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Edited by Francisco V. Sepúlveda and Francisco Bezanilla



LECTURES ON QUANTUM GRAVITY

Edited by
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Foreword

The Centro de Estudios Cientificos (CECS) began a new phase of its existence
at the end of 1999, when it moved to the city of Valdivia, 800 kilometers South
of the capital of Chile, Santiago. The letter “S", which stood for Santiago
in the original acronym has been maintained to provide a sense of historical
continuity, and it is now - when necessary - explained as arising from the plural
in the word Científicos.

Valdivia used to be part of the “frontier" in the early days of the country
and one still breathes frontier air in it. This frontier air has inspired the Center
to undertake new and bolder challenges in science and exploration, such as an
unprecedented airborne exploration of the Amundsen Sea in West Antarctica
and the development of a state of the art Transgenic Facility.

However, in the midst of all this excitement and frenetic activity, we were
distinctly reminded by the physicists who came to Valdivia from many countries
to take part in the School of Quantum Gravity that, as Richard Feynman used
to say: “there is nothing better in life than eating cookies and talking about
Physics".

Claudio Teitelboim
Director, Centro de Estudios Científicos

Valdivia, April 2004.

v



Contents

Contributing Authors xi

Preface xiii

The Thermodynamics of Black Holes 1
Robert M. Wald

1 Introduction 2
2 Classical Black Hole Thermodynamics 4
3 Hawking Radiation 10
4 The Generalized Second Law (GSL) 15

4.1 Arguments for the validity of the GSL 15
4.2 Entropy bounds 18

5 Calculations of Black Hole Entropy 23
6 Open Issues 28

6.1 Does a pure quantum state evolve to a mixed state in the
process of black hole formation and evaporation? 28

6.2 What (and where) are the degrees of freedom responsible for
black hole entropy? 30

Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect 39
Ted Jacobson

1 Introduction 39
2 Planck length and black hole thermodynamics 40

2.1 Planck length 41
2.2 Hawking effect 41
2.3 Black hole entropy 42

3 Harmonic oscillator 43
4 Quantum scalar field in curved spacetime 46

4.1 Conformal coupling 47
4.2 Canonical quantization 48
4.3 Hilbert space 49
4.4 Flat spacetime 50
4.5 Curved spacetime, “particles", and stress tensor 51
4.6 Remarks 53
4.6.1 Continuum normalization of modes 53

vii



viii LECTURES ON QUANTUM GRAVITY

4.6.2 Massless minimally coupled zero mode 53
5 Particle creation 54

5.1 Parametric excitation of a harmonic oscillator 54
5.1.1 Adiabatic transitions and ground state 55
5.1.2 Sudden transitions 56
5.1.3 Relation between in and out ground states & the squeeze

operator 56
5.2 Cosmological particle creation 58
5.3 Remarks 61
5.3.1 Momentum correlations in the squeezed vacuum 61
5.3.2 Normalization of the squeezed vacuum 61
5.3.3 Energy density 61
5.3.4 Adiabatic vacuum 61
5.4 de Sitter space 61
5.4.1 Primordial perturbations from zero point fluctuations 62

6 Black hole evaporation 63
6.1 Historical sketch 64
6.2 The Hawking effect 65
6.2.1 Average number of outgoing particles 65
6.2.2 Norm of the negative frequency part & thermal flux 69
6.2.3 The quantum state 72
6.3 Remarks 73
6.3.1 Local temperature 73
6.3.2 Equilibrium state: Hartle-Hawking vacuum 73
6.3.3 Stimulated emission 73
6.3.4 Unruh effect 74
6.3.5 Rotating black hole 74
6.3.6 de Sitter space 75
6.3.7 Higher spin fields 75
6.3.8 Interacting fields 75
6.3.9 Stress-energy tensor 75
6.3.10 Back-reaction 76
6.3.11 Statistical entropy 76
6.3.12 Information loss 77
6.3.13 Role of the black hole collapse 78

7 The trans-Planckian question 79
7.1 String theory viewpoint 80
7.2 Condensed matter analogy 80
7.3 Hawking effect on a falling lattice 81
7.4 Remarks 84
7.4.1 Finite Entanglement entropy 84
7.4.2 Stimulated emission of Hawking radiation at late times 84
7.4.3 Lattice time dependence and geometry fluctuations 85
7.5 Trans-Planckian question in cosmology 85

Large N field theories and gravity 91
Juan Maldacena

1 General Introduction 91
2 The Correspondence 96



Contents ix

3 Tests of the AdS/CFT Correspondence 106
3.1.1 The Field Theory Spectrum 107
3.1.2 The String Theory Spectrum and the Matching 113

4 Correlation Functions 118
5 Wilson Loops 128
6 Theories at Finite Temperature 135

Lectures on D-branes, tachyon condensation, and string field theory 151
Washington Taylor

1 Introduction 151
2 D-branes 157
3 Tachyons and D-branes 164
4 Open string field theory and the Sen conjectures 168
5 Basics of SFT 176
6 Evidence for the Sen conjectures 184
7 Further developments 193
8 Conclusions and open problems 196

Billiard dynamics 207
Thibault Damour, Marc Henneaux, Hermann Nicolai

1 Introduction 207
2 Kasner solution – Diagonal case 211

2.2.1 Supermetric and Hamiltonian 213
2.2.2 Hyperbolic space 214

3 Kasner solution – Non-diagonal case 216
3.2.1 BKL limit 218
3.2.2 First encounter with billiards 219

4 Asymptotic dynamics in the general case - Gravitational billiards 222
4.3.1 Computation of curvature 225
4.3.2 BKL limit 227
4.3.3 Remarks 228
4.4.1 Electric walls 229
4.4.2 Magnetic walls 230

5 Velocity-dominance - Strong coupling/small tension limit 234
6 Miscellany and Conclusions 235
Appendix: A. Iwasawa decomposition and asymptotics of non-diagonal 3d

Kasner metric 237
Appendix: B. Freezing the off-diagonal variables: a toy model 240
Appendix: C. Kasner frame versus Iwasawa frames 241
Appendix: D. Hamiltonian reduction 241

Tall tales from de Sitter space 249
Robert C. Myers

1 Prologue 249
2 De Sitter space basics 251
3 The Hunt for Λ-N 255



x LECTURES ON QUANTUM GRAVITY

4 Introduction to the dS/CFT correspondence 262
5 A generalized de Sitter c-theorem 270
6 The global perspective 274
7 CFT on two boundaries 280
8 Discussion of dS/CFT 288
Appendix: Scalar field modes in dS space 292

Causal Sets: Discrete Gravity 305
Rafael D. Sorkin

1 Introduction 305
2 Origins of the causet idea 306
3 What is a causal set? 309
4 Causal set kinematics in general 311
5 “How big” is a causet element? 311

6 The reconstruction of M
4 312

7 Sprinkling, coarse-graining, and the “Hauptvermutung” 312
8 Dimension and length 314
9 A length estimator 314
10 Dynamics 315
11 Fluctuations in the cosmological constant 317
12 Links across the horizon 318
13 What are the “observables” of quantum gravity? 319
14 How the large numbers of cosmology might be understood: a “Tolman-

Boltzmann” cosmology 320
15 Fields on a background causet 320
16 Topology change 320

Thermal Decay of the Cosmological Constant into Black Holes 329
Andrés Gomberoff, Marc Henneaux, Claudio Teitelboim, Frank Wilczek

1 Introduction 330
2 The Thermalon 332
3 Lorentzian continuation 336
4 Action and Probability 337
5 Nariai threshold 340
6 Decay of de Sitter space through the cosmological thermalon 341
7 Can the thermalon account for the small present value of the cosmo-

logical term? 345
8 Conclusions 346
Appendix: A. Instability of thermalons 347
Appendix: B. Gravitation Essential for Existence of Cosmological Thermalons.348



Contributing Authors

Thibault Damour Institut des Hautes Études Scientifiques (IHÉS).

Andrés Gomberoff Centro de Estudios Cientı́ficos (CECS).

Marc Henneaux Université Libre de Bruxelles.
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Preface

The 2002 Pan-American Advanced Studies Institute School on Quantum
Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile,
January 4-14, 2002. The school featured lectures by ten speakers, and was
attended by nearly 70 students from over 14 countries. A primary goal was
to foster interaction and communication between participants from different
cultures, both in the layman’s sense of the term and in terms of approaches to
quantum gravity. We hope that the links formed by students and the school will
persist throughout their professional lives, continuing to promote interaction
and the essential exchange of ideas that drives research forward.

This volume contains improved and updated versions of the lectures given at
the School. It has been prepared both as a reminder for the participants, and so
that these pedagogical introductions can be made available to others who were
unable to attend. We expect them to serve students of all ages well.

ANDRES GOMBEROFF AND DONALD MAROLF
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THE THERMODYNAMICS OF BLACK HOLES

Robert M. Wald
Enrico Fermi Institute and Department of Physics
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Abstract
We review the present status of black hole thermodynamics. Our review

includes discussion of classical black hole thermodynamics, Hawking radiation
from black holes, the generalized second law, and the issue of entropy bounds. A
brief survey also is given of approaches to the calculation of black hole entropy.
We conclude with a discussion of some unresolved open issues.

This article is based upon an article of the same title published in Living
Reviews in Relativity, http://www.livingreviews.org.
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1. Introduction

During the past 30 years, research in the theory of black holes in general
relativity has brought to light strong hints of a very deep and fundamental
relationship between gravitation, thermodynamics, and quantum theory. The
cornerstone of this relationship is black hole thermodynamics, where it appears
that certain laws of black hole mechanics are, in fact, simply the ordinary laws
of thermodynamics applied to a system containing a black hole. Indeed, the
discovery of the thermodynamic behavior of black holes – achieved primarily
by classical and semiclassical analyses – has given rise to most of our present
physical insights into the nature of quantum phenomena occurring in strong
gravitational fields.

The purpose of this article is to provide a review of the following aspects of
black hole thermodynamics:

At the purely classical level, black holes in general relativity (as well as
in other diffeomorphism covariant theories of gravity) obey certain laws
which bear a remarkable mathematical resemblance to the ordinary laws
of thermodynamics. The derivation of these laws of classical black hole
mechanics is reviewed in section 2.

Classically, black holes are perfect absorbers but do not emit anything;
their physical temperature is absolute zero. However, in quantum theory
black holes emit Hawking radiation with a perfect thermal spectrum. This
allows a consistent interpretation of the laws of black hole mechanics as
physically corresponding to the ordinary laws of thermodynamics. The
status of the derivation of Hawking radiation is reviewed in section 3.

The generalized second law (GSL) directly links the laws of black hole
mechanics to the ordinary laws of thermodynamics. The arguments in
favor of the GSL are reviewed in section 4. A discussion of entropy
bounds is also included in this section.

The classical laws of black hole mechanics together with the formula
for the temperature of Hawking radiation allow one to identify a quantity
associated with black holes – namelyA/4 in general relativity – as playing
the mathematical role of entropy. The apparent validity of the GSL
provides strong evidence that this quantity truly is the physical entropy
of a black hole. A major goal of research in quantum gravity is to provide
an explanation for – and direct derivation of – the formula for the entropy
of a black hole. A brief survey of work along these lines is provided in
section 5.

Although much progress has been made in our understanding of black
hole thermodynamics, many important issues remain unresolved. Pri-
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mary among these are the “black hole information paradox” and issues
related to the degrees of freedom responsible for the entropy of a black
hole. These unresolved issues are briefly discussed in section 6.

Throughout this article, we shall set G = � = c = k = 1, and we shall
follow the sign and notational conventions of [1]. Although I have attempted
to make this review be reasonably comprehensive and balanced, it should be
understood that my choices of topics and emphasis naturally reflect my own
personal viewpoints, expertise, and biases.
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2. Classical Black Hole Thermodynamics

In this section, I will give a brief review of the laws of classical black hole
mechanics.

In physical terms, a black hole is a region where gravity is so strong that
nothing can escape. In order to make this notion precise, one must have in
mind a region of spacetime to which one can contemplate escaping. For an
asymptotically flat spacetime (M, gab) (representing an isolated system), the
asymptotic portion of the spacetime “near infinity” is such a region. The black
hole region, B, of an asymptotically flat spacetime, (M, gab), is defined as

B ≡M − I−(I+), (1)

where I+ denotes future null infinity and I− denotes the chronological past.
Similar definitions of a black hole can be given in other contexts (such as
asymptotically anti-deSitter spacetimes) where there is a well defined asymp-
totic region.

The event horizon,H, of a black hole is defined to be the boundary ofB. Thus,
H is the boundary of the past of I+. Consequently, H automatically satisfies
all of the properties possessed by past boundaries (see, e.g., [2] or [1] for further
discussion). In particular,H is a null hypersurface which is composed of future
inextendible null geodesics without caustics, i.e., the expansion, θ, of the null
geodesics comprising the horizon cannot become negatively infinite. Note that
the entire future history of the spacetime must be known before the location of
H can be determined, i.e.,H possesses no distinguished local significance.

If Einstein’s equation holds with matter satisfying the null energy condition
(i.e., if Tabk

akb ≥ 0 for all null ka), then it follows immediately from the
Raychauduri equation (see, e.g., [1]) that if the expansion, θ, of any null geodesic
congruence ever became negative, then θ would become infinite within a finite
affine parameter, provided, of course, that the geodesic can be extended that
far. If the black hole is strongly asymptotically predictable – i.e., if there is a
globally hyperbolic region containing I−(I+) ∪ H – it can be shown that this
implies that θ ≥ 0 everywhere on H (see, e.g., [2, 1]). It then follows that the
surface area, A, of the event horizon of a black hole can never decrease with
time, as discovered by Hawking [4].

It is worth remarking that since H is a past boundary, it automatically must
be a C0 embedded submanifold (see, e.g., [1]), but it need not be C1. However,
essentially all discussions and analyses of black hole event horizons implic-
itly assume C1 or higher order differentiability of H. Recently, this higher
order differentiability assumption has been eliminated for the proof of the area
theorem [3].

The area increase law bears a resemblance to the second law of thermody-
namics in that both laws assert that a certain quantity has the property of never
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decreasing with time. It might seem that this resemblance is a very superfi-
cial one, since the area law is a theorem in differential geometry whereas the
second law of thermodynamics is understood to have a statistical origin. Never-
theless, this resemblance together with the idea that information is irretrievably
lost when a body falls into a black hole led Bekenstein to propose [5, 6] that
a suitable multiple of the area of the event horizon of a black hole should be
interpreted as its entropy, and that a generalized second law (GSL) should hold:
The sum of the ordinary entropy of matter outside of a black hole plus a suitable
multiple of the area of a black hole never decreases. We will discuss this law
in detail in section 4.

The remaining laws of thermodynamics deal with equilibrium and quasi-
equilibrium processes. At nearly the same time as Bekenstein proposed a re-
lationship between the area theorem and the second law of thermodynamics,
Bardeen, Carter, and Hawking [7] provided a general proof of certain laws of
“black hole mechanics” which are direct mathematical analogs of the zeroth
and first laws of thermodynamics. These laws of black hole mechanics apply to
stationary black holes (although a formulation of these laws in terms of isolated
horizons will be briefly described at the end of this section).

In order to discuss the zeroth and first laws of black hole mechanics, we
must introduce the notions of stationary, static, and axisymmetric black holes
as well as the notion of a Killing horizon. If an asymptotically flat spacetime
(M, gab) contains a black hole, B, then B is said to be stationary if there exists
a one-parameter group of isometries on (M, gab) generated by a Killing field
ta which is unit timelike at infinity. The black hole is said to be static if it is
stationary and if, in addition, ta is hypersurface orthogonal. The black hole
is said to be axisymmetric if there exists a one parameter group of isometries
which correspond to rotations at infinity. A stationary, axisymmetric black hole
is said to possess the “t–φ orthogonality property” if the 2-planes spanned by ta

and the rotational Killing field φa are orthogonal to a family of 2-dimensional
surfaces. The t–φ orthogonality property holds for all stationary-axisymmetric
black hole solutions to the vacuum Einstein or Einstein-Maxwell equations (see,
e.g., [8]).

A null surface, K, whose null generators coincide with the orbits of a one-
parameter group of isometries (so that there is a Killing field ξa normal to K)
is called a Killing horizon. There are two independent results (usually referred
to as “rigidity theorems”) that show that in a wide variety of cases of interest,
the event horizon,H, of a stationary black hole must be a Killing horizon. The
first, due to Carter [9], states that for a static black hole, the static Killing field
ta must be normal to the horizon, whereas for a stationary-axisymmetric black
hole with the t–φ orthogonality property there exists a Killing field ξa of the
form

ξa = ta + Ωφa (2)
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which is normal to the event horizon. The constant Ω defined by Eq. (2) is
called the angular velocity of the horizon. Carter’s result does not rely on any
field equations, but leaves open the possibility that there could exist stationary
black holes without the above symmetries whose event horizons are not Killing
horizons. The second result, due to Hawking [2] (see also [10]), directly proves
that in vacuum or electrovac general relativity, the event horizon of any station-
ary black hole must be a Killing horizon. Consequently, if ta fails to be normal
to the horizon, then there must exist an additional Killing field, ξa, which is
normal to the horizon, i.e., a stationary black hole must be nonrotating (from
which staticity follows [11, 12, 13]) or axisymmetric (though not necessarily
with the t–φ orthogonality property). Note that Hawking’s theorem makes no
assumptions of symmetries beyond stationarity, but it does rely on the properties
of the field equations of general relativity.

Now, let K be any Killing horizon (not necessarily required to be the event
horizon,H, of a black hole), with normal Killing field ξa. Since∇a(ξbξb) also
is normal to K, these vectors must be proportional at every point onK. Hence,
there exists a function, κ, on K, known as the surface gravity of K, which is
defined by the equation

∇a(ξbξb) = −2κξa. (3)

It follows immediately that κ must be constant along each null geodesic gen-
erator of K, but, in general, κ can vary from generator to generator. It is not
difficult to show (see, e.g., [1]) that

κ = lim(V a), (4)

where a is the magnitude of the acceleration of the orbits of ξa in the region off
ofKwhere they are timelike, V ≡ (−ξaξa)1/2 is the “redshift factor” of ξa, and
the limit as one approachesK is taken. Equation (4) motivates the terminology
“surface gravity”. Note that the surface gravity of a black hole is defined only
when it is “in equilibrium”, i.e., stationary, so that its event horizon is a Killing
horizon. There is no notion of the surface gravity of a general, non-stationary
black hole, although the definition of surface gravity can be extended to isolated
horizons (see below).

In parallel with the two independent “rigidity theorems” mentioned above,
there are two independent versions of the zeroth law of black hole mechanics.
The first, due to Carter [9] (see also [14]), states that for any black hole which
is static or is stationary-axisymmetric with the t–φ orthogonality property, the
surface gravity κ, must be constant over its event horizon H. This result is
purely geometrical, i.e., it involves no use of any field equations. The second,
due to Bardeen, Carter, and Hawking [7] states that if Einstein’s equation holds
with the matter stress-energy tensor satisfying the dominant energy condition,
then κ must be constant on any Killing horizon. Thus, in the second version
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of the zeroth law, the hypothesis that the t–φ orthogonality property holds is
eliminated, but use is made of the field equations of general relativity.

A bifurcate Killing horizon is a pair of null surfaces, KA and KB , which
intersect on a spacelike 2-surface, C (called the “bifurcation surface”), such
that KA and KB are each Killing horizons with respect to the same Killing
field ξa. It follows that ξa must vanish on C; conversely, if a Killing field,
ξa, vanishes on a two-dimensional spacelike surface, C, then C will be the
bifurcation surface of a bifurcate Killing horizon associated with ξa (see [15]
for further discussion). An important consequence of the zeroth law is that if
κ �= 0, then in the “maximally extended” spacetime representing a stationary
black hole, the event horizon, H, comprises a branch of a bifurcate Killing
horizon [14]. This result is purely geometrical – involving no use of any field
equations. As a consequence, the study of stationary black holes which satisfy
the zeroth law divides into two cases: “extremal” black holes (for which, by
definition, κ = 0), and black holes with bifurcate horizons.

The first law of black hole mechanics is simply an identity relating the
changes in mass, M , angular momentum, J , and horizon area, A, of a sta-
tionary black hole when it is perturbed. To first order, the variations of these
quantities in the vacuum case always satisfy

δM =
1
8π

κδA + ΩδJ. (5)

In the original derivation of this law [7], it was required that the perturbation be
stationary. Furthermore, the original derivation made use of the detailed form
of Einstein’s equation. Subsequently, the derivation has been generalized to
hold for non-stationary perturbations [11, 16], provided that the change in area
is evaluated at the bifurcation surface, C, of the unperturbed black hole (see,
however, [17] for a derivation of the first law for non-stationary perturbations
that does not require evaluation at the bifurcation surface). More significantly,
it has been shown [16] that the validity of this law depends only on very general
properties of the field equations. Specifically, a version of this law holds for
any field equations derived from a diffeomorphism covariant Lagrangian, L.
Such a Lagrangian can always be written in the form

L = L (gab; Rabcd,∇aRbcde, ...; ψ,∇aψ, ...) , (6)

where ∇a denotes the derivative operator associated with gab, Rabcd denotes
the Riemann curvature tensor of gab, and ψ denotes the collection of all matter
fields of the theory (with indices suppressed). An arbitrary (but finite) number
of derivatives of Rabcd and ψ are permitted to appear in L. In this more general
context, the first law of black hole mechanics is seen to be a direct consequence
of an identity holding for the variation of the Noether current. The general form
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of the first law takes the form

δM =
κ

2π
δSbh + ΩδJ + ..., (7)

where the “...” denote possible additional contributions from long range matter
fields, and where

Sbh ≡ −2π

∫
C

δL

δRabcd
nabncd. (8)

Here nab is the binormal to the bifurcation surface C (normalized so that
nabn

ab = −2), and the functional derivative is taken by formally viewing
the Riemann tensor as a field which is independent of the metric in Eq. (6). For
the case of vacuum general relativity, where L = R

√−g, a simple calculation
yields

Sbh = A/4, (9)

and Eq. (7) reduces to Eq. (5).
The close mathematical analogy of the zeroth, first, and second laws of

thermodynamics to corresponding laws of classical black hole mechanics is
broken by the Planck-Nernst form of the third law of thermodynamics, which
states that S → 0 (or a “universal constant”) as T → 0. The analog of this law
fails in black hole mechanics – although analogs of alternative formulations of
the third law do appear to hold for black holes [18] – since there exist extremal
black holes (i.e., black holes with κ = 0) with finite A. However, there is good
reason to believe that the “Planck-Nernst theorem” should not be viewed as a
fundamental law of thermodynamics [19] but rather as a property of the density
of states near the ground state in the thermodynamic limit, which happens to
be valid for commonly studied materials. Indeed, examples can be given of
ordinary quantum systems that violate the Planck-Nernst form of the third law
in a manner very similar to the violations of the analog of this law that occur
for black holes [20].

As discussed above, the zeroth and first laws of black hole mechanics have
been formulated in the mathematical setting of stationary black holes whose
event horizons are Killing horizons. The requirement of stationarity applies
to the entire spacetime and, indeed, for the first law, stationarity of the entire
spacetime is essential in order to relate variations of quantities defined at the
horizon (like A) to variations of quantities defined at infinity (like M and J).
However, it would seem reasonable to expect that the equilibrium thermody-
namic behavior of a black hole would require only a form of local stationarity at
the event horizon. For the formulation of the first law of black hole mechanics,
one would also then need local definitions of quantities like M and J at the
horizon. Such an approach toward the formulation of the laws of black hole
mechanics has recently been taken via the notion of an isolated horizon, defined
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as a null hypersurface with vanishing shear and expansion satisfying the addi-
tional properties stated in [21]. (This definition supersedes the more restrictive
definitions given, e.g., in [22, 23, 24].) The presence of an isolated horizon
does not require the entire spacetime to be stationary [25]. A direct analog of
the zeroth law for stationary event horizons can be shown to hold for isolated
horizons [26]. In the Einstein-Maxwell case, one can demand (via a choice
of scaling of the normal to the isolated horizon as well as a choice of gauge
for the Maxwell field) that the surface gravity and electrostatic potential of the
isolated horizon be functions of only its area and charge. The requirement that
time evolution be symplectic then leads to a version of the first law of black
hole mechanics as well as a (in general, non-unique) local notion of the energy
of the isolated horizon [26]. These results also have been generalized to allow
dilaton couplings [24] and Yang-Mills fields [27, 26].

In comparing the laws of black hole mechanics in classical general relativity
with the laws of thermodynamics, it should first be noted that the black hole
uniqueness theorems (see, e.g., [8]) establish that stationary black holes – i.e.,
black holes “in equilibrium” – are characterized by a small number of param-
eters, analogous to the “state parameters” of ordinary thermodynamics. In the
corresponding laws, the role of energy, E, is played by the mass, M , of the
black hole; the role of temperature, T , is played by a constant times the surface
gravity, κ, of the black hole; and the role of entropy, S, is played by a constant
times the area, A, of the black hole. The fact that E and M represent the same
physical quantity provides a strong hint that the mathematical analogy between
the laws of black hole mechanics and the laws of thermodynamics might be
of physical significance. However, as argued in [7], this cannot be the case in
classical general relativity. The physical temperature of a black hole is abso-
lute zero (see subsection 4.1 below), so there can be no physical relationship
between T and κ. Consequently, it also would be inconsistent to assume a
physical relationship between S and A. As we shall now see, this situation
changes dramatically when quantum effects are taken into account.
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3. Hawking Radiation

In 1974, Hawking [28] made the startling discovery that the physical tem-
perature of a black hole is not absolute zero: As a result of quantum particle
creation effects, a black hole radiates to infinity all species of particles with a
perfect black body spectrum, at temperature (in units with G = c = � = k = 1)

T =
κ

2π
. (10)

Thus, κ/2π truly is the physical temperature of a black hole, not merely a
quantity playing a role mathematically analogous to temperature in the laws of
black hole mechanics. In this section, we review the status of the derivation of
the Hawking effect and also discuss the closely related Unruh effect.

The original derivation of the Hawking effect [28] made direct use of the
formalism for calculating particle creation in a curved spacetime that had been
developed by Parker [29] and others. Hawking considered a classical spacetime
(M, gab) describing gravitational collapse to a Schwarzschild black hole. He
then considered a free (i.e., linear) quantum field propagating in this background
spacetime, which is initially in its vacuum state prior to the collapse, and he
computed the particle content of the field at infinity at late times. This calcu-
lation involves taking the positive frequency mode function corresponding to a
particle state at late times, propagating it backwards in time, and determining
its positive and negative frequency parts in the asymptotic past. His calculation
revealed that at late times, the expected number of particles at infinity corre-
sponds to emission from a perfect black body (of finite size) at the Hawking
temperature (Eq. (10)). It should be noted that this result relies only on the
analysis of quantum fields in the region exterior to the black hole, and it does
not make use of any gravitational field equations.

The original Hawking calculation can be straightforwardly generalized and
extended in the following ways. First, one may consider a spacetime represent-
ing an arbitrary gravitational collapse to a black hole such that the black hole
“settles down” to a stationary final state satisfying the zeroth law of black hole
mechanics (so that the surface gravity, κ, of the black hole final state is constant
over its event horizon). The initial state of the quantum field may be taken to
be any nonsingular state (i.e., any Hadamard state – see, e.g., [15]) rather than
the initial vacuum state. Finally, it can be shown [30] that all aspects of the
final state at late times (i.e., not merely the expected number of particles in each
mode) correspond to black body1 thermal radiation emanating from the black
hole at temperature (Eq. (10)).

It should be noted that no infinities arise in the calculation of the Hawking
effect for a free field, so the results are mathematically well defined, without any
need for regularization or renormalization. The original derivations [28, 30]
made use of notions of “particles propagating into the black hole”, but the



The Thermodynamics of Black Holes 11

results for what an observer sees at infinity were shown to be independent
of the ambiguities inherent in such notions and, indeed, a derivation of the
Hawking effect has been given [31] which entirely avoids the introduction of any
notion of “particles”. However, there remains one significant difficultly with
the Hawking derivation: In the calculation of the backward-in-time propagation
of a mode, it is found that the mode undergoes a large blueshift as it propagates
near the event horizon, but there is no correspondingly large redshift as the
mode propagates back through the collapsing matter into the asymptotic past.
Indeed, the net blueshift factor of the mode is proportional to exp(κt), where
t is the time that the mode would reach an observer at infinity. Thus, within a
time of order 1/κ of the formation of a black hole (i.e., ∼ 10−5 seconds for a
one solar mass Schwarzschild black hole), the Hawking derivation involves (in
its intermediate steps) the propagation of modes of frequency much higher than
the Planck frequency. In this regime, it is difficult to believe in the accuracy of
free field theory – or any other theory known to mankind.

An approach to investigating this issue was first suggested by Unruh [32],
who noted that a close analog of the Hawking effect occurs for quantized sound
waves in a fluid undergoing supersonic flow. A similar blueshifting of the
modes quickly brings one into a regime well outside the domain of validity of
the continuum fluid equations. Unruh suggested replacing the continuum fluid
equations with a more realistic model at high frequencies to see if the fluid ana-
log of the Hawking effect would still occur. More recently, Unruh investigated
models where the dispersion relation is altered at ultra-high frequencies, and he
found no deviation from the Hawking prediction [33]. A variety of alternative
models have been considered by other researchers [34, 35, 36, 37, 38, 39, 40].
Again, agreement with the Hawking effect prediction was found in all cases,
despite significant modifications of the theory at high frequencies.

The robustness of the Hawking effect with respect to modifications of the
theory at ultra-high frequency probably can be understood on the following
grounds. One may view the backward-in-time propagation of modes as con-
sisting of two stages: a first stage where the blueshifting of the mode brings
it into a WKB regime but the frequencies remain well below the Planck scale,
and a second stage where the continued blueshifting takes one to the Planck
scale and beyond. In the first stage, the usual field theory calculations should
be reliable. On the other hand, after the mode has entered a WKB regime, it
seems plausible that the kinds of modifications to its propagation laws consid-
ered in [33, 34, 35, 36, 37, 38, 39, 40] should not affect its essential properties,
in particular the magnitude of its negative frequency part.

Indeed, an issue closely related to the validity of the original Hawking deriva-
tion arises if one asks how a uniformly accelerating observer in Minkowski
spacetime perceives the ordinary (inertial) vacuum state (see below). The outgo-
ing modes of a given frequency ω as seen by the accelerating observer at proper
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time τ along his worldline correspond to modes of frequency∼ ω exp(aτ) in a
fixed inertial frame. Therefore, at time τ 
 1/a one might worry about field-
theoretic derivations of what the accelerating observer would see. However,
in this case one can appeal to Lorentz invariance to argue that what the accel-
erating observer sees cannot change with time. It seems likely that one could
similarly argue that the Hawking effect cannot be altered by modifications of
the theory at ultra-high frequencies, provided that these modifications preserve
an appropriate “local Lorentz invariance” of the theory. Thus, there appears to
be strong reasons for believing in the validity of the Hawking effect despite the
occurrence of ultra-high-frequency modes in the derivation.

There is a second, logically independent result – namely, the Unruh effect [41]
and its generalization to curved spacetime – which also gives rise to the for-
mula (10). Although the Unruh effect is mathematically very closely related
to the Hawking effect, it is important to distinguish clearly between them. In
its most general form, the Unruh effect may be stated as follows (see [42, 15]
for further discussion): Consider a classical spacetime (M, gab) that contains a
bifurcate Killing horizon,K = KA∪KB , so that there is a one-parameter group
of isometries whose associated Killing field, ξa, is normal toK. Consider a free
quantum field on this spacetime. Then there exists at most one globally nonsin-
gular state of the field which is invariant under the isometries. Furthermore, in
the “wedges” of the spacetime where the isometries have timelike orbits, this
state (if it exists) is a KMS (i.e., thermal equilibrium) state at temperature (10)
with respect to the isometries.

Note that in Minkowski spacetime, any one-parameter group of Lorentz
boosts has an associated bifurcate Killing horizon, comprised by two intersect-
ing null planes. The unique, globally nonsingular state which is invariant under
these isometries is simply the usual (“inertial”) vacuum state, |0〉. In the “right
and left wedges” of Minkowski spacetime defined by the Killing horizon, the
orbits of the Lorentz boost isometries are timelike, and, indeed, these orbits
correspond to worldlines of uniformly accelerating observers. If we normalize
the boost Killing field, ba, so that Killing time equals proper time on an orbit
with acceleration a, then the surface gravity of the Killing horizon is κ = a.
An observer following this orbit would naturally use ba to define a notion of
“time translation symmetry”. Consequently, by the above general result, when
the field is in the inertial vacuum state, a uniformly accelerating observer would
describe the field as being in a thermal equilibrium state at temperature

T =
a

2π
(11)

as originally discovered by Unruh [41]. A mathematically rigorous proof of
the Unruh effect in Minkowski spacetime was given by Bisognano and Wich-
mann [43] in work motivated by entirely different considerations (and done
independently of and nearly simultaneously with the work of Unruh). Further-
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more, the Bisognano-Wichmann theorem is formulated in the general context
of axiomatic quantum field theory, thus establishing that the Unruh effect is not
limited to free field theory.

Although there is a close mathematical relationship between the Unruh ef-
fect and the Hawking effect, it should be emphasized that these results refer
to different states of the quantum field. We can divide the late time modes
of the quantum field in the following manner, according to the properties that
they would have in the analytically continued spacetime [14] representing the
asymptotic final stationary state of the black hole: We refer to modes that would
have emanated from the white hole region of the analytically continued space-
time as “UP modes” and those that would have originated from infinity as “IN
modes”. In the Hawking effect, the asymptotic final state of the quantum field
is a state in which the UP modes of the quantum field are thermally populated at
temperature (10), but the IN modes are unpopulated. This state (usually referred
to as the “Unruh vacuum”) would be singular on the white hole horizon in the
analytically continued spacetime. On the other hand, in the Unruh effect and its
generalization to curved spacetimes, the state in question (usually referred to
as the “Hartle-Hawking vacuum” [44]) is globally nonsingular, and all modes
of the quantum field in the “left and right wedges” are thermally populated.2

The differences between the Unruh and Hawking effects can be seen dra-
matically in the case of a Kerr black hole. For the Kerr black hole, it can be
shown [42] that there does not exist any globally nonsingular state of the field
which is invariant under the isometries associated with the Killing horizon,
i.e., there does not exist a “Hartle-Hawking vacuum state” on Kerr spacetime.
However, there is no difficultly with the derivation of the Hawking effect for
Kerr black holes, i.e., the “Unruh vacuum state” does exist.

It should be emphasized that in the Hawking effect, the temperature (10)
represents the temperature as measured by an observer near infinity. For any
observer following an orbit of the Killing field, ξa, normal to the horizon, the
locally measured temperature of the UP modes is given by

T =
κ

2πV
, (12)

where V = (−ξaξa)1/2. In other words, the locally measured temperature of
the Hawking radiation follows the Tolman law. Now, as one approaches the
horizon of the black hole, the UP modes dominate over the IN modes. Taking
Eq. (4) into account, we see that T → a/2π as the black hole horizon, H, is
approached, i.e., in this limit Eq. (12) corresponds to the flat spacetime Unruh
effect.

Equation (12) shows that when quantum effects are taken into account, a
black hole is surrounded by a “thermal atmosphere” whose local temperature
as measured by observers following orbits of ξa becomes divergent as one
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approaches the horizon. As we shall see in the next section, this thermal atmo-
sphere produces important physical effects on quasi-stationary bodies near the
black hole. On the other hand, it should be emphasized that for a macroscopic
black hole, observers who freely fall into the black hole would not notice any
important quantum effects as they approach and cross the horizon.
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4. The Generalized Second Law (GSL)

In this section, we shall review some arguments for the validity of the gen-
eralized second law (GSL). We also shall review the status of several proposed
entropy bounds on matter that have played a role in discussions and analyses
of the GSL.

4.1 Arguments for the validity of the GSL

Even in classical general relativity, there is a serious difficulty with the ordi-
nary second law of thermodynamics when a black hole is present, as originally
emphasized by J.A. Wheeler: One can simply take some ordinary matter and
drop it into a black hole, where, according to classical general relativity, it will
disappear into a spacetime singularity. In this process, one loses the entropy
initially present in the matter, and no compensating gain of ordinary entropy
occurs, so the total entropy, S, of matter in the universe decreases. One could
attempt to salvage the ordinary second law by invoking the bookkeeping rule
that one must continue to count the entropy of matter dropped into a black hole
as still contributing to the total entropy of the universe. However, the second
law would then have the status of being observationally unverifiable.

As already mentioned in section 2, after the area theorem was proven, Beken-
stein [5, 6] proposed a way out of this difficulty: Assign an entropy, Sbh, to a
black hole given by a numerical factor of order unity times the area, A, of the
black hole in Planck units. Define the generalized entropy, S′, to be the sum
of the ordinary entropy, S, of matter outside of a black hole plus the black hole
entropy

S′ ≡ S + Sbh. (13)

Finally, replace the ordinary second law of thermodynamics by the generalized
second law (GSL): The total generalized entropy of the universe never decreases
with time,

ΔS′ ≥ 0. (14)

Although the ordinary second law will fail when matter is dropped into a black
hole, such a process will tend to increase the area of the black hole, so there is
a possibility that the GSL will hold.

Bekenstein’s proposal of the GSL was made prior to the discovery of Hawk-
ing radiation. When Hawking radiation is taken into account, a serious problem
also arises with the second law of black hole mechanics (i.e., the area theorem):
Conservation of energy requires that an isolated black hole must lose mass in
order to compensate for the energy radiated to infinity by the Hawking process.
Indeed, if one equates the rate of mass loss of the black hole to the energy flux
at infinity due to particle creation, one arrives at the startling conclusion that an
isolated black hole will radiate away all of its mass within a finite time. During
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this process of black hole “evaporation”, A will decrease. Such an area decrease
can occur because the expected stress-energy tensor of quantum matter does
not satisfy the null energy condition – even for matter for which this condition
holds classically – in violation of a key hypothesis of the area theorem.

However, although the second law of black hole mechanics fails during the
black hole evaporation process, if we adjust the numerical factor in the definition
of Sbh to correspond to the identification of κ/2π as temperature in the first law
of black hole mechanics – so that, as in Eq. (9) above, we have Sbh = A/4 in
Planck units – then the GSL continues to hold: Although A decreases, there is at
least as much ordinary entropy generated outside the black hole by the Hawking
process. Thus, although the ordinary second law fails in the presence of black
holes and the second law of black hole mechanics fails when quantum effects
are taken into account, there is a possibility that the GSL may always hold. If
the GSL does hold, it seems clear that we must interpret Sbh as representing
the physical entropy of a black hole, and that the laws of black hole mechanics
must truly represent the ordinary laws of thermodynamics as applied to black
holes. Thus, a central issue in black hole thermodynamics is whether the GSL
holds in all processes.

It was immediately recognized by Bekenstein [5] (see also [7]) that there is a
serious difficulty with the GSL if one considers a process wherein one carefully
lowers a box containing matter with entropy S and energy E very close to the
horizon of a black hole before dropping it in. Classically, if one could lower the
box arbitrarily close to the horizon before dropping it in, one would recover all
of the energy originally in the box as “work” at infinity. No energy would be
delivered to the black hole, so by the first law of black hole mechanics, Eq. (7),
the black hole area, A, would not increase. However, one would still get rid of
all of the entropy, S, originally in the box, in violation of the GSL.

Indeed, this process makes manifest the fact that in classical general rela-
tivity, the physical temperature of a black hole is absolute zero: The above
process is, in effect, a Carnot cycle which converts “heat” into “work” with
100% efficiency [45]. The difficulty with the GSL in the above process can be
viewed as stemming from an inconsistency of this fact with the mathematical
assignment of a finite (non-zero) temperature to the black hole required by the
first law of black hole mechanics if one assigns a finite (non-infinite) entropy
to the black hole.

Bekenstein proposed a resolution of the above difficulty with the GSL in a
quasi-static lowering process by arguing [5, 6] that it would not be possible
to lower a box containing physically reasonable matter close enough to the
horizon of the black hole to violate the GSL. As will be discussed further in
the next sub-section, this proposed resolution was later refined by postulating
a universal bound on the entropy of systems with a given energy and size [46].
However, an alternate resolution was proposed in [47], based upon the idea
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that, when quantum effects are taken into account, the physical temperature of
a black hole is no longer absolute zero, but rather is the Hawking temperature,
κ/2π. Since the Hawking temperature goes to zero in the limit of a large
black hole, it might appear that quantum effects could not be of much relevance
in this case. However, despite the fact that Hawking radiation at infinity is
indeed negligible for large black holes, the effects of the quantum “thermal
atmosphere” surrounding the black hole are not negligible on bodies that are
quasi-statically lowered toward the black hole. The temperature gradient in
the thermal atmosphere (see Eq. (12)) implies that there is a pressure gradient
and, consequently, a buoyancy force on the box. This buoyancy force becomes
infinitely large in the limit as the box is lowered to the horizon. As a result of
this buoyancy force, the optimal place to drop the box into the black hole is no
longer the horizon but rather the “floating point” of the box, where its weight
is equal to the weight of the displaced thermal atmosphere. The minimum area
increase given to the black hole in the process is no longer zero, but rather turns
out to be an amount just sufficient to prevent any violation of the GSL from
occurring in this process [47].

The analysis of [47] considered only a particular class of gedankenexperi-
ments for violating the GSL involving the quasi-static lowering of a box near a
black hole. Of course, since one does not have a general proof of the ordinary
second law of thermodynamics – and, indeed, for finite systems, there should
always be a nonvanishing probability of violating the ordinary second law – it
would not be reasonable to expect to obtain a completely general proof of the
GSL. However, general arguments within the semiclassical approximation for
the validity of the GSL for arbitrary infinitesimal quasi-static processes have
been given in [48, 49, 15]. These arguments crucially rely on the presence of
the thermal atmosphere surrounding the black hole. Related arguments for the
validity of the GSL have been given in [50, 51]. In [50], it is assumed that the
incoming state is a product state of radiation originating from infinity (i.e., IN
modes) and radiation that would appear to emanate from the white hole region
of the analytically continued spacetime (i.e., UP modes), and it is argued that
the generalized entropy must increase under unitary evolution. In [51], it is
argued on quite general grounds that the (generalized) entropy of the state of
the region exterior to the black hole must increase under the assumption that it
undergoes autonomous evolution.

Indeed, it should be noted that if one could violate the GSL for an infinitesimal
quasi-static process in a regime where the black hole can be treated semi-
classically, then it also should be possible to violate the ordinary second law for
a corresponding process involving a self-gravitating body. Namely, suppose that
the GSL could be violated for an infinitesimal quasi-static process involving,
say, a Schwarzschild black hole of mass M (with M much larger than the
Planck mass). This process might involve lowering matter towards the black
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hole and possibly dropping the matter into it. However, an observer doing this
lowering or dropping can “probe” only the region outside of the black hole, so
there will be some r0 > 2M such that the detailed structure of the black hole
will directly enter the analysis of the process only for r > r0. Now replace the
black hole by a shell of matter of mass M and radius r0, and surround this shell
with a “real” atmosphere of radiation in thermal equilibrium at the Hawking
temperature (10) as measured by an observer at infinity. Then the ordinary
second law should be violated when one performs the same process to the shell
surrounded by the (“real”) thermal atmosphere as one performs to violate the
GSL when t

he black hole is present. Indeed, the arguments of [48, 49, 15] do not dis-
tinguish between infinitesimal quasi-static processes involving a black hole
as compared with a shell surrounded by a (“real”) thermal atmosphere at the
Hawking temperature.

In summary, there appear to be strong grounds for believing in the validity
of the GSL.

4.2 Entropy bounds

As discussed in the previous subsection, for a classical black hole the GSL
would be violated if one could lower a box containing matter sufficiently close
to the black hole before dropping it in. Indeed, for a Schwarzschild black hole,
a simple calculation reveals that if the size of the box can be neglected, then the
GSL would be violated if one lowered a box containing energy E and entropy
S to within a proper distance D of the bifurcation surface of the event horizon
before dropping it in, where

D <
S

(2πE)
. (15)

(This formula holds independently of the mass, M , of the black hole.) However,
it is far from clear that the finite size of the box can be neglected if one lowers
a box containing physically reasonable matter this close to the black hole. If it
cannot be neglected, then this proposed counterexample to the GSL would be
invalidated.

As already mentioned in the previous subsection, these considerations led
Bekenstein [46] to propose a universal bound on the entropy-to-energy ratio of
bounded matter, given by

S/E ≤ 2πR, (16)

where R denotes the “circumscribing radius” of the body. Here “E” is normally
interpreted as the energy above the ground state; otherwise, Eq. (16) would be
trivially violated in cases where the Casimir energy is negative [52] – although
in such cases in may still be possible to rescue Eq. (16) by postulating a suitable
minimum energy of the box walls [53].


