HORMONAL CARCINOGENESIS IV
Hormonal Carcinogenesis IV

Proceedings of the
Fourth International Symposium
HORMONAL CARCINOGENESIS IV

edited by

JONATHAN J. LI
Professor of Pharmacology, Toxicology and Therapeutics
Director, Hormonal Carcinogenesis Laboratory
The University of Kansas Medical Center
Kansas City, KS, USA

SARA A. LI
Associate Research Professor of Pharmacology, Toxicology
and Therapeutics
Hormonal Carcinogenesis Laboratory
The University of Kansas Medical Center
Kansas City, KS, USA

ANTONIO LLOMBART-BOSCH
Director, Departamento de Patologia
Facultad de Medicina y Odontologia
Universidad de Valencia
Valencia, Spain

Springer
In Memoriam to

Charles Bretton Huggins, M.D.

Ben May Laboratories
for Cancer Research
University of Chicago
Nobel Laureate, 1960

This volume is dedicated to the following individuals who unstintingly lent their resources and/or facilities to these Symposia since its inception in 1991, thus contributing importantly to our collective understanding of hormonal carcinogenesis and hormonal cancer research.

Janet Daling, Ph.D.
Jan-Åke Gustafsson, M.D., Ph.D.
Manuel Llombart-Bosch, M.D.
George Lucier, Ph.D.
James Pickar, M.D.
Acknowledgements

Patrons

Fundación Instituto Valenciano Oncología (IVO)
Office of Science and Culture of the Valencia Community
GlaxoSmithKline
National Institutes of Health
National Cancer Institute
National Institute of Child Health and Human Development
National Institute of Diabetes and Digestive and Kidney Diseases
National Institute of Environmental Health Sciences
Office of Research on Women's Health
Wyeth-Ayerst

Sponsors

DAKO
Zenyaku Kogyo

Contributors

GTx
Hormone Pellet Press
Executive and Scientific Advisory Boards

Absent SAB members: S. Grisolia, E.V. Jensen, and S. Mohla

* Executive Board
† Scientific Advisory Board
Participants of the Fourth International Symposium on Hormonal Carcinogenesis
Preface

It has been over a decade since the First International Symposium on Hormonal Carcinogenesis convened in 1991. Since then, the field has rapidly expanded with considerable progress in both breast and prostate cancers; while ovarian and endometrial cancer have been hampered, in part, due to the absence of suitable hormone-mediated animal models. While knock-out, transgenic, and cell-culture systems have been extremely useful in identifying specific gene/protein alterations and the ensuing pathways affected, the precise molecular mechanisms whereby sex hormones elicit their oncogenic effects still remain elusive. Moreover, despite the considerable progress made in breast cancer research, the exact role of progestins in the presence or absence of estrogen in breast growth, differentiation, and malignant transformation is lacking. Elucidating the incipient molecular alterations in early/pre-invasive lesions elicited by these hormones is a growing important focus of this field.

The main purpose of these Symposia has been to address vital questions that impact our understanding of the causation, dependency, progression, resistance, and prevention of hormonally-associated cancers.

We are indebted to the Scientific Advisory Board members who worked with us reviewing and offering suggestions to finalize the scientific program. We offer special thanks for the guidance and support of Dr. Gerald Mueller. His wisdom played an indispensable role in maintaining the excellence of these Symposia. We also acknowledge the numerous external reviewers that worked diligently to revise and improve the quality of the manuscripts. We are very grateful to Ms. Tandria Price. Her enthusiasm for the project, her effective and diplomatic interactions with contributors and administrators, and her superb organizational skills were evident during the Symposium and in the preparation of this volume. We are deeply grateful to the Fundación Instituto Valenciano Oncología (IVO), Universidad de Valencia, and the Office of Science and Culture of the Valencia Community, who hosted this Symposium and provided funds and gracious staff that worked efficiently to make this a most memorable Symposium. We are indebted to Ms. Paula Callaghan, our Springer-Verlag editor, for her support and highest publication standards. We appreciate the financial support of the NIH institutes and companies, listed separately, which have been indispensable to the success of this Symposium.

Kansas City, Kansas, USA
Jonathan J. Li, Ph.D.
Sara Antonia Li, Ph.D.

Valencia, SPAIN
Antonio Llombart-Bosch, M.D, Ph.D.
Contents

Dedication .. v
Acknowledgments ... vi
Preface ... ix
Participants .. xix

Symposium Address
Hormones, Centrosomes, and Genetic Instability in Mammary Carcinogenesis
William R. Brinkley, David L. Stenoien, and Thea Goepfert 1

STATE OF THE ART LECTURES ... 17

1 Chromosomal Instability: A New Paradigm for Estrogen-induced Oncogenesis
Jonathan J. Li, Jeffrey Salisbury, and Sara Antonia Li 19

2 The Molecular Pathogenesis of Human Prostate Cancer
William G. Nelson, Angelo M. DeMarzo, Theodore L. DeWeese,
and William B. Isaacs .. 34
PART 1. BREAST CANCER I: PROGESTERONE ACTION

3 Pathologic, Clinical, and Epidemiologic Characteristics of Invasive Lobular Breast Carcinoma and a Review of Studies Evaluating its Association with Hormone Replacement Therapy
Christopher I. Li .. 47

4 Progestin-Regulated Genes and Breast Cancer Risk: Good or Bad?
Henri Rochefort, Majida Esslimani-Sahla and Danny Chalbos.. 65

5 Role of Progesterone Receptors in Mammary Development and Carcinogenesis
Gopalan Shyamala.. 77

PART 2. BREAST CANCER II: MECHANISMS OF GENOMIC INSTABILITY 85

6 C-Myc Deregulation Promotes a Complex Network of Genomic Instability
Sabine Mai, Amanda Guffei, Thierry Fest, and Frederic Mushinski .. 87

7 Deregulation of Cyclin E and Genomic Instability
Charles H. Spruck, Adrian P. L. Smith, Susanna Ekholm Reed, Olle Sangfelt, Jaimie Keck, Heimo Strohmaier, Juan Mendez, Martin Widschwendter, Bruce Stillman, Anders Zetterberg and Steven I. Reed ... 98

8 Centrosome Amplification and the Origin of Chromosomal Instability in Breast Cancer
Jeffrey L. Salisbury ... 106
PART 3. BREAST & PROSTATE: EARLY *IN-SITU* LESIONS

9 Premalignant Breast Disease: Anatomic Lesions and Hormonal Associations
 David Page ... 121

10 Aromatase Overexpression: Effect of Tissue Estrogen on Phenotypic and Biochemical Changes in Aromatase Transgenic Mice
 Rajeshwar Rao Tekmal, Nameer Kirma, Usha Mandava, and Roopa Luthra ... 130

11 Prostate Epithelial Carcinogenesis: Putative and Controversial Precursor Lesions
 Cristina Magi-Galluzzi and Angelo M. De Marzo 141

PART 4. PROMOTION/PREVENTION OF HORMONE CANCERS

12 Estrogen Can Prevent Breast Cancer by Mimicking the Protective Effect of Pregnancy
 Satyabrata Nandi, Raphael C. Guzman, Gudmundur Thordarson, and Lakshmanawamy Rajkumar 153

13 Aromatase Inhibition and Breast Cancer
 William R. Miller ... 166

PART 5. PROSTATE I: ANDROGEN/ESTROGEN ACTION

14 Androgens and Prostate Cancer Etiology: Sorting Through the Evidence
 Ronald K. Ross, Leigh Pearce, Juergen Rechardt, and Gerhard Coetzee ... 183

15 Id-1 Protein as a New Marker for Prostate Cancer
PART 6. PROSTATE II: ANDROGEN RECEPTOR:
DEPENDENCE/RESISTANCE.. 209

16 Four Stages of Prostate Cancer: Suppression and
Eradication by Androgen and Green Tea
Epigallocatechin Gallate
Shutsung Liao, John M. Kokontis, Chih-pin Chuu, Stephen
Hsu, Junichi Fukuchi, Mai Dang, and Richard A. Hiipakka 211

17 Androgen Receptor and Interleukin-6 Signaling in
Prostate Cancer Progression
Zoran Culig, Hannes Steiner, Sonia Godoy-Tundidor,
Barbara Comuzzi, Georg Bartsch, and Alfred Hobisch 221

18 Role of the Androgen Receptor and P13K/Akt in the
Survival of Androgen-Refractory Prostate Cancer Cells
Haojie Huang and Donald J. Tindall................................. 233

PART 7. ENDOMETRIUM/OVARIAN/COLO.... 245

19 The BDII Inbred Rat: A Model for Genetic Analysis of
Endometrial Carcinoma
Karin Klinga-Levan and Göran Levan............................. 247

20 Potential Role of Gonadotropin-Releasing Hormone and
Estrogen in Ovarian Cancer
Peter C.K. Leung, Kyung-Chul Choi, and Nelly Auersperg...... 258

COMMUNICATIONS

Session I. Epidemiology/Human Derived Studies........... 271

Epidemiology:

Dose of Progestogen in Postmenopausal Combined Hormone
Therapy and Risk of Endometrial Cancer
Susan D. Reed, Lynda F. Voigt, Shirley A. Beresford, Deirdre A. Hill,
Jennifer A. Doherty, and Noel S. Weiss.............................. 273
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammographic Densities and Urinary Hormones in Healthy Women with Different Ethnic Backgrounds</td>
<td>Gertraud Maskarinec, Andrew E. Williams, Sabina Rinaldi, and Rudolph Kaaks</td>
<td>277</td>
</tr>
<tr>
<td>Polymorphism of the Estrogen Receptor Beta Gene in Breast Cancer</td>
<td>Cristina Caraion, Nadine Vincent, Claude Lambert, Constantin Caraion, Guorong Li, Pierre Seffert, Jean-Marc Dumollard, and Christian Genin</td>
<td>287</td>
</tr>
<tr>
<td>Characterization of Genetic Polymorphism of Glycine N-Methyltransferase Gene in Hepatocellular Carcinoma</td>
<td>Yu-Chuen Huang, Yi-Ping Shih, Chun-Chih Li, Li-Ying Liao, and Yi-Ming A. Chen</td>
<td>293</td>
</tr>
<tr>
<td>Human-Derived Studies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BREAST CANCER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role of Soy Phytoestrogens Genistein and Daidzein in Focal Adhesion Assembly and Focal Adhesion Kinase (FAK) Activity in Breast Cancer Cells</td>
<td>Nicolas G. Azios and Suranganie F. Dharmawardhane</td>
<td>300</td>
</tr>
<tr>
<td>ENDOMETRIAL/CERVICAL CANCER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expression of Estrogen α and β Variants, Androgen and Progesterone Receptors in Human Normal and Neoplastic Endometrium</td>
<td>Maciej Skrzypczak, Sylwia Zagulska-Szymczak, Rosette Lidereau, Ivan Bieche, Sebastian Lewandowski, Katarzyna Radwanska, Cezary Szczyl, Michael Vidaud, Jerzy A. Jakowicki, and Leszek Kaczmarek</td>
<td>314</td>
</tr>
<tr>
<td>PROSTATE CANCER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toremifene (ACAPODENETM) Reduces High Grade Prostatic Intraepithelial Neoplasia in a Phase IIa Clinical Trial</td>
<td>Mitchell S. Steiner</td>
<td>321</td>
</tr>
</tbody>
</table>
Stereological Study of Mean Nuclear Volume Weighted by Volume in Normal Prostate, Prostatic Intraepithelial Neoplasia, and Adenocarcinoma
Fernando Teba, Rocío Martín, Vicente Gómez, and Luis Santamaría 329

Constitutively Active Androgen Receptor Variant Detected in a Human Prostate Cancer
Jocelyn Céraline, Marion D. Cruchant, Eva Erdmann, Philippe Erbs, Jean-Emmanuel Kurtz, Brigitte Duclos, Didier Jacqmin, Dominique Chopin, Patrick Dufour, and Jean-Pierre Bergerat .. 336

Cancer Prevention by Green Tea via EGCG-Mediated Inhibition of Fatty Acid Synthase
Koen Brusselmans, Ellen De Schrijver, Walter Heyns, Guido Verhoeven, and Johannes V. Swinnen.. 343

Silencing of the Fatty Acid Synthase Gene by RNA Interference Inhibits Growth and Induces Apoptosis of LNCaP Prostate Cancer Cells
Ellen De Schrijver, Koen Brusselmans, Walter Heyns, Guido Verhoeven, and Johannes V. Swinnen.. 350

Androgens Stimulate the SREBP Pathway in Prostate Cancer Cells by Inducing a Shift in the SCAP-Retention Protein(s) Balance
Hannelore Heemers, Walter Heyns, Guido Verhoeven, and Johannes V. Swinnen.. 357

Session II. Hormone Metabolism & Cell/Molecular Biology............................... 365

Hormone Metabolism

Metabolism of 17β-Estradiol in ACI Rat Liver and Mammary Gland After Chronic Estradiol Treatment
Sonia Mesia-Vela, Rosa I Sanchez, Kenneth R. Reuhl, Allan H. Conney, and Frederick C. Kauffman .. 367
Modulation of Transforming and Clastogenic Activities of Catechol Estrogens by a Catechol-0-Methyltransferase Inhibitor in Syrian Hamster Embryo Fibroblasts
Takeki Tsutsui, Takeo W. Tsutsui, Yukiko Tamura, and J. Carl Barrett . 375

Cell/Molecular Biology:

BREAST CANCER

Bi-directional Regulation of Human Progesterone Receptors and the Mitogen Activated Protein Kinase Pathway in Breast Cancer Cell Models
Emily Faivre, Ming Qiu, and Carol A. Lange 381

Abnormal Properties of Mutants in the Hinge Region of Erα:
Implications in Breast Cancer
Carlos Martínez-Campa, Pedro Zuazua, Juana María García-Pedrero, Pedro Casado, Pedro Sánchez Lazo, and Sofía Ramos 391

The Effects of Eicosapentaenoic Acid Upon Proliferation and 17β-
Dehydrogenase Activity in MCF-7 Breast Carcinoma Cells
Alison S. Whitehouse, Eftychia Oikonomou, and Eric F Adams 398

Effect of Dietary Genistein on Estradiol-Induced Mammary
Carcinogenesis in the ACI Rat
Valerie K. Turan, Kenneth R Reuhl, and Paul E. Thomas 405

Cytogenetic Analysis of Genomic Destabilization in Solely
Estrogen-Induced Female ACI Rat Mammary Neoplasms
Dan Papa, Jonathan J. Li, and Sara Antonia Li 412

Microarray Analysis of Estrogen-Induced Protection Against
Breast Cancer
Lakshmanaswamy Rajkumar, Demi-Nhung Dang, Mark D. Hartnett,
David L. Hirschberg, Kenneth C. Loh, Raphael C. Guzman,
Gudmundur Thordarson, and Satyabrata Nandi 419

Pregnancy Levels of Estrogen Prevents Mammary Cancer
Raphael C. Guzman, Lakshmanaswamy Rajkumar, Gudmundur
Thordarson, and Satyabrata Nandi .. 426
Hormonal Dependence of Mammary Premalignant Progression
Daniel Medina, Frances S. Kittrell, Anne Shepard, Jamel Hill, and Powel Brown .. 431

The Possible Role of IGF-I and Androgens in the Development of Canine Inflammatory Mammary Carcinoma
Juan Carlos Illera, Gema Silván, M. Dolores Pérez-Alenza, Ana R. Sánchez-Archipidona, Ana Nieto, and Laura Peña ... 436

ENDOMETRIAL CANCER

Hormonal Activation of the Gab-1 Docking Protein in Uterine Cells
Diane M. Klotz, Jon A. Proctor, David K. Walmer, R. Gregg Richards, and Richard P. DiAugustine .. 443

Endometrial Adenocarcinoma in Syrian Hamsters Treated with Diethylstilbestrol, Tamoxifen and N-Ethyl-Nitrosourea
Jaime Ferrer, Faustino Pérez-Mínguez, Antonio Leal, Amando Peydró, and Antonio Llombart-Bosch .. 450

OVARY/PITUITARY/KIDNEY/LIVER CANCERS

Hormonal Regulation of ZEB-1 and Implication for Progression of Human Reproductive Cancers
Bynthia M. Anose, Michael P. Linnes, and Michel M. Sanders 455

Evaluation of Messenger RNA of Pituitary Tumour-Transforming Gene-1 (PTTG1) as a Molecular Marker for Micrometastasis
Manuel Valladares Ayerbes, Lourdes Calvo, Guillermo Alonso, Pilar Iglesias, Maria J Lorenzo, Inmaculada Brandón, Mar Haz, Marga Reboredo, Silvia Antolín, and Luis Antón Aparicio .. 462

Presence of CCK-B Receptor mRNA in Human Functionless Pituitary Tumours
Eftychia Oikonomou, Alison Whitehouse, Rosalind Mitchell, and Eric F. Adams .. 468

Estrogen-induced Mutations and its Role in the Development of Tumorigenesis
Kamleshwar P. Singh, Jose Antonio López-Guerrero, Antonio Llombart-Bosch, and Deodutta Roy .. 475
Englitazone Delays Fetal Growth in Late Gestation in the Rat
Julio Sevillano, Inmaculada C. López-Pérez, Emilio Herrera, M. Pilar Ramos, and Carlos Bocos ... 480

PROSTATE CANCER

The Tumour Suppressor Gene PTEN Plays Role in Cell Cycle Regulation and Apoptosis in Prostate Cancer Cell Lines
Alice Hlobilková, Michaela Šváchová, Jana Knílová, Eva Pimrová, Petra Řiháková, Per Guldberg, and Zdeněk Kolář .. 487

The Coactivators CBP and p300 in Androgen Independent Prostate Cancer
Jose D. Debes, Zoran Culig, and Donald J. Tindall 494

Expression Study of Estrogen Receptor-related Receptors and Steroid Hormone Receptors in Human Prostatic Cells
C.P. Cheung, Lung-Wai Chan, Ki Lui, Uwe Borgmeyer, Shiuan Chen, and Franky L. Chan ... 501

Immunohistochemical and In Situ Detection of Sex Hormone-Binding Globulin (SHBG) Expression in Breast and Prostate Cancer: Implications for Hormone Regulation
Scott M. Kahn, Daniel J. Hryb, Atif M. Nakhla, Saeed M. Khan, Nicholas A. Romas, and William Rosner ... 508

Activation of Androgen Receptor in Prostate Cancer: Role of Protein Kinase A and Extracellular Signal-regulated Kinases
Yehia Daaka, Elizabeth Kasbohm, and Charles Yowell 515

Cadmium and Zinc Chloride-induced Preneoplastic Changes in the Rat Ventral Prostate: An Immunohistochemical and Molecular Study Riánsares Arriazu, José M. Pozuelo, Rosario Rodríguez, Nuno Henriques-Gil, Teresa Perucho, Rocío Martín, and Luis Santamaría 522

Index
Participants

C. MARCELO ALDAZ The University of Texas, M.D. Anderson Cancer Center, Smithville, TX, USA

LORENZO ALONSO Hospital Universitario de Málaga, Madrid, SPAIN

LEONCIO ARRIBAS ALPUENTE Hospital Universitario de Málaga, Madrid, SPAIN

BINYTHIA MARIA ANOSE Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA

MANUEL VALLADARES AYERBES Medical Oncology, Pathology and Research Units, Medicine Department, Juan Canalejo University Hospital, La Coruña, SPAIN

NICOLAS G. AZIOS Section of Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA

SANDRA BALLESTER Departmento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

ELISA BANDERA The Cancer Institute of New Jersey, New Brunswick, NJ, USA

FREDERICK BELAND National Center for Toxicological Research, Jefferson, AR, USA

VALERIE BERAL Cancer Research UK Epidemiology Unit, Oxford, UNITED KINGDOM

ISABELLE M. BERQUIN Wake Forest University, Winston-Salem, NC, USA
Participants

WILLIAM R. BRINKLEY Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX, USA

KOEN BRUSSELMANS Laboratory for Experimental Medicine and Endocrinology, Department of Developmental Biology, Gasthuisberg, Catholic University of Leuven, Leuven, BELGIUM

CRISTINA CARAION Clinical Immunology Laboratory, University Hospital of Saint Etienne, FRANCE

CARMEN CARDA Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

JOCELYN CÉRALINE Laboratoire de Cancérologie Expérimentale et de Radiobiologie, IRCAD, Strasbourg, FRANCE

FRANKY L. CHAN Department of Anatomy, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong, CHINA

SHIUAN CHEN Beckman Research Institute of the City of Hope, Duarte, CA, USA

YI-MING A. CHEN Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, TAIWAN

YONG Q. CHEN Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA

SIMON J. CROOK Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham, UNITED KINGDOM

ZORAN CULIG Department of Urology, University of Innsbruck, Innsbruck, AUSTRIA

YEHIA DAABA Department of Surgery and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA

JANET R. DALING Fred Hutchinson Cancer Research Center, Seattle, WA, USA

ELLEN DE SCHRIJVER Laboratory for Experimental Medicine and Endocrinology, Department of Developmental Biology, Gasthuisberg, Catholic University of Leuven, Leuven, BELGIUM
JOSE D. DEBES Department of Urology, Mayo Clinic and Foundation, Rochester, MN, USA

RICHARD P. DI'AGUSTRINE Hormones and Cancer Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA

SURANGANIE F. DHARMAWARDHANE Section of Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA

MANUEL ENCISCO Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

JAIME FERRER Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

JAMES FIORICA Gyn Oncology Program, University of South Florida, H. Lee Moffitt Cancer Center, Tampa, FL, USA

MATIAS GARCIA-FANTINI Monforte de Lemos, Lugo, SPAIN

CECILIA GAROFALO Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA

SONIA GODYO-TUNDIDOR Department of Urology, University of Innsbruck, Innsbruck, AUSTRIA

JAN-ÅKE GUSTAFSSON Karolinska Institute, Department of Medical Nutrition, Huddinge, SWEDEN

RAPHAEL C. GUZMAN Cancer Research Laboratory, University of California, Berkeley, CA, USA

HANNELORE HEEMERS Laboratory for Experimental Medicine and Endocrinology, Faculty of Medicine, Onderwijs en Navorsing (9), Gasthuisberg, K.U. Leuven, Leuven, BELGIUM

ALICE HLOBILKOVÁ Laboratory of Molecular Pathology and Institute of Pathology, Faculty of Medicine, Palacký University, Hněvotínská 3, Olomouc, CZECH REPUBLIC
HAOJIE HUANG Departments of Urology, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA

JUAN CARLOS ILLERA Department of Animal Physiology, Veterinary School, Complutense University, Madrid, SPAIN

SCOTT M. KAHN Departments of Medicine and Urology, St. Luke's/Roosevelt Hospital Center, and College of Physicians and Surgeons, Columbia University, New York, NY, USA

KARIN KLEINGA-LEVAN Department of Natural Sciences, Skövde University, Skövde, SWEDEN

RAJKUMAR LAKSHMANAWAMY Cancer Research Laboratory, University of California, Berkeley, CA, USA

CORAL A. LAMARTINIERE Department of Pharmacology/Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA

CAROL A. LANGE Department of Medicine, Division of Hematology, Oncology, and Transplant, University of Minnesota Cancer Center, Minneapolis MN, USA

LOIC LE MARCHAND Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI

ANTONIO LEAL Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

PETER C. K. LEUNG Department of Obstetrics and Gynaecology, BC Children’s and Women's Hospital, University of British Columbia, Vancouver, British Columbia, CANADA

GORAN LEVAN CMB-Genetics, Göteborg University, Göteborg, SWEDEN

KRISTINA LEVAN Su/Sahlgrenska, Gotenborg, SWEDEN

CHRISTOPHER I. LI Fred Hutchinson Cancer Research Center, Seattle, WA, USA

JONATHAN J. LI Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA

SARA ANTONIA LI Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
SHUTSUNG LIAO The Ben May Institute for Cancer Research and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA

MICHAEL PAUL LINNES Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA

ANTONIO LLOMBART-BOSCH Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

ANTONIO LLOMBART-CUSSAC Department of Medical Oncology, Fundación Instituto Valenciano de Oncología, Valencia, SPAIN

BEATRIZ LLOMBART-CUSSAC Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

JOSE ANTONIO LOPEZ-GUERRERO Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

CRISTINA MAGI-GALLUZZI Department of Pathology, the Cleveland Clinic Foundation, Cleveland, OH, USA

SABINE MAI Manitoba Institute of Cell Biology, CancerCare Manitoba, The University of Manitoba, Winnipeg, MB, CANADA

M. MATILDE MARQUES Centro de Química Estructural, Instituto Superior Técnico, Lisboa, PORTUGAL

CARLOS MARTÍNEZ-CAMPA Departamento de Bioquímica y Biología Molecular. Instituto Universitario de Oncología Principado de Asturias. Universidad de Oviedo, Oviedo, SPAIN

GERTRAUD MASKARINEC Cancer Research Center of Hawaii, Honolulu, HI, USA

JUAN MENDEZ Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

DANIEL MEDINA Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA

SONIA MESIA-VELA Laboratory for Cellular and Biochemical Toxicology, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

WILLIAM R. MILLER Edinburgh Breast Unit Research Group, University of Edinburgh, Western General Hospital, Edinburgh, SCOTLAND
xxiv Participants

GERALD MUELLER Mc Ardle Lab, University of Wisconsin, Madison, WI, USA

SATYABRATA NANDI Cancer Research Laboratory, University of California, Berkeley, CA, USA

WILLIAM G. NELSON The Sidney Kimmel Comprehensive Cancer Center and Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA

EFTYCHIA OIKONOMOU Pharmaceutical Sciences Research Institute, Aston University, Birmingham, UNITED KINGDOM

CARLOS ORTIZ DE SOLÓZANO Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, SPAIN

DAVID L. PAGE Vanderbilt University Medical Center, Nashville, TN, USA

DAN PAPA Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA

FAUSTINO PEREZ-MINGUEZ Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

JAMES H. PICKAR Clinical Research and Development, Wyeth-Ayerst, Collegeville, PA, USA

KARL C. PODRATZ Mayo Clinic, Rochester, MN, USA

ANDRES POVEDA Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

NAFIS RAHMAN Gynecology & Obstetrics Section, Department of Physiology, University of Turku, Turku, FINLAND

DAVID RAMOS Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

SOFÍA RAMOS Departamento de Bioquímica y Biología Molecular. Instituto Universitario de Oncología Principado de Asturias, Universidad de Oviedo, Oviedo, SPAIN

STEVEN I. REED The Scripps Research Institute, La Jolla, CA, USA
SUSAN D. REED Department of Obstetrics & Gynecology and Epidemiology, University of Washington, Division of Public Health Sciences, Fred Hutchinson Cancer Research Institute, Seattle, WA, USA

SUSANNA EK HOLM REED The Scripps Research Institute, La Jolla, CA USA; The Karolinska Institute, Stockholm, SWEDEN

HENRI ROCHEFORT Inserm U.540 and Faculty of Medicine, Montpellier, FRANCE

RONALD K. ROSS, Flora L. Thornton Chairman of Preventive Medicine, USC/Norris Comprehensive Cancer Center, Los Angeles, CA, USA

AMPARO RUIZ Departamento de Patología, Universidad de Valencia, Facultad de Medicina y Odontología, Valencia, SPAIN

JEFFREY L. SALISBURY Tumor Biology Program, Mayo Clinic, Rochester, MN, USA

LUIS SANTAMARÍA Department of Morphology, School of Medicine, UAM, Madrid, SPAIN

JULIO SEVILLANO Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo-CEU, Boadilla del Monte, Madrid, SPAIN

GOPALAN SHYAMALA Department of Cell and Molecular Biology, University of California, Lawrence Berkeley Lab, Berkeley, CA, USA

MACIEJ SKRZYPCZAK Second Department of Gynaecology, University School of Medicine, Lublin, POLAND

EDUARDO SOLSONA-NARBONA Department of Medical Oncology, Fundación Instituto Valenciano de Oncología, Valencia, SPAIN

MEIR J. STAMPFER HSPH Epidemiology, Harvard Medical School, Boston, MA, USA

MITCHELL S. STEINER Department of Urology, University of Tennessee, Memphis, TN, USA

EVA SURMACZ Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA

OSSAMA TAWFIK Department of Surgical Pathology, The University of Kansas Medical Center, Kansas City, KS, USA
Participants

RAJESHWAR RAO TEKMAL Division of Reproductive Research, Department of Obstetrics and Gynecology, The University of Texas Health Science Center, San Antonio, TX, USA

PAUL E. THOMAS Joint Graduate Program in Toxicology; Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA

DONALD J. TINDALL Departments of Urology, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA

PAOLO TONIOLO Ob/Gyn and Environmental Medicine, Population Sciences, NYU Cancer Institute, New York University School of Medicine, New York, NY, USA

TAKEKI TSUTSUI Department of Pharmacology, The Nippon Dental University, School of Dentistry at Tokyo, Tokyo, JAPAN

VALERIE K. TURAN Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA

FRED M. WALDMAN University of California San Francisco, Cancer Center, San Francisco, CA, USA

ALESSANDRO WEISZ Dipart. di Patolgia Generale, Seconda Universita di Napoli, Napoli, ITALY

S. JOHN WEROHA Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA

ALISON S. WHITEHOUSE Pharmaceutical Sciences Research Institute, Aston University, Birmingham, UNITED KINGDOM

Y.C. WONG Cancer Biology Laboratory, Department of Anatomy; Central Laboratory of Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Hong Kong, CHINA

GABRIEL ZANGO Endocrine Laboratory, Dept. of Clinical Biochemistry, Faculty of Health Sciences, Ben Gurion University, Beer-Sheva, ISRAEL

ZHU ZHE PL Group, Institute of Molecular and Cell Biology, Singapore, SINGAPORE
Symposium Address

Hormones, Centrosomes, and Genomic Instability in Mammary Carcinogenesis

William R. Brinkley, David L. Stenoien, and Thea Goepfert

Introduction

The centrosome, a cytoplasmic organelle acquired at fertilization via paternal inheritance, plays a vital role in cell division and in the maintenance of cell polarity throughout development. The importance of the centrosome in achieving proper orientation and segregation of duplicated chromosomes and assuring stability of the eukaryotic genome is well established. The centrosome can be recognized in the cytoplasm of most eukaryotic cells as a discrete, microscopic domain that functions as the cell’s principal microtubule organizing center (MTOC). Like the genome, it undergoes duplication during late S-phase, producing a pair of centrosomes that function to organize the bipolar spindle in mitosis.

The centrosome duplication cycle, like the cell cycle, is regulated by a vital system of checkpoint-signaling proteins, about which little is currently known. Errors in centrosome duplication and/or distribution can result in aberrant daughter cells that either lack centrosomes (acentric cells) or receive a single centrosome, producing mono-polar spindles, or they can receive more than two centrosomes, resulting in the assembly of multipolar spindles during mitosis. These aberrations can lead to catastrophic errors in chromosome distribution resulting either in cell death or transformation to become tumor cells. Using antibodies specific for centrosome associated proteins, we and others have noted that many tumors, both in-vitro and in-vivo, display cells with a variety of centrosome aberrations (1-7). The most commonly reported defect causes cells to develop supernumerary centrosomes (greater than the expected 1-2 centrosomes/cell), a process identified as “centrosome amplification.” Retention and maintenance of centrosome duplicity is critical in the cell cycle to assure bipolar spindles and the maintenance of a diploid genome. Centrosome amplification could therefore account, in part, for the genomic instability and aneuploidy commonly found in cancer cells. Although bipolar spindles can form in the absence of centrosomes in some germ cells of eukaryotes this organelle plays a prominent role in spindle assembly and function in somatic cells (reviewed in 5). Thus, it becomes essential to identify and characterize the molecular components involved in maintaining the correct
centrosome number in diploid cells and to understand the cause of aberrations.

Although little is known about the role of hormones in the biology of centrosomes, they serve an important role in normal cell growth and developments, and are implicated in tumorigenesis. In a later section of this report, we review recent studies in our laboratory of centrosomes and their involvement in hormone mediated aneuploidy and cancer in an experimental rat mammary model for carcinogenesis.

The Resurrection

The implication of centrosome anomalies in cancer were first identified at the dawn of the 20th Century. In a 1914 treatise, *Zur Frage der Entstehung Maligner Tumoren*, Theodore Boveri (8) proposed that sea urchin zygotes containing more than two centrosomes, segregated their chromosomes abnormally due to the presence of extra spindle poles induced by polyspermy (Figure 1). He noted that although multipolarity was generally lethal, occasional segregants survived to produce embryos with tumor-like outgrowths. As one of the early experts on the role of centrosomes in cell division, Boveri was the first to propose a direct link between oncogenesis and the presence of multipolar spindles, aneuploidy and loss of tissue architecture in these embryos. Although he never studied cancer cells per se, his astute observations of this simple invertebrate system allowed him to derive many important postulates that still apply to cancer, including the concept of oncogenes, cell cycle checkpoints, tumor-suppressor genes, genetic instability, the clonal origin of tumors, chromosome specific “weakness” (telomeres), loss of cell adhesion, and genetic mosaicism. Moreover, he achieved this monumental task with little more than a primitive light microscope, a keen sense of observation and a truly remarkable intuition.

Boveri’s novel hypothesis that centrosome anomalies could be responsible for aneuploidy and the ontogeny of cancer, created a brief but spirited debate at the time, but was never widely accepted by the cancer establishment and it was essentially ignored until recently. The development and rise of *Drosophila* genetics by the Morgan school of genetics (9) and the discovery by Muller, et al. (10) that x-rays were potent mutagens and carcinogens, led to the widely accepted view that cancer is caused by a somatic gene mutation. The subsequent discovery of cellular oncogenes and tumor suppressor genes in the latter half of the 20th Century added considerable reinforcement to the somatic mutation idea (11-12). Despite the complex genetic basis of cancer, mutations in somatic genes remains the accepted hypothesis for oncogenesis by most cancer researchers today (for alternative view, see 13). However, recent reports of centrosome anomalies associated with many tumor cells (3-6), along with the well-established role of this organelle in mitotic spindle assembly and chromosome segregation (6, 7, 14), has revived Boveri’s 96 year-old hypothesis that aberrant centrosomes and aneuploidy (genomic instability) are incipient events in oncogenesis.
The role of centrosomes in cancer resurfaced again in 1996 when Fukasawa, et al. (1) reported centrosome amplification in mouse embryonic fibroblast null for the tumor suppressor p53. This group used anti-γ tubulin antibodies to detect and count centrosomes by immunofluorescence and reported that cells with the p53 null phenotype displayed more than the normal complement of centrosomes, whereas wild type and heterozygous cells displayed normal numbers of centrosomes. Three additional manuscripts published in 1998 from the laboratories of Roop and Brinkley (2), Salisbury (3), Pihan, Doxy, et al. (4) reported centrosome anomalies, especially centrosome amplification, in tumor cells in vivo. These reports were followed by additional findings that centrosomal abnormalities are common to many human cancers (reviewed in 6) and have sparked a lively resurrection of Boveri’s original hypothesis (14).

The Enlightenment: The Aurora Family of Serine/Threonine Kinases

The remarkable re-discovery of centrosome amplification in many common cancers led to a renewed interest in aneuploidy in neoplasia and initiated a search for a cellular and/or biochemical mechanism responsible for this phenomenon. It was immediately obvious; however that progress would be hampered by a dearth of knowledge about the molecular basis of centrosome maturation and replication in
eukaryotic cells (15, 16). Theoretically, centrosome amplification (more than the normal 1-2 centrosomes/cell) can occur by one of several pathways: (a) through a defect in a checkpoint pathway that controls centrosome duplication in late S-phase resulting in the over duplication, (b) via failure to partition duplicated centrosomes into daughter cells due to arrested or aberrant cytoplasmic cleavage of cytokinesis (6, 17), or (c) due, possibly, to fragmentation of pericentriolar material into small dispersed bodies that retain their capacity serve as MTOCs.

New light was cast onto the mechanism of centrosome amplification with the discovery of mitotic serine/threonine kinases representing the Aurora kinase family that included the prototypic yeast *Ipl1* and the *Drosophila Aurora* kinases (reviewed in 18, 19). Two groups from the laboratories of Sen and Brinkley at Houston (20) and the Bischoff group at Los Angeles (21) reported elevated expression of Aurora A (AurA) in many human cancers. Moreover, antibodies made against AurA were found to localize to the centrosomes of both interphase and mitotic cells (Figure 2).

Figure 2. Localization and expression of Aurora kinase in mammalian cells. (A) Antibodies against AurA are localized in the centrosomes of HeLa cells and when the gene, STK15 is overexpressed by transfection, multiple centrosomes appear. Two centrosomes appear in cells transfected with the vector, while 20% of the STK15 transfected cells displayed > 3 centrosomes/cell. (B) Centrosomes counts in 200 vector and STK15-transfected cells are shown in (C) Figures 1D-E show growth of cells in agar of stable transfected cells with vector (D) and NIH 3T3 cell transfected with STK 15 and grown in 0.5% bovine calf serum. Micrographs were taken at a total magnification of X100. F, Western blot analysis of STK 15-transfected 3T3 clones showing expression of STK15. [From Figure 5 in Zhou, et al., 1998 (20)].