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Foreword

GERAD celebrates this year its 25th anniversary. The Center was
created in 1980 by a small group of professors and researchers of HEC
Montreal, McGill University and of the Ecole Polytechnique de Montreal.
GERAD's activities achieved sufficient scope to justify its conversion in
June 1988 into a Joint Research Centre of HEC Montreal, the Ecole
Polytechnique de Montreal and McGill University. In 1996, the Uni-
versite du Quebec a Montreal joined these three institutions. GERAD
has fifty members (professors), more than twenty research associates and
post doctoral students and more than two hundreds master and Ph.D.
students.

GERAD is a multi-university center and a vital forum for the develop-
ment of operations research. Its mission is defined around the following
four complementarily objectives:

• The original and expert contribution to all research fields in
GERAD's area of expertise;

• The dissemination of research results in the best scientific outlets
as well as in the society in general;

• The training of graduate students and post doctoral researchers;
• The contribution to the economic community by solving important

problems and providing transferable tools.
GERAD's research thrusts and fields of expertise are as follows:
• Development of mathematical analysis tools and techniques to

solve the complex problems that arise in management sciences and
engineering;

• Development of algorithms to resolve such problems efficiently;
• Application of these techniques and tools to problems posed in

related disciplines, such as statistics, financial engineering, game
theory and artificial intelligence;

• Application of advanced tools to optimization and planning of large
technical and economic systems, such as energy systems, trans-
portation/communication networks, and production systems;

• Integration of scientific findings into software, expert systems and
decision-support systems that can be used by industry.

One of the marking events of the celebrations of the 25th anniver-
sary of GERAD is the publication of ten volumes covering most of the
Center's research areas of expertise. The list follows: Essays and
Surveys in Global Optimization, edited by C. Audet, P. Hansen
and G. Savard; Graph Theory and Combinatorial Optimization,
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edited by D. Avis, A. Hertz and O. Marcotte; Numerical Methods in
Finance, edited by H. Ben-Ameur and M. Breton; Analysis, Con-
trol and Optimization of Complex Dynamic Systems, edited
by E.K. Boukas and R. Malhame; Column Generation, edited by
G. Desaulniers, J. Desrosiers and M.M. Solomon; Statistical Modeling
and Analysis for Complex Data Problems, edited by P. Duchesne
and B. Remillard; Performance Evaluation and Planning Meth-
ods for the Next Generation Internet, edited by A. Girard, B. Sanso
and F. Vazquez-Abad; Dynamic Games: Theory and Applica-
tions, edited by A. Haurie and G. Zaccour; Logistics Systems: De-
sign and Optimization, edited by A. Langevin and D. Riopel; Energy
and Environment, edited by R. Loulou, J.-P. Waaub and G. Zaccour.

I would like to express my gratitude to the Editors of the ten volumes,
to the authors who accepted with great enthusiasm to submit their work
and to the reviewers for their benevolent work and timely response.
I would also like to thank Mrs. Nicole Paradis, Francine Benoit and
Louise Letendre and Mr. Andre Montpetit for their excellent editing
work.

The GERAD group has earned its reputation as a worldwide leader
in its field. This is certainly due to the enthusiasm and motivation of
GERAD's researchers and students, but also to the funding and the
infrastructures available. I would like to seize the opportunity to thank
the organizations that, from the beginning, believed in the potential
and the value of GERAD and have supported it over the years. These
are HEC Montreal, Ecole Polytechnique de Montreal, McGill University,
Universite du Quebec a Montreal and, of course, the Natural Sciences
and Engineering Research Council of Canada (NSERC) and the Fonds
quebecois de la recherche sur la nature et les technologies (FQRNT).

Georges Zaccour
Director of GERAD



Avant-propos

Le Groupe d'etudes et de recherche en analyse des decisions (GERAD)
fete cette annee son vmgt-cinquieme anniversaire. Fonde en 1980 par
une poignee de professeurs et chercheurs de HEC Montreal engages dans
des recherches en equipe avec des collegues de l'Universite McGill et
de l'Ecole Polytechnique de Montreal, le Centre comporte maintenant
une cinquantaine de membres, plus d'une vingtaine de professionnels de
recherche et stagiaires post-doctoraux et plus de 200 etudiants des cycles
superieurs. Les activites du GERAD ont pris suffisamment d'ampleur
pour justifier en juin 1988 sa transformation en un Centre de recherche
conjoint de HEC Montreal, de l'Ecole Polytechnique de Montreal et de
l'Universite McGill. En 1996, l'Universite du Quebec a Montreal s'est
jointe a ces institutions pour parrainer le GERAD.

Le GERAD est un regroupement de chercheurs autour de la discipline
de la recherche operationnelle. Sa mission s'articule autour des objectifs
complement air es suivants :

• la contribution originate et experte dans tous les axes de recherche
de ses champs de competence;

• la diffusion des resultats dans les plus grandes revues du domaine
ainsi qu'aupres des differents publics qui forment l'environnement
du Centre;

• la formation d'etudiants des cycles superieurs et de stagiaires post-
doctoraux ;

• la contribution a la communaute economique a travers la resolution
de problemes et le developpement de coffres d'outils transferables.

Les principaux axes de recherche du GERAD, en allant du plus theo-
rique au plus applique, sont les suivants :

• le developpement d'outils et de techniques d'analyse mathematiques
de la recherche operationnelle pour la resolution de problemes com-
plexes qui se posent dans les sciences de la gestion et du genie;

• la confection d'algorithmes permettant la resolution efficace de ces
problemes;

• 1'application de ces outils a des problemes poses dans des disciplines
connexes a la recherche operationnelle telles que la statistique, l'in-
genierie financiere, la theorie des jeux et l'intelligence artificielle;

• l'application de ces outils a l'optimisation et a la planification de
grands systemes technico-economiques comme les systemes energe-
tiques, les reseaux de telecommunication et de transport, la logis-
tique et la distributique dans les industries manufacturieres et de
service;
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• l'integration des resultats scientifiques dans des logiciels, des sys-
temes experts et dans des systemes d'aide a la decision transferables
a Pindustrie.

Le fait marquant des celebrations du 25e du GERAD est la publication
de dix volumes couvrant les champs d'expertise du Centre. La liste suit :
Essays and Surveys in Global Optimization, edite par C. Audet,
P. Hansen et G. Savard; Graph Theory and Combinatorial Op-
timization, edite par D. Avis, A. Hertz et O. Marcotte; Numerical
Methods in Finance, edite par H. Ben-Ameur et M. Breton; Analy-
sis, Control and Optimization of Complex Dynamic Systems,
edite par E.K. Boukas et R. Malhame; Column Generation, edite par
G. Desaulniers, J. Desrosiers et M.M. Solomon; Statistical Modeling
and Analysis for Complex Data Problems, edite par P. Duchesne
et B. Remillard; Performance Evaluation and Planning Methods
for the Next Generation Internet, edite par A. Girard, B. Sanso et
F. Vazquez-Abad; Dynamic Games : Theory and Applications,
edite par A. Haurie et G. Zaccour; Logistics Systems : Design and
Optimization, edite par A. Langevin et D. Riopel; Energy and En-
vironment, edite par R. Loulou, J.-P. Waaub et G. Zaccour.

Je voudrais remercier tres sincerement les editeurs de ces volumes, les
nombreux auteurs qui ont tres volontiers repondu a l'invitation des edi-
teurs a soumettre leurs travaux, et les evaluateurs pour leur benevolat
et ponctualite. Je voudrais aussi remercier Mmes Nicole Paradis, Fran-
cine Benoit et Louise Letendre ainsi que M. Andre Mont pet it pour leur
travail expert d'edition.

La place de premier plan qu'occupe le GERAD sur Pechiquier mondial
est certes due a la passion qui anime ses chercheurs et ses etudiants,
mais aussi au financement et a Infrastructure disponibles. Je voudrais
profiter de cette occasion pour remercier les organisations qui ont cru
des le depart au potentiel et la valeur du GERAD et nous ont soutenus
durant ces annees. II s'agit de HEC Montreal, PEcole Polytechnique de
Montreal, PUniversite McGill, PUniversite du Quebec a Montreal et,
bien sur, le Conseil de recherche en sciences naturelles et en genie du
Canada (CRSNG) et le Fonds quebecois de la recherche sur la nature et
les technologies (FQRNT).

Georges Zaccour
Directeur du GERAD
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Preface

This volume collects twelve chapters dealing with a wide range of
topics in numerical finance. It is divided in three parts. The first part
contains surveys and tutorial contributions, reviewing the current state
of the art in diverse mathematical methods and models and their appli-
cations in finance. The second part examines asset pricing, proposing
numerical methods and specific applications. Finally, the third part deals
with asset portfolios, presenting methods for efficiency testing, perfor-
mance evaluation and optimal selection, with empirical experiments.

Part I

In Chapter 1, P. Frangois presents a survey of the major models of the
structural approach for the valuation of corporate debt in a continuous-
time arbitrage-free economy. Numerous models are presented, includ-
ing endogenous capital structure, discrete coupon payments, flow-based
state variables, interest rate risk, strategic debt service and advanced
default rules. Finally, the author presents an assessment of the perfor-
mance of these structural models in capturing the empirical patterns of
the term structure of credit spread.

Chapter 2 prepared by D. Dufresne is a concise account of the con-
nection between Bessel processes and the integral of geometric Brownian
motion. The main motivation for the study of this integral is the pric-
ing of Asian options. The author reviews the definition and properties
of Bessel processes. The expressions for the density function of the in-
tegral and of the Laplace transform for Asian option prices are given.
Some new derivations and alternative proofs for these results are also
presented.

Chapter 3, by J.-P. Aubin, D. Pujal and P. Saint-Pierre, presents
the main results of the viability/capturability approach for the valu-
ation and hedging of contingent claims with transaction costs in the
tychastic control framework (or dynamic game against nature). A vi-
ability/capturability algorithm is proposed, and it is shown that this
provides both the value of the contingent claim and the hedging portfo-
lio. An outline of the viability/capturability strategy establishing these
results is subsequently provided.

In Chapter 4, P. Bernhard presents an overview of the robust control
approach to option pricing and hedging, based on an interval model for
security prices. This approach does not assume a probabilistic knowledge
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of market prices behaviour. The theory developed allows for continuous
or discrete trading for hedging options, while taking transaction costs
into account. A numerical algorithm implementing the theory and effi-
ciently computing option prices is also provided.

Part II

Chapter 5, by J. de Prutos, presents a finite element method for pricing
two-factor bonds with conversion, call and put embedded options. The
method decouples the state and temporal discretizations, thus allowing
the use of efficient numerical procedures for each one of the decoupled
problems. Numerical experiments are presented, showing stability and
accuracy.

In Chapter 6, M. Bellalah proposes a finite difference method for the
valuation of index options, where the index price volatility has two com-
ponents, one of which is specific and the other is related to the interest
rate volatility. An extension of the Alternating Direction Implicit nu-
merical scheme is proposed. Numerical illustrations are provided, show-
ing the impact of interest rate volatility on early exercise of American
options.

Chapter 7 by T. Berrada studies American options with uncertain
maturities. The author shows how to use the exercise premium decom-
position to value such options by a backward integral equation. Two
application examples are presented: real options to invest in projects
and employee stock options. Numerical illustrations in both cases show
the effect of stochastic maturity on the optimal exercise boundary.

In Chapter 8, E. Clark uses an American option framework to study
the expropriation decision by a host country, in order to estimate the
expropriation risk in foreign direct investment projects. The model is
used to illustrate the impact of incomplete information about the expro-
priation costs on the valuation of foreign direct investment projects.

Part III

Chapter 9, prepared by M.-C. Beaulieu, J.-M. Dufour and L. Khalaf,
propose exact inference procedures for asset pricing models. The sta-
tistical approach presented allows for possibly asymmetric, heavy tailed
distributions, based on Monte-Carlo test techniques. The methods pro-
posed are applied to a mean-variance efficiency problem using portfolio
returns of the NYSE and show significant goodness-of-fit improvement
over standard distribution frameworks.
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In Chapter 10, M. Ayadi and L. Kryzanowski use a general asset pric-
ing framework to evaluate the performance of actively managed fixed-
income mutual fund portfolios. Their approach is independent of asset-
pricing models and distributional assumptions. Applying this to Cana-
dian fixed-income mutual funds, they find that the measured uncondi-
tional performance of fund managers is negative.

In Chapter 11, P. Boyle and B. Ding propose a linear approxima-
tion for the third moment of a portfolio in a mean-absolute deviation-
skewness approach for portfolio optimization. Their model can be used
to obtain a high skewness and a relatively lower variance, while keeping
the expected return fixed, with respect to a base portfolio. The model is
then used to analyse the potential for put options to increase the skew-
ness of portfolios. Numerical experiments use historical data from the
Toronto Stock Exchange.

Chapter 12, by N. Giilpinar and B. Rustem, presents a continu-
ous min-max approach for single-period portfolio selection in a mean-
variance context. The optimization is performed assuming a range of
expected returns and various covariance scenarios. The optimal invest-
ment strategy is robust in the sense that it has the best lower bound per-
formance. Computational experiments using historical prices of FTSE
stocks are provided, and illustrate the robustness of the min-max strat-
egy.
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Chapter 1

CORPORATE DEBT VALUATION:
THE STRUCTURAL APPROACH

Pascal Prangois

Abstract This chapter surveys the contingent claims literature on the valuation
of corporate debt. Model summaries are presented in a continuous-time
arbitrage-free economy. After a review of the basic model, I extend
the approach to models with an endogenous capital structure, discrete
coupon payments, flow-based state variables, interest rate risk, strategic
debt service, and more advanced default rules. Finally, I assess the
empirical performance of structural models in light of the latest tests
available.

1. Introduction
The purpose of this chapter is to review the structural models for

valuing corporate straight debt. Beyond the scope of this survey are the
reduced-form models of credit risk1 as well as the structural models for
vulnerable securities and for risky bonds with option-like provisions.2

Earlier reviews of this literature may be found in Cooper and Martin
(1996); Bielecki and Rutkowski (2002) and Lando (2004). This survey
covers several topics that were previously hardly surveyed (in particular
Sections 5, 7, 8, and 9). Model summaries are presented in a continuous-
time arbitrage-free economy. Adaptations to the binomial setting may
be found in Garbade (2001).

In Section 2, I present the basic model (valuation of finite-maturity
corporate debt with a continuous coupon and an exogenous default

1See for instance Jarrow and Turnbull (1995); Jarrow et al. (1997); Duffie and Singleton
(1999) or Madan and Unal (2000).
2See, e.g., Klein (1996); Rich (1996), and Cao and Wei (2001) for vulnerable options, Ho
and Singer (1984) for bonds with a sinking-fund provision, Ingersoll (1977) and Brennan and
Schwartz (1980) for convertibles, and Acharya and Carpenter (2002) for callables.
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threshold). Then I extend the approach to models with an endogenous
capital structure (Section 3), discrete coupon payments (Section 4), flow-
based state variables (Section 5), interest rate risk (Section 6), strategic
debt service (Section 7), and more advanced default rules (Section 8).
In Section 9, I discuss the empirical efficacy of structural models mea-
sured by their ability to reproduce observed patterns of term structure
of credit spreads. I conclude in Section 10.

2. The basic model

2.1 Contingent claims pricing assumptions

Throughout I consider a firm with equity and debt outstanding. This
version of the basic model was initially derived by Merton (1974) in the
set-up defined by Black and Scholes (1973). It relies on the following
assumptions

1 The assets of the firm are continuously traded in an arbitrage-free
and complete market. Uncertainty is represented by the filtered
probability space (ft, T, P) where P stands for the historical prob-
ability measure. Prom Harrison and Pliska (1981) we have that
there exists a unique probability measure Q, equivalent to P, under
which asset prices discounted at the risk-free rate are martingales.

2 The term structure of interest rates is flat. The constant r de-
notes the instantaneous risk-free rate (this assumption is relaxed
in Section 6).

3 Once debt is issued, the capital structure of the firm remains un-
changed (this assumption is relaxed in Section 3.3).

4 The value of the firm assets V(t) is independent of the firm capital
structure and, under Q, it is driven by the geometric Brownian
motion

where 8 and a are two constants and (zt)t>o is a standard Brownian
motion. This equation states that the instantaneous return on the
firm assets is r and that a proportion 8 of assets is continuously
paid out to claimholders. Firm business risk is captured by (zt)t>o,
and the risk-neutral firm profitability is Gaussian with mean r and
standard deviation a. Other possible state variables are examined
in Section 5. Other dynamics for V(t) are possible,3 but the pricing
technique remains the same.

3Mason and Bhattacharya (1981) postulate a pure jump process for the value of assets. Zhou
(2001a) investigates the jump-diffusion case.
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Absent market frictions such as taxes, bankruptcy costs or informa-
tional asymmetry costs, assumption 4 is consistent with the Modigliani -
Miller paradigm. In this framework, the value of the firm assets is iden-
tical to the total value of the firm and Merton (1977) shows that capital
structure irrelevance still holds in the presence of costless default risk.
This setup can however be extended to situations where optimal debt
level matters. In that case, the total value of the firm is V(t) net of the
present value of market frictions.

The debt contract is a bond with nominal M and maturity T (possibly
infinite) paying a continuous coupon c. Let D(t, V) denote the value of
the bond. According to the structural approach of credit risk, D(t, V)
is a claim contingent to the value of the firm assets. In the absence of
arbitrage, it verifies

rDdt = cdt + Eq(dD)

where Eq(-) denotes the expectation operator under Q. Using Ito's
lemma, we obtain the following PDE for D

rD = c+(r- 8)VDV + \G2V2DVV + Dt (1.1)

where Dx stands for the partial derivative of D with respect to x.
To account for the presence of default risk in corporate debt con-

tracts, two types of boundary conditions are typically attached to the
former PDE. The first condition ensures that in case of no default, the
debtholder receives the contractual payments. Let Td denote the random
default date. The no-default condition associated to the debt contract
defined above may be written as

D(T,V)=M-lTd>T,

where 1̂ , stands for the indicator function of the event uo.
The second condition characterizes default. This event is fully de-

scribed by its timing and its magnitude. In the structural approach, the
timing of default is modeled as the first hitting time of the state variable
to a given level. Let V^(t) denote the default threshold. The default
date Td may be written as

Td = mt{t > 0 : V(t) = Vd(t)}.

The magnitude of default represents the loss in debt value following the
default event. Formally, we have that

where \I/(-) is the function relating the remaining debt value to the firm
asset value at the time of default.
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2.2 Default magnitude

The function \I>(-) depends on three key factors:
1 The nature of the claim held by debtholders after default. If de-

fault leads to immediate liquidation, the remaining assets of the
firm are sold and debtholders share the proceeds. In that case debt
value may be considered as a fraction of Vd(£), where the propor-
tional loss reflects the discount caused by fire asset sales and/or by
the inefficient piecewise reallocation of assets.4 If default leads to
the firm reorganization, the debtholders obtain a new claim whose
value may be defined as a fraction of the initially promised nominal
M (aka the recovery rate) or as a fraction of the equivalent risk-
free bond with same nominal and maturity. Altman and Kishore
(1996) provide extensive evidence on recovery rates.

2 The total costs associated to the event of default. One can dis-
tinguish direct costs (induced by the procedure resolving financial
distress) from indirect costs (induced by foregone investment op-
portunities). Again, if default is assumed to lead to immediate
liquidation, it is convenient to express these costs as a fraction of
the remaining assets.5

3 In case default is resolved through the legal bankruptcy procedure,
the absolute priority rule (APR) states that debtholders have high-
est priority to recover their claims. In practice however, equity-
holders may bypass debtholders and perceive some of the proceeds
of the firm liquidation. Franks and Torous (1989) and Eberhart et
al. (1990) provide evidence of very frequent (but relatively small)
deviations from the APR in the US bankruptcy procedure.

To account for all these factors, we denote by a the total proportional
costs of default and by 7 the proportional deviation from the APR (cal-
culated from the value of remaining assets net of default costs).

l iquidation costs may be calculated as the firm's going concern value minus its liquidation
value, divided by its going concern value. Using this definition, Alderson and Betker (1995)
and Gilson (1997) report liquidation costs equal to 36.5% and 45.5% for the median firm in
their samples.
5Empirical studies by Warner (1977); Weiss (1990), and Betker (1997) report costs of financial
distress between 3% and 7.5% of firm value one year before default. Bris et al. (2004) find
that bankruptcy costs are very heterogeneous and sensitive to measurement method.
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2.3 Exogenous default threshold

Firm asset value follows a geometric Brownian motion and can there-
fore be written as

V(t) = VexMr - S - y W a J .

The default threshold under consideration is exogenous with exponential
shape Vd(t) = V^exp(At) and terminal point Vd(T) = M. Default occurs
the first time before T we have

1, Vd fr-5-X

or otherwise if
1 M fr-S a\

ZT = - In -— T.
a V \ a 2)

Knowing the distribution of (^t)t>o? one obtains the following result.

PROPOSITION 1.1 Consider a corporate bond with maturity T, nominal
M and continuous coupon c. The issuer is a firm whose asset value fol-
low a geometric Brownian motion with volatility a. The default threshold
starts at Vd, grows exponentially at rate A and jumps at level M upon
maturity. In case of default, a fraction a of remaining assets is lost as
third party costs and an additional fraction 7 accrues to equity holders.
Initial bond value is given by

K
\ (R+<72/2+p)/<72

 /vs(R+a2/2-p)/a2

fj *(d7) + ( j * J
J

2 f i / ° ' 2 " 1
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where S is the firm payout rate, r is the constant risk-free rate and

R=r-S-X

dA = di+aVf d9 = ds-a

db = d2+(rVf dio = d^-

and <$(•) is the cumulative normal distribution function.

Proposition 1.1 embeds as special cases the pricing formulae by Black
and Cox (1976) (when c = 0 and x = 1, that is a discount bond with no
costs of financial distress nor deviations from the APR), by Leland and
Toft (1996) (when the exogenous default threshold is a constant (A = 0)),
and by Merton (1974) (the exogenous default threshold is zero).

Prom the Feynman-Kac representation theorem, Proposition 1.1
(and subsequent results) may either be obtained by solving PDE (1.1)
with appropriate boundary conditions, or by applying the martingale
property of discounted prices under the risk-neutral probability mea-
sure. Ericsson and Reneby (1998) emphasize the modularity of the lat-
ter methodology. The time-t value x(t) of any claim on V promising a
single payoff at date T can be written as

x(t)=Eqlx(T)exp(- f

Corporate debt can then be decomposed into such claims that are valued
as building blocks of the whole contract.

3. Debt pricing and capital structure
Since the structural approach links the value of corporate securities

to an economic fundamental related to firm value, it has by construction
a balance-sheet view of the firm and is therefore well suited to connect



1 Corporate Debt Valuation 7

the issue of pricing risky debt to the capital structure decision. This
connection provides a natural way to endogenize the decision to default:
The optimal amount of debt is chosen in order to maximize the value
of the firm, and, based on this amount, shareholders select the default
threshold that maximizes equity value.

3.1 Infinite maturity debt

The default threshold V^ can be endogenized as shareholders' choice
to maximize equity value. If debt is a perpetuity, the PDE for D can be
written as

rD = c+(r- 5)VDV + \G2V2DVV (1.2)

with boundary conditions:
1 When V = Vd, the firm is immediately liquidated6 and creditors

take possession of the residual assets net of costs of default and
deviations from the APR

2 As V —> oo, debt value converges to that of the risk-free perpetuity

lim DIV) = - .

The PDE (1.2) with the above conditions admits the following
closed-form solution

with

Equity value, denoted by 5(V), is now determined as the residual
claim value on the firm, i.e.,

S(V) = v(V) - D(V)

where v(V) denotes the firm value.
Leland (1994) proposes to rely on the static trade-off capital structure

theory to determine firm value. In this framework, v equals the value of

r-6-a2/2 Ur-S-a2/2y 2r+ V ( ) +

6 In practice, resolution of financial distress may take on several forms other than liquidation.
In Section 8, we study other types of default rules.
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the firm's assets (V) plus the tax advantage of debt (TB(F)) minus the
present value of bankruptcy costs (BC(V)). Both TB(V) and BC(F)
obey the same PDE (1.2) and their corresponding boundary conditions
are respectively:

= 0 lim TB(V) = r - ,

= aVd lim BC(Vr) = 0,

where r stands for the corporate tax rate.
Solving for TB(F) and BC(V) yields firm value and equity value is

given by

r f r "• /T /A £
S(V) = V - (1 - r ) - + (1 - r ) - - (1 - -

r [ r v

Shareholders' optimal default rule is then obtained using the following
smooth pasting condition:

W = 7 ( i - a ) ,
av v=vd

which yields

The endogenous default threshold is interpreted as the value of the option
to wait for defaulting (£/(£ + 1)) times the opportunity cost of servicing
the debt.

3.2 Finite maturity debt with stationary capital
structure

Leland and Toft (1996) examine a firm with a debt service that is
invariant through time, which allows for a constant default threshold.
The firm constant debt level is M. For each period, M/T units of
bonds are issued with maturity T while a fraction M/T of former bonds
is reimbursed. This roll over strategy maintains the debt service at a
constant level C + M/T where C denotes the sum of all coupons.

The value of a single bond issue with nominal m and continuous
coupon c is given by (for clarity of exposition, we set 7 = 0):

pT
, Vd, T) = / e~rsc(l - F(s)) ds + e"rTm(l - F(T))

Jo

+ / e-rs(l-a)Vdf{s)ds,
Jo
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where f(t) and F(t) stand for the density and the cumulative distribution
function of the default date Tj respectively.

From Proposition 1.1, we get

d(V, Vdi T) = C- + ^(1 - a)Vd - -^ (^

To to/ debt is the sum of all bond issues with nominal M — mT and
coupon C = cT. Its value D(V, V^T) is given by

D(V,Vd,T)= [ d(V,Vd,t)dt,
Jo

and Leland and Toft (1996) obtain

with

rT

and

2-i

•+ ( TT

(r-8-a2/2-p)/a2

Equity value, S(V,Vd,T), is again obtained as the difference between
firm value and total debt value. Since capital structure is stationary, the
tax advantage of debt as well as the present value of bankruptcy costs
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are computed over an infinite horizon, that is they both obey PDE (1.2).
Which yields

The smooth pasting condition on S(V, Vd, T) yields the endogenous de-
fault threshold

_ C(A/rT -B)/r- AM/rT -
d~ 1 + o£ - (1 - a)B

with

A=\i(r-s)

, p 2(r-s)

2{r - 8) 1

where (/>(•) denotes the normal density function.

3.3 Dynamic capital structure

In models presented in Sections 3.1 and 3.2, the optimal capital struc-
ture is determined at initial date and the level of debt is not changed
subsequently. In practice, firms have the flexibility to adjust their level of
debt to current economic conditions. In the Fischer et al. (1989) model,
the value of firm assets V is assumed to follow a geometric Brownian
motion and, for a fixed face value of debt M, so does the value-to-debt
ratio y = V/M. Debt value D and equity value S obey a PDE similar
to (1.2) adjusted for a simple tax regime where rc is the corporate tax
rate and rp is the tax rate on income revenues, that is

- rp)D = fiyDy + \a2y2Dyy + (1 - rp)iM

- rp)S = $ySy + \o2y2Syy - (1 - rc)iM,

where ft stands for the risk-adjusted expected return on the firm's assets
(yet to be characterized).



1 Corporate Debt Valuation 11

The firm may recapitalize and issue additional debt when its value-
to-debt ratio reaches an upper bound y. Recapitalization induces a pro-
portional cost k, hence firm value must verify

2/o

where yo stands for the initial value-to-debt ratio. Similarly, the firm
may reduce its level of debt when its value-to-debt ratio reaches an lower
bound y. However, this debt reduction is possible provided the firm is
not already in bankruptcy. Denoting by a the proportional bankruptcy
costs, the value of the firm at the lower recapitalization level v (y, M) is
given by

r ( y \ y 1
maxMi/o, —M — k—M — aM.0 ,

L V y ) y J
if v (y0, ^M] - k^M < Af,

V yo J yo
y \ y

$,—M I — k—M, otherwise.
yo J yo

In the absence of arbitrage, firm value just after recapitalization equals
the value of assets plus recapitalization costs, hence

v(y, M) = yM + kM.

In particular, at the recapitalization bounds, this yields

yo

v (yo 1 M ) = yM + k^M.
V yo J - yo

Combining with the expressions for v(y, M) and v(y_, M), we get

v(y, M) = yM

v(j/,M) = {
- \yM, otherwise.

Debt value is retrieved as the difference between firm value and equity
value. Assuming debt is issued and callable at par, this yields

D(y, M)=M

) f m ^ [ ( l / - a ) M , 0 ] , i f y < l ,
1M, otherwise,
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and these expressions are used as boundary conditions to solve the PDE
for debt value. Fischer et al. (1989) obtain

D(y,M) =

where

To characterize the optimal recapitalization policy, Fischer et al. (1989)
define the advantage of leverage as

5 = r(l- rp) - %

The equilibrium is found by maximizing firm value net of recapitalization
costs, that is

_max y(yOyM,y,y)-kM
y,y,M,i ~

subject to

v(y0, M, 17, y) = y0M + kM

dS{y,M,y,y)
>0

= M

The first condition is a no-arbitrage condition, the second one is the
smooth-pasting condition preserving the limited liability property of eq-
uity, and the third one states that debt is initially issued at par. Solving
this program yields the initial optimal leverage (M), the optimal recap-
italization policy (y and y) as well as the risk-adjusted expected return
on the firm's assets ft and the coupon rate i.

The basic model is extended in several directions. Leland (1998) ex-
amines the case of finite-maturity debt in a framework similar to that of
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Leland and Toft (1996) with a possibility to call the debt at some up-
per boundary for asset value (downside restructuring is not addressed).
Goldstein et al. (2001) and Dangl and Zechner (2004) also value corpo-
rate debt within a dynamic capital structure model. Because they use a
different underlying state variable, we shall review their approach in Sec-
tion 5. Ju et al. (2003) build a model of dynamic recapitalization within
the static trade-off capital structure framework (i.e., the optimal amount
of debt results from trading off the tax advantage with expected bank-
ruptcy costs) at the cost of assuming an exogenous exponential default
boundary.

4. Discrete coupon payments

In practice, coupons are paid annually or semi-annually and the con-
tinuous coupon assumption may not be appropriate. Geske (1977) ex-
tends the basic model to the case of a discrete coupon-bearing debt.
Debt service is a sequence of coupon payments {C^, i — 1,. . . , n} to be
paid at date U (with tn — T). At date tn-\, debt is zero-coupon and
may be priced with Merton's (1974) formula:

At date £n-2> there are two debt payments remaining. If V(tn-\) >
^d(^n-i)? debtholders receive Cin_1 + D(tn-i). Otherwise, they get the
residual value of assets V&(£n_i) (for simplicity, we set a = 0). Which
yields

tn ~ tn-1, K + G\Jtn - tn_2, 6>)]

x F(£ n _ 2 )e -^- t n - 2 )

with

1
^ n=z, : s~i ' i ' 9

/in-1 =
Vd{tn-l) V 2

tn-l — tn-2
T - tn-2

and ^2(0 stands for the bivariate cumulative normal distribution func-
tion.


