher’s exact test. They showed that
the local moves in these Markov chains are the generators of an associated
toric ideal. It was quickly realized that the zero set of this toric ideal in the
probability simplex is precisely the set of distributions in the corresponding
log-linear model.

The observation that the zero set of a toric ideal in the probability sim-
plex is a statistical model led to the realization that many other statistical
models have the structure of a semi algebraic set which can be exploited
for various purposes. The foremost examples are hierarchical and graphical
models, which include as special cases many of the statistical models used
in computational biology.

Of course, this description of the emergence of algebraic geometry
as a tool in statistics and its applications is brief and highly incomplete.
In particular, it leaves out the algebraic developments in the design of
experiments, the use of polynomial dynamical systems over finite fields
to investigate gene regulatory networks, polyhedral tools for parametric
inference, optimization problems in statistical disclosure limitation, and a
slew of other connections between statistics and algebraic geometry, some
of which are highlighted in this volume.
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A short description of the articles that appear in the volume follows.
For a general perspective, more details and a better description we recom-
mend the reader to consult the introductions to any one of the contribu-
tions.

1. The article Polynomial optimization on odd-dimensional
spheres by John d’Angelo and Mihai Putinar contains a basic Pos-
itivstellensatz with supports on an odd dimensional sphere, written
in terms of hermitian sums of squares and obtained with methods
of functional analysis, complex analysis and complex geometry.

2. The survey Engineering systems and free semi-algebraic
geometry by Mauricio de Oliveira, John W. Helton, Scott Mc-
Cullough and Mihai Putinar illustrates the ubiquity of positivity
computations in a finitely generated free *-algebra in the study of
dimensionless matrix inequalities arising in engineering systems.

3. The article Algebraic statistics and contingency table prob-
lems: estimation and disclosure limitation by Adrian Dobra,
Stephen Fienberg, Alessandro Rinaldo, Aleksandra Slavkovic, and
yi Zhou describes the use of algebraic techniques for contingency
table analysis, and provides many open problems, especially in the
area of statistical disclosure limitation.

4. Nicholas Eriksson’s article Using invariants for phylogenetic
tree reconstruction describes some of the mathematical chal-
lenges in using the polynomials that vanish on probability distri-
butions of phylogenetic models as tools for inferring phylogenetic
trees.

5. Abdul Jarrah and Reinhard Laubenbacher’s article On the alge-
braic geometry of polynomial dynamical systems describes
their work with collaborators on using dynamical systems over fi-
nite fields to model biological processes, as well as the mathemat-
ical advanced made on studying the dynamical behavior of special
classes of these dynamical systems.

6. Jean Bernard Lasserre, Monique Laurent and Philip Rostalski in
their article A unified approach to computing real and com-
plex zeros of zero dimensional ideals introduce a powerful and
totally new idea of finding the support of ideals of finite codimen-
sion in the polynomial ring. They propose a relaxation based on
finitely many moments as auxiliary variables.

7. Monique Laurent’s ample survey Sums of squares, moment
matrices and optimization of polynomials is an invaluable
source, as the only one of this kind, for the rapidly growing re-
laxation methods aimed at solving in optimal time minimization
problems on polynomial functions restricted to semi-algebraic sets.
All presented in a very clear, systematic way, with a spin towards
the computational complexity, algorithmic aspects and numerical
methods.
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8. Claus Scheiderer’s survey Positivity and sums of squares: a
guide to recent results contains a lucid and comprehensive
overview of areas of real algebraic geometry contingent to the con-
cept of positivity. This unique synthesis brings the subject up
to our days, is informative for all readers and it is accessible to
non-experts.

9. Konrad Schmüdgen’s Non-commutative real algebraic geom-
etry: some basic concepts and first ideas is an essay about
the foundations of real algebraic geometry over a *-algebra, based
on the author’s recent results in enveloping algebras of Lie algebras.

10. Bernd Sturmfels’ article Open problems in algebraic statistics
provides a summary of his lecture in the workshop Applications in
Biology, Dynamics, and Statistics and covers a number of mathe-
matical open problems whose solutions would greatly benefit this
emerging area.

The completion of this volume could have not been achieved with-
out the enthusiasm and professionalism of all contributors. The invaluable
technical support of the experienced staff at IMA led to a high quality
production of the book, in record time. We warmly thank them all.

Mihai Putinar
Department of Mathematics
University of California at Santa Barbara
http://math.ucsb.edu/∼mputinar/

Seth Sullivant
Department of Mathematics
North Carolina State University
http://www4.ncsu.edu/∼smsulli2/
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POLYNOMIAL OPTIMIZATION ON
ODD-DIMENSIONAL SPHERES

JOHN P. D'ANGELO* AND MIHAl PUTINARt

Abstract. The sphere S2d-l naturally embeds into the complex affine space c-.
We show how the complex variables in c- simplify the known Striktpcsitivstellensatze,
when the supports are resticted to semi-algebraic subsets of odd dimensional spheres.
We also illustrate the subtleties involved in trying to control the number of squares in a
Hermitian sum of squares.

Key words. Positive polynomial, Hermitian square, unit sphere, plurisubharmonic
function, Cauchy-Riemann manifold.

AMS(MOS) subject classifications. Primary 14PI0, Secondary 32A 70.

1. Introduction. A deep observation going back to the work of
Tarski in the 1930-ies implies the decidability (in a very strong, algorithmic
sense) of the statement "there exists a real solution x E IRn of a system of
real polynomial inequalities". What is called today the algebraic certificate
that such a system has a solution is condensed into the basic Positiv- and
Null-stellensatze, discovered by Stengle in the 1970-ies (see for instance for
details [23]).

All these topics are relevant to and depend on the structure of the
convex cone lR+(K) of positive polynomials on a given basic semi-algebraic
set K C lRn and on algebraic refinements of it, such as the pre-order associ­
ated to a system of defining equations of K and the corresponding quadratic
module, both regarded as convex cones of the polynomial algebra. Thus, it
comes as no surprise that duality techniques of functional analysis (i.e. the
structure of non-negative functionals on these convex cones) reflect at the
level of purely algebraic statements the mighty powers coming from a dif­
ferent territory. More precisely the spectral theorem for commuting tuples
of self-adjoint operators simplifies some of the known Positivstellensatze,
see for instance [30, 26].

The present note is an illustration of the latter transfer between Hilbert
space techniques and real algebraic geometry. We specialize to basic semi­
algebraic sets K C S2d-l C JR2dof an odd-dimensional sphere, and prove
that the expected Positivstellensatz (i.e. the structure theorem of a positive
polynomial on such a set) can further be simplified by means of the induced
complex variables ]R2d == c-. To this aim we greatly benefit from the

"Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana,
IL 61801 (jpda<Omath. uiue. edu), The first author was partially supported by the Na­
tional Science Foundation grant DMS-0500765.

t Mathematics Department, University of California, Santa Barbara, CA 93106
(mputinar<Dmatb. ucsb. edu). The second author was supported in part by the Insti­
tute for Mathematics and its Applications (Minneapolis) with funds provided by the
National Science Foundation and by the NSF grant DMS-0701094.
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2 JOHN D'ANGELO AND MIHAl PUTINAR

works of several functional analysts interested into some tuples of Hilbert
space operators known as spherical isometrics, and separately from the
works of geometers and complex analysts dealing with Cauchy-Riemann
manifolds and proper holomorphic maps between Euclidean balls. The
following pages reveal some fascinating new frontiers for future research,
such as the rigidity phenomenon discussed in the last section.

2. Preliminaries. Let Cd denote complex Euclidean space with Eu­
clidean norm given by Iz}2 == L.~=1 IZj 1

2 . The unit, odd dimensional sphere

is a particularly important example of a Cauchy-Riemann (usually abbre­
viated CR) manifold. This note will show how one can study problems
of polynomial optimization over semi-algebraic subsets of S2d-l by using
the induced Cauchy-Riemann structure. Our results can be regarded as

multivariate analogues of classical phenomena about positive trigonomet­
ric polynomials, known for a long time in dimension one (d == 1). They
are also related to results concerning proper holomorphic mappings be­
tween balls in different dimensional complex Euclidean spaces and the ge­
ometry of holomorphic vector bundles. See [9] for an exposition of these
connections.

A polynomial map p : <cd X (Cd ~ C is called Hermitian symmetric if

p(z, w) ~ p(w, z)

for all z and w. By polarization one can recover a Hermitian symmetric
polynomial from its real values p(z,z). We therefore work on the diagonal
(where w == z) and let 'H. C CC[z, z] denote the space of Hermitian symmetric
polynomials on c-. Note that H is a real algebra, naturally isomorphic to
the polynomial algebra lR[x,y], where Z ~ x + iy E lRd + ilRd . Henceforth
we will freely identify a Hermitian symmetric polynomial P(z, z) with its
real form p(x, y) == P(x -+- iy, x - iy).

We denote by E21{ the convex cone consisting of sums of squares of
Hermitian polynomials. We denote by ~~1t the convex cone consisting of
polynomials which are squared norms of (holomorphic) polynomial map­
pings. Thus R E E~1t if there exist polynomials Pi E C[z] such that

m

R(z, z) == L Ipj(z)1 2
•

j=l

See [11] and [1] for various characterizations of E~1t. We have the
containment
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simply because

where u and v are the real and imaginary parts of p. The containment is
strict as illustrated by the following two examples.

EXAMPLE a). In one variable we define a polynomial R by

It is evidently a square but not in E~1i. Note that the zero set of an element
in E~H must be a complex variety and thus cannot be the imaginary axis.

EXAMPLE b). In two variables we define R(z, z) = (lzlj2 - IZ2j2)2.
Again R lies in E21i but not in E~1t. Here one can observe that elements
of ~h1i must be plurisubharmonic but that R is not. In 4.3 we will show
additionally that R cannot be written as a squared norm on the unit sphere.

In this paper we are primarily concerned with optimization on the
sphere. We therefore first let I == I (S2d-l) be the ideal of 1{ consisting of
all polynomials vanishing on S2d-l. We then define

and regard it as a space of polynomial functions defined on the sphere.
As a matter of fact, each real-valued polynomial p has a representative in
H(S2d-l), when p is regarded as a function on the sphere.

In analogy with the above notations we denote by 'E21t (S 2d- l ) the
convex cone consisting of sums of squares of Hermitian polynomials on the
sphere. We denote by E~1i(S2d-l) the convex hull of Hermitian squares:

'E~1{(S2d-l) == co{lp(z)1 2
; P E <c[z]} mod I.

A polynomial that is positive on the sphere must agree with the
squared norm of a holomorphic polynomial mapping there. In the final
section we naturally ask what is the minimum number of terms in the repre­
sentation as a squared norm. This difficult question is particularly natural
for at least three reasons: there is considerable literature on this problem
in the real case, the Hermitian case is closely connected with difficult work
on the classification of proper holomorphic mappings between balls, and
finally because number-theoretic analogues such as Waring's problem have
appealed to mathematicians for centuries. We consider only the second is­
sue here. In Section 5 we provide a striking non-trivial example illustrating
some of the subtleties.

Let us return to the general situation and recall a classical one­
dimensional result which is guiding our investigation. We include its el­
ementary proof for convenience.
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LEMMA 2.1 (Riesz-Fejer). A non-negative trigonometric polynomial
is the squared modulus of a trigonometric polynomial.

Proof Let p(eiO
) == ~~d cje i j

(} and assume that p(ei O
) 2 0, e E

[0, 21r]. Since p is real-valued C~j == Cj for all j. We set z == Izleie and

extend p to the rational function defined by p(z) == L~d Cj zj. It follows

that p(z) == p( l/z); furthermore its zeros and poles are symmetrical (in the
sense of Schwarz) with respect to the unit circle.

Write zdp(z) == q(z). Then q is a polynomial of degree 2d whose mod­
ulus Iql satisfies Iql == Ipl == p on the unit circle. In view of the mentioned
symmetry one finds

q(z) == cz" IT(z - Aj)2 IT(z - flk)(Z - 1/J.Lk),
j k

where c is a constant, IAjl == 1 and 0 < lJ.Lk] < 1.
Evaluating on the circle and using 1(21 == 1(1 2 we obtain

and hence p is the squared modulus of a trigonometric polynomial. 0

This fundamental lemma has deeply influenced twentieth century func­
tional analysis. For instance the Riesz-Fejer Lemma is equivalent to the
spectral theorem for unitary operators; see [29].

When invoking duality, the above is not less interesting. It was in
this form that Riesz-Fejer Lemma was first generalized to an arbitrary
dimension.

LEMMA 2.2. Let L E 'H.(S2d-l)' be a linear functional which is non­
negative on E~1t(S2d-l). Then L is represented by a positive Borel measure
supported on the sphere.

The proof has implicitly appeared in the works of Ito [17]' Yoshino
[33], Lubin [22] and Athavale [3], all dealing with subnormality criteria
for commuting tuples of bounded linear operators. Without aiming at
completeness, here is the main idea.

Proof (Sketch). Let L be a non-negative functional on Eh1t (S 2d- l ).
Fix a polynomial p E C[z] and consider the functional

l-IZj12 == L IZkI2 ,

k¢j
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L( I;I[(1 - r;)n j r;m jJlpI2) ~ 0,
J

By a classical result of Haviland, see for instance [2]' there exists a positive
Borel measure J.llpl2 on the simplex ~ defined by

~ == {(rr, ...,r~) ; rr + ... + r~ == I},

with the property

L(Jlp(z)12
) = Lfdl-llp j2.

The total mass of ,ulpl2 is L(lpI2
) .

By polarization, one can define complex valued measures by

L(fpq) =Lfdl-lpq, f E lR[rr, ...,r~l, p, q E C[z],

so that the sesqui-linear kernel (p, q)~ f-Lpq is positive semi-definite.
In short, the functional L can be extended to the linear space of func­

tions (on the sphere) of the form

F(r, z) == L Co:(r)zO: ,
lo:l~n

where co:(r) are bounded, Borel measurable functions on the simplex ~.

The extended functional L still satisfies

Next we pass to polar coordinates Zj == rjwj, IWjl == 1 and remark
that multiplication by Wj satisfies the isometric condition

£(lwjF(r, z)1 2
) == L(IF(r, z)1 2

) .

Thus, we can further extend the functional L to all polynomials in rand
w,w, so that

and

£(Ip(r, w, w)1 2
) ~ o.

We refer to [33] or [31) for the details how this extension is constructed.
By rewriting the latter positivity condition we have in particular

L(lh(z,z) ]2) ~ 0, h E <c[z, r],

whence, by the Stone-Weierstrass Theorem and the Riesz Representation
Theorem, the functional L is represented by a positive Borel measure, sup­
ported on the sphere.

The representing measure is unique by the Stone-Weierstrass
Theorem. 0
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3. A Striktpositivstellensatz. We now turn to the basic question
considered in this paper. We are given a finite set of real polynomials in 2d
variables p, ql, ... , qr, or equivalently, Hermitian symmetric polynomials in d
complex variables. We suppose that p(z, z) is strictly positive on the subset
of S2d-l where each qj is nonnegative. Can we write p as a weighted sum of
squared norms with qi as weights, as the real affine Striktpositivstellensatz
(see for instance [23]) suggests? The answer is yes, and we can offer at least
two different reasons why it is so.

THEOREM 3.1. Let p, ql, ... , qr E lR[x, y], where x + iy == z E c-. If

(izi == 1, qi(Z, z) ~ 0, 1 ~ i ~ r) => (p(z, z) > 0),

then

First we discuss the history of such Hermitian squares decompositions,
in the case where there are no constraints. A Hermitian symmetric poly­
nomial p is called bihomogeneous of degree (m, m) if

for all complex numbers A and all z E c-. The values of a bihomogeneous
polynomial are determined by its values on the sphere. When p is bihomo­
geneous and strictly positive on the sphere, Quillen [28] proved that there
is an integer k and a homogeneous polynomial vector-valued mapping h(z)
such that

This result was discovered independently by the first author and Catlin [6]
in conjunction with the first author's work on proper mappings between
balls in different dimensions. The proof in [6] uses the Bergman projection
and some facts about compact operators, and it generalizes to provide an
isometric imbedding theorem for certain holomorphic vector bundles [7].

It is worth noting that the integer k and the number of components
of h can be arbitrarily large, even for polynomials p of total degree four in
two variables. The result naturally fits into the phenomena encoded into
the old or recent Positivestellensatze, see for instance [23]. For the specific
case of Hermitian polynomials on spheres see [8] for considerable discussion
and generalizations.

Using a process of bihomogenization, Catlin and the first author (see
[6, 8] and [9]) proved that if p is arbitrary (not necessarily bihomogeneous)
and strictly positive on the sphere, then p agrees with a squared norm on
the sphere; in other words, p E E~ + I(S2d-l). Thus Theorem 1 holds
when there are no constraints. Our proof of Theorem 1 first considers the
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case of no constraints, but we approach this case in a completely different
manner.

Strict positivity is required for these results. The polynomial (lzll2 ­
IZ212)2 is bihomogeneous and nonnegative everywhere, but there is no ele­
ment in E~ agreeing with it on the sphere. See Example 4.3 below.

Proof of Theorem 1. Suppose first that no q/s are present and assume
by contradiction that p 1:. "E~, all regarded as elements of H(S2d-l). Since
the constant function 1 belongs to the algebraic interior of the convex
cone H(S2d-l), the separation lemma due to Eidelheit-Kakutani [12, 18]
provides a linear functional L E 1t(S2d-l)', satisfying both £(1) > 0 and

According to Lemma 2, there exists a positive Borel measure fL, supported
on the unit sphere, which represents L. Therefore

o;::: L(p) = Jpdp, > 0,

a contradiction.

The proof of the general case is similar, with the difference that we
have to prove that the support of the measure f-l is contained in the non­
negativity set defined by the functions qi. To this aim, fix an index i, and
remark that

for all p E <C[z]. Now, by the first case, every positive polynomial P(z, z)
is in the convex hull of the Hermitian squares, whence

whenever P(z, z) > 0 on the sphere, that is whenever P(z, z) 2 0 on the
sphere. In view of Stone-Weierstrass Theorem, every continuous functions
f on the sphere can be uniformly approximated by real polynomials. In
particular, we infer

J f 2d > 0 f E C(S2d-l).qi Jl - ,

But this inequality holds only if the support of f-l is contained in the non­
negativity set qi(Z, z) 2 o. 0
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4. Examples.

4.1. Optimization on the closed disk. The following simple ex­
ample shows that Hermitian sums of squares do not suffice as positivity
certificates on more general semi-algebraic sets. Specifically, let

4
P(z, z) = 1- 31z12+ alzl4

,

with l < a. Note that

and hence P E E 27i when a ~ ~. Hence we assume ~ < a < ~. The
polynomial 1 - tt + at 2 is decreasing for 0 < t < 1 when a < ~; therefore
Izi S 1 implies P(z, z) 2 1 + a - t > o.

On the other hand,

To see that P is not in this set, we apply the hereditary calculus. See [1]
for details. We replace z with a contractive operator T and replace z with
T*. We follow the usual convention of putting all T* 's to the left of the
powers of T. If P were in this set, we would obtain

IITII ~ 1 =:;- p(T, T) 2: O.

In particular let T be the 2 x 2 Jordan block with 1 above the diagonal. We
obtain a contradiction by computing that P(T, T*) is the diagonal matrix
with eigenvalues 1 and -l.

On the other hand, the larger convex cone ~2 + (1 - IzI2)~h is appro­
priate in this case, see [25, 27].

4.2. Squared norms. Recall that E~'H denotes the convex cone con­
sisting of polynomials which are squared norms of (holomorphic) polyno­
mial mappings. In all dimensions the zero set of an element in ~~1i must
be a complex variety.

Suppose R(z, z) ~ 0 for all z. Even in one dimension we cannot
conclude that R E E~1i. We noted earlier, where x == Re(z), the example

R(z, z) == (z + z)2 == 4x2.

The zero set of R is the imaginary axis, which has no complex structure. In
one dimension of course, the zero set of an element in E~ll must be either
all of C or a finite set.

Things are more complicated and interesting in higher dimensions.
Consider the following example from [8]. Define a Hermitian bihomoge­
neous polynomial in three variables by
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This polynomial p is nonnegative for all z, and its zero set is the complex
plane given by Zl ~ Z3 ~ 0 with Z2 arbitrary. Yet p is not a sum of squared
moduli; even more striking is that p cannot be written as the quotient

l:f;~I: where a and b are sums of squared moduli. See [10] for additional
information on this example and several tests for deciding whether a non­
negative polynomial R can be written as a quotient of squared norms. See
[32] for a necessary and sufficient condition involving the zeroes of R.

We give an additional example in one dimension. Define p by

The condition for being a quotient of squared norms is that one of the
following three statements holds:

b == 0, c > -2,

Ibl == 1, c == O.

The condition for being nonnegative is simpler: c ~ 21bl- 2.

4.3. Proof of Example b). We claimed earlier that the polynomial
(lzd2 - IZ212)2 is bihomogeneous and nonnegative everywhere, but there is
no element in L~ agreeing with it on the sphere.

Proof. Put R(z,z) == (IZlI2 -IZ212)2, and let V(R) denote its zero set.
We note that V(R) n s2n-l is the torus T defined by IZll2 == IZ212 == !.
Suppose for some polynomial mapping z ~ P(z) we have R == IPl2 on
the unit sphere. Note first that the zero set of IPl2 is a complex vari­
ety. We have IP(z)1 2 ~ 0 for z E T. We claim that P is identically zero.
For each fixed Z2 with IZ21 == 1, the vector-valued polynomial mapping
Zl -t P(Zl' Z2) vanishes on the circle IZll2 == ! and hence vanishes iden­
tically. Since Z2 was an arbitrary point with IZ212 == ~ we conclude that
the mapping (Zl, Z2) -t P(Zl, Z2) vanishes whenever Zl E C and Z2 lies
on a circle. By symmetry it also vanishes with the roles of the variables
switched. It follows that the zero set of P (which is a complex variety) is
at least three real dimensions, and hence P vanishes identically. Since R
does not vanish identically on the sphere we obtain a contradiction. 0

4.4. Example. There exist non-negative polynomials R such that R
is not in EhH , yet there is a positive integer N for which RN E E~f{. The
bihomogeneous polynomial R>. given by

satisfies this property whenever .A < 8. See [11] and [32]. For.A < 16,
R>. > 0 on the sphere. By Theorem 1 it agrees with a squared norm on
the sphere.
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5. Ranks of Hermitian forms on spheres and spectral values.
Let R be a Hermitian symmetric polynomial. In this section we consider
how many terms are needed to write R as an Hermitian sum of squares on
the unit sphere. As we mentioned in the introduction, the real variables
analogue of this problem is already quite appealing. It corresponds to the
case when certain Hermitian forms are diagonal, and hence things are much
easier. We therefore begin with a simple real variables example, observe
an interesting phenomenon, and then turn to its Hermitian version.

Let p be a homogeneous polynomial of several real variables. Suppose
p(x) > 0 for all x in the nonnegative orthant, the set where each Xj ~ O. By
a classical theorem of Polya, there is an integer d such that the polynomial
f defined by CLixi)dp(x) == f(x) has only positive coefficients. See [8]
for considerable discussion of Polya's classical theorem and its Hermitian
analogues. Here we will discuss a simple example where we are concerned
with the number of terms involved.

Consider the one parameter family of real polynomials on R 2 defined
by PA (x, y) == x2 - AXy + y2. Each P>. is homogeneous of degree 2, and
hence is determined by its values on the line given by x + y == 1. We
ask when we can find a polynomial f with nonnegative coefficients and
which agrees with P>. on this line. We also want to know the minimum
number N).. of terms f must have. For .A > 2, the polynomial has negative
values, and hence cannot be a sum of terms with positive coefficients. The
same conclusion holds at the border case when .A == 2. When A < 2, Polya's
theorem guarantees that such an f exists. The number N).. tends to infinity
as A tends to two. The value A == 1 plays a surprising special role. On the
line x + y == 1 we can write

X3 +y3
x 2 _ xy + y2 == == x 3 + y3 .

x+y

Thus N).. == 2 when A == 1. On the other hand, N>.. > 2 for 0 < A < 1.
Thus the minimum number of squares needed is not monotone in '\. This
striking phenomenon also holds in the Hermitian case; we could create the
Hermitian analogue simply by writing x == IZll2 and y == IZ212.

Let now R denote a Hermitian symmetric polynomial. Suppose R ~ 0
as a function. We write R in the form

and we know that R is itself a squared norm if and only if the matrix of
coefficients (cafj) is non-negative definite. In this case there is an integer
Nand holomorphic polynomials fj such that

N

R(z, z) == L lfj(z) 12 == If(z)12
.

j=l
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By elementary linear algebra, the minimum possible N equals the rank of
the matrix of coefficients. Thus the global problem is easy.

Things are considerably different on the sphere. For example, with the
right choice of nonnegative constants Cj and integer K, the expression

K
~ 2'1- LJ cjlZI J

j=l

will be strictly positive on the sphere while the underlying matrix of coef­
ficients will have arbitrarily many negative eigenvalues. Suppose however
that we write R as a squared norm Ifl2 on the sphere. What can we say
about N, the rank of the coefficient matrix of If 1

2? This problem is diffi­
cult. The following example and the fairly detailed sketches of the proofs
provide an accurate illustration of the subtleties involved.

5.1. Example. Let n == 2. Given N, is there a polynomial or rational
function 9 from e 2 to eN such that Ig(z)12 == 1- [(ZlZ2]2 on the sphere?

0) If 1(1 2 ~ 4, then for all N, the answer is no.
1) If N == 1, then the answer is yes only when ( == O.
2) If N == 2, the answer is yes precisely when one of the following

holds: (== 0, ](12 == 1, 1(12 == 2, '(12 == 3.
3) For each ( with 1(1 2 < 4, there is a smallest N( for which the answer

is yes. The limit as 1(1 tends to 2 of N( is infinity.

Proof. We merely indicate "the main ideas in the proofs and refer for
complete details to some published articles. In general we are seeking a
holomorphic polynomial mapping 9 such that

on the unit sphere. The components of g and the additional term (ZlZ2

define a holomorphic mapping from the n ball to the N +1 ball which maps
the sphere to the sphere. Either such a map is constant or proper. We now
consider the results for small N.

0) The maximum of I(ZlZ21 2 on the sphere is 1 when IZll2 == jZ212 == ~.

Hence 1(12 S 4 must hold if the question has a positive answer. We claim
that 1(1 2 == 4 cannot hold either. Suppose 1([2 == 4 and 9 exists. Then we
would have

on the sphere, and hence

on the sphere. By Example 3.b), no such 9 exists.



12 JOHN D'ANGELO AND MIHAl PUTINAR

1) The only proper mappings from the 2-ball to itself are autornor­
phisms, hence linear fractional transformations. Hence the term <;ZlZ2 can
arise only if <; ::::: O. When ( == 0 we may of course choose g(z) to be (Zl' Z2).

2) This result follows from Faran's classification [14] of the proper
holomorphic rational mappings from B2 to B3 • First we mention that
maps 9 and h are spherically equivalent if there are automorphisms u, v of
the domain and target balls such that h == vgu. If 9 existed, then there
would be a proper polynomial mapping h from B2 to B3 with the monomial
(ZlZ2 as a component. It follows from Faran's classification that h would
have to be spherically equivalent to one of the four mappings:

h(Zl,Z2) == (Zl,Z2,O)

h(Zl,Z2) == (Zl,ZlZ2,Z~)

h(Zl,Z2) == (zr,vf2Z 1Z2,Za)

h(Zl, Z2) == (zr, v3z1 Z2, z~).

These four mappings provide the four possible values for 1(1. It turns out,
however, that one can say more. In this case one can prove, via an analysis
of the possible denominators, that h must be unitarily equivalent to one of
these four maps. Since h must have the component (ZlZ2, one can compute
that the only possible values of 1(1 are the four that occur in these formulas.

3) This conclusion appears in [8].

We discuss the situation further. There are certain spectral values (*
for which the value N<* is smaller than that of Nt, for some (with 1(1 < 1(* I.
If ( ::::: 1 we can solve the problem with N :=:: 2; take g(z) == (Z{, Z2) for
example. Yet, if 1(1 < 1, then we cannot solve the problem when N == 2
unless ( == O. The proof relied on Faran's determination of all proper
(rational) mappings from 82 to B3. There are 4 spherical equivalence
classes; each class contains a monomial map, but there are no families of
maps. If we allow one larger target dimension, then we can get a one­
parameter family of maps:

From this formula we see that we can recover all values of 1(1 up to unity, but
not beyond. We omit the details. The phenomenon that certain discrete
values become possible before smaller values do continues as we increase
N. If N == 4, for example, the answer is yes for 0 ~ [(1 2 ~ 2 and the
following additional values for 1(1 2 :

7 10 8 5

2'3'3'2'

We satisfy ourselves with explicit maps where the constants ~ and /¥
arise as coefficients of Zl Z2:
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Both these maps are proper from the two ball to the five ball.
The results in Example 4.1 illustrate clearly the difference between

finding a representation as a squared norm of rank N and finding any
representation as a squared norm. We close with an explanation of why we
called this section spectral values. Given the polynomial R(z, z), we solve
the problem R == 111 2 on the sphere as in [6] or [8]. We add a variable t
to homogenize R; call the result Rh . We may choose C large enough such
that the function

is strictly positive on the sphere in C n +1 . The underlying matrix of coeffi­
cients need not be non-negative definite. We then invoke [6] or [28] to find
an integer d such that, after multiplication by (lzl2 + Itf)d, the underly­
ing form is positive definite. We then dehomogenize and evaluate on the
sphere. Thus the isolated values of 1(1 for which we can solve the problem
in Example 4.1 are in fact vanishing eigenvalues of a Hermitian form; for
nearby values of ( the eigenvalues may become negative. If we multiply by
higher powers of Izl2 + It12, then we can make these eigenvalues positive
(an open condition), but other eigenvalues will generally vanish. Given (
with [(I < 4, there always exists an Nc., but Nc. depends on (, rather than
only on the dimension and degree of R. See [8] for lengthy discussion.

We close by mentioning that the proof of the Positivstellensatz cannot
provide effective information on N). based upon only dimension and degree.
One must take into account precise information about the size of R, and
even then things are delicate. Example 4.1 relies on Faran's deep work. No
general classification of proper polynomial mappings between balls exists
that gives precise information on the relationship between the degree and
the target dimension. See [9] for more information.
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(To Scott Joplin and his eternal RAGs)

Abstract. This article sketches a few of the developments in the recently emerg­
ing area of real algebraic geometry (in short RAG) in a free* algebra, in particular on
"noncommutative inequalities". Also we sketch the engineering problems which both
motivated them and are expected to provide directions for future developments. The
free* algebra is forced on us when we want to manipulate expressions where the un­
knowns enter naturally as matrices. Conditions requiring positive definite matrices
force one to noncommutative inequalities. The theory developed to treat such situa­
tions has two main parts, one parallels classical semialgebraic geometry with sums of
squares representations (Positivstellensatze) and the other has a new flavor focusing
on how noncommutative convexity (similarly, a variety with positive curvature) is very
constrained, so few actually exist.

1. Introduction. This article sketches a few of the developments in
the recently emerging area of real algebraic geometry in a free* algebra, and
the engineering problems which both motivated them and are expected to
provide directions for future developments. Most linear control problems
with mean square or worst case performance requirements lead directly
to matrix inequalities (MIs). Unfortunately, many of these MIs are badly
behaved and unsuited to numerics. Thus engineers have spent considerable
energy and cleverness doing non-commutative algebra to convert, on an ad
hoc basis, various given MIs into equivalent better behaved MIs.

A classical core of engineering problems are expressible as linear matrix
inequalities (LMIs). Indeed, LMls are the gold standard of MIs, since they
are evidently convex and they are the subject of many excellent numerical
packages. However, for a satisfying theory and successful numerics a convex
MI suffices and so it is natural to ask:

How much more restrictive are LMls than convex MIs?

It turns out that the answer depends upon whether the MI is, as is
the case for systems engineering problems, fully characterized by perfor-
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mance criteria based on £2 and signal flow diagrams (as are most text­
book classics of control). Such problems have the property we refer to as
"dimension-free" .

Indeed, there are two fundamentally different classes of linear systems
problems: dimension free and dimension dependent. A dimension free MI
is a MI where the unknowns are g-tuples of matrices which appear in the
formulas in a manner which respects matrix multiplication. Dimension
dependent MIs have unknowns which are tuples of numbers.

The results presented here suggest the surprising conclusion that for
dimension free MIs convexity offers no greater generality than LMIs. In­
deed, we conjecture:

Dimension free convex problems are equivalent to an LMI.

The key ingredient in passing from convex MIs to LMIs and proving
their equivalence lies in the recently blossoming and vigorously developing
direction of semi-algebraic in a free * algebra; i.e., semi-algebraic geometry
with variables which, like matrices, do not commute. Indeed at this stage
there are two main branches of this subject. One includes non-commutative
Positivstellensatze which characterize things like one polynomial p being
positive where another polynomial q is positive. The other classifies situa­
tions with prescribed curvature.

As of today there are numerous versions of the Positivstellensatze for a
free *- algebra, with typically cleaner statements than in the commutative
case. For instance, in the non-commutative setting, positive polynomials
are sums of squares. Through the connection between convexity and posi­
tivity of a Hessian, non-commutative semi-algebraic dictates a rigid struc­
ture for polynomials, and even rational functions, in non-commuting vari­
ables. For instance, a noncommutative polynomial p has second derivative
p" which is again a polynomial. Further, if p is matrix convex (as defined
below), then p" is matrix positive (also defined below) and is thus a sum
of squares. It is a bizarre twist that pI! can be sum of squares only if p has
degree at most two (see §3. The authors suspect that this is a harbinger of
a very rigid structure in a free *-algebra for "irreducible varieties" whose
curvature is either nearly positive or nearly negative; but this is a tale for
another day.

A substantial opportunity for noncommutative algebra and symbolic
computation lies in numerical computation for problems whose variables
are naturally matrices. The goal is to exploit this special structure to
accelerate and to increase the allowable size of computation. This is the
subject of Section 9.

This survey is not intended to be comprehensive. Rather its purpose
is to provide some snippets of results in non-commutative semi-algebraic
geometry and their related computer algebra and numerical algorithms,
and of motivating engineering problems with the idea of entertaining and
even piquing the readers interest in the subject. In particular, this article
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draws heavily from [HP07] and [HPMV]. Sometimes we shall abbreviate
the word noncommutative to NC.

As examples of other important directions and themes, some of which
are addressed in other articles in this volume, there is a non-commutative
algebraic geometry based on the Weyl algebra and corresponding com­
puter algebra implementations, for example, Grabner basis generators for
the Weyl algebra are in the standard computer algebra packages such as
Plural/Singular. A very different and elegant area is that of rings with
a polynomial identity, in short PI rings, e.g. N x N matrices for fixed
N. While most PI research concerns identities, there is one line of work
on polynomial inequalities, indeed sums of squares, by Procesi-Schacher
[PS76]. A Nullstellensatz for PI rings is discussed in [Ami57].

As indicated LMIs playa large role in this paper, so now we describe
them precisely.

1.1. LMIs and noncommutative LMIS. Since they playa central
role in engineering and the study of convexity in the free * setting, we
digress, in the next subjection to define the notion of an LMI.

Given d x d symmetric (real entry) matrices Ao, AI, ... ,Ag , the func­
tion L : IRg ---t Sd(lR) given by

L(x) == I:Ajxj
j=O

is a classical linear pencil; and the inequality L (x) ~ 0 is the classical
(commutative) linear matrix inequality. Here (Xl, ... ,x g ) E lRg

.

In the non-commutative (dimension free) setting it is natural to sub­
stitute X E §n(lRg ) for the x above, obtaining the non-commutative version
of a linear pencil. Namely, for each n a function L : §n(lRg ) ---t §!Rnxn

The inequality L(X) t 0 is what we will generally mean by LMI. And,
as with polynomials, when we discuss LMls and linear pencils it will be
understood in the non-commutative sense.

EXAMPLE 1.1. For x :== (Xl,X2) being either commuting or noncom­
muting variables L written as

L(x) := G 1
0)

+ G 0
3)

Xl + G 0
5)

X2

denotes a linear pencil or NC linear pencil. For X :== (Xl, X2) with Xj E
IRnxn

L(X) = G 1
0)

+ G 0
3)

®XI + G 0
5)

®X2

_ (In + 2X1 + 3X2 3X1 + 5X2 )
- 3X1 +2X2 In .
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For X :== (Xl, X 2) with X j E IR, the set of solutions to L(X) t 0 is

This last equivalence follows from taking an appropriate Schur com­
plement which we now recall. The Schur complement of a matrix (with
pivot r~1) is defined by

A key fact is: if, is invertible, then the matrix is positive semi-definite if
and only if r > 0 and its Schur complement is positive semi-definite.

EXAMPLE 1.2. Apply this to the LMI in our example to obtain (1.1)
for X :== (Xl, X 2 ) with X j E lRn x n and X, symmetric.

The Schur complement of L(x) using the other pivot is the "rational
expression"

1.2. Outline. The remainder of the survey is organized as follows.
We expand upon the connection between systems engineering problems
and dimension free MIs in Section 2. Convexity in the non-commutative
(namely equal free *) setting is formalized in Section 3. This section also
contains a brief glimpse into the NCAlgebra package. NCA1gebra, and the
related NCGB (stands for non-commutative Grabner basis) [HdOSM05] do
symbolic computation in a free *-algebra and greatly aided the discovery of
the results discussed in this survey. NCAlgebra and NCGB are free, but run
under Mathematica which is not. Section 4 describes the engineering ne­
cessity for having a theory of matrix-valued non-commutative polynomials
whose coefficients are themselves polynomials in non-commuting variables;
much of the analysis of Section 3 carries over naturally in this setting.
The shockingly rigid structure of convex rational functions is described in
Section 5, with a sketch of proofs behind this "curvature oriented" non­
commutative semi-algebraic geometry in §6. Section 7 discusses numerics
designed to take advantage of matrix variables. Sections 8 gives the solution
to the H OO control problem stated in §4.

Sections 9 describes noncommutative semi-algebraic geometry aimed
at positivity and Positivstellensaten, this is an analogue of classical semi­
algebraic geometry which is elegant though it does not have direct engi­
neering applications.

1.3. Acknowledgments. The authors are grateful to Igor Klep for
his comments generally and specifically for considerable help with Section
9 and allowing us to include his forthcoming Theorem 9.7.
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2. Dimension free engineering: the map between systems and
algebra. This section illustrates how linear systems problems lead to semi­
algebraic geometry over a free or nearly free *- algebra and the role of
convexity in this setting. The discussion will also inform the necessary fur­
ther directions in the developing theory of non-commutative semi-algebraic
needed to fully treat engineering problems.

In the engineering literature, the action takes place over the real field.
Thus in much of this article, and in particular in this section, we restrict to
real scalars. However,we do break from the engineering convention in that
we will use A* to denote the transpose of a (real entries) matrix and at the
same time the usual involution on matrices with complex entries. Context
will evidently determine the meaning.

The inner product of vectors in a real Hilbert space will be denoted
u ·v.

2.1. Linear systems. A linear system ~ is given by the linear differ­
ential equations

dx
dt == Ax + Bu,

y::::: ex,

with the vector

• x(t) at each time t being in the vector space X called the state
space,

• u(t) at each time t being in the vector space U called the input
space,

• y (t) at each time t being in the vector space Y called the output
space,

and A, B, C being linear maps on the corresponding vector spaces.

2.2. Connecting linear systems. Systems can be connected in in­
credibly complicated configurations. We describe a simple connection and
this goes along way toward illustrating the general idea. Given two linear
systems ~, <!3, we describe the formulas for connecting them as follows.

ye

u +:?---+-----1.~

Systems ~ and (!; are respectively given by the linear differential
equations


