Practical Advances in Petroleum Processing Volume 1

Practical Advances in Petroleum Processing Volume 1

Edited by

Chang S. Hsu ExxonMobil Research and Engineering Company Baton Rouge, Louisiana, USA

and

Paul R. Robinson PQ Optimization Services

Katy, Texas, USA

Chang S. Hsu ExxonMobil Research and Engineering Co. 10822 N. Shoreline Avenue Baton Rouge, Louisiana 70809 USA chang.samuel.hsu@exxonmobil.com Paul R. Robinson PQ Optimization Services 3418 Clear Water Park Drive Katy, Texas 77450 USA paul-robinson@houston.rr.com

Cover design by Suzanne Van Duyne (Trade Design Group)

Front cover photo and back cover photo insert: Two views of the OMV plant in Schwechat, Austria, one of the most environmentally friendly refineries in the world, courtesy of OMV. Front cover insert photo: The Neste Oil plant in Porvoo, Finland includes process units for fluid catalytic cracking, hydrocracking, and oxygenate production. The plant focuses on producing high-quality, low-emission transportation fuels. Courtesy of Neste Oil.

Library of Congress Control Number: 2005925505

ISBN-10: 0-387-25811-6 ISBN-13: 978-0387-25811-9

©2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America

9 8 7 6 5 4 3 2 1

springeronline.com

Tribute to Dr. Esber I. Shaheen (1937-2003)

Born in 1937 in a remote village in Lebanon, Dr. Esber Ibrahim Shaheen became a much-honored educator, mentor and consultant, both for technology and international affairs. He received his B.S. in chemical engineering from Oklahoma State University, his M.S. in chemical engineering from the University of Arizona in Tuscon, and his Ph.D. from the University of Tennessee in Knoxville.

He was a professor and distinguished lecturer at more than 6 universities, including the University of Wisconsin, the King Fahd University of Petroleum and Minerals in Saudi Arabia, the Illinois Institute of Technology, Chicago, and the University of Tennessee. He also served as Director of Educational Services for the Institute of Gas Technology and Director of International

Dedication

Education Programs for the Gas Developments Corporation in Chicago, Illinois. He assisted and encouraged students from all over the world and was instrumental in helping many of them in developing careers throughout the world.

Dr. Shaheen authored 7 textbooks, 3 of which were on international relations and more than 50 technical articles. He was the author, co-author or editor of nearly 20 training manuals on engineering, energy, the environment and petrochemical processing.

He received many awards, including Outstanding Educator of America. Most significantly, Dr. Shaheen received medals from President Ronald Reagan and from the Governor of the Eastern Province in Saudi Arabia.

We are pleased to include, with the permission of Dr. Esber I. Shaheen's wife, Shirley K. Shaheen, selections from his writings in this volume.

Paul R. Robinson Chang Samuel Hsu

vi

Foreword

Petroleum has remained an important aspect of our lives and will do so for the next four or five decades. The fuels that are derived from petroleum supply more than half of the world's total supply of energy. Gasoline, kerosene, and diesel oil provide fuel for automobiles, tractors, trucks, aircraft, and ships. Fuel oil and natural gas are used to heat homes and commercial buildings, as well as to generate electricity. Petroleum products are the basic materials used for the manufacture of synthetic fibers for clothing and in plastics, paints, fertilizers, insecticides, soaps, and synthetic rubber. The uses of petroleum as a source of raw material in manufacturing are central to the functioning of modern industry.

Petroleum refining is now in a significant transition period as the industry has moved into the 21st century and the demand for petroleum products has shown a sharp growth in recent years, especially with the recent entry of China into the automobile market. This means that the demand transportation fuels will, without doubt, show a steady growth in the next decade, contributing to petroleum product demand patterns that can only be fulfilled by the inclusion of heavier feedstocks into refinery operations.

In fact, the increasing supply of heavy crude oils as refinery feedstocks is a serious matter and it is essential that refineries are able to accommodate these heavy feedstocks. Indeed, in order to satisfy the changing pattern of product demand, significant investments in refining conversion processes will be necessary to profitably utilize these heavy crude oils. The most efficient and economical solution to this problem will depend to a large extent on individual country and company situations. However, the most promising technologies will likely involve the conversion of heavy crude oil, vacuum bottom residua, asphalt from deasphalting processes, and bitumen from tar sand deposits. Therefore, a thorough understanding of the benefits and limitations of petroleum processing is necessary and is introduced within the pages of this book.

The book is divided into two volumes. The first volume contains covers the origin and characterization of petroleum, major processes for fuel-

Foreword

production, and environmental pollution control. The second volume focuses on lubricants, hydrogen production, process modeling, automation, and online optimization.

The 50 contributors hail from three continents – Asia, Europe, and North America. This allows the book to contain within its pages a variety of experiences that are truly worldwide in breadth and scope. Contributions come from several sources, including integrated oil companies, catalyst suppliers, licensors, consultants, and academic researchers.

I am pleased to have been asked to write the Forward to this book. In light of the world energy situation, it is a necessary and timely addition to the literature that covers the technology of petroleum.

Dr. James G. Speight

viii

Brent E. Beasley	ExxonMobil Research & Engineering Co.
	Process Research Lab
	Baton Rouge, LA 70821
F. Emmett Bingham	Haldor Topsøe, Inc.
C	770 The City Drive, Suite 8400
	Orange, CA 92668
Yevgenia Briker	National Centre for Upgrading Technology
e	1 Oil Patch Drive, Suite A202
	Devon, Alberta T9G 1A8, Canada
James D. Burrington	The Lubrizol Corporation
e	29400 Lakeland Blvd
	Wickliffe, OH 44092
Ki-Hvouk Choi	Kvushu University
)	Kasuga, Fukuoka 816-8580, Japan
Dennis Cima	Aspen Technology, Inc.
	2500 City West Boulevard, Suite 1500
	Houston, Texas 77042
I. A. Cody	ExxonMobil Research & Engineering Co.
5	Process Research Lab
	Baton Rouge, LA 70821
Barry H. Cooper	Haldor Topsøe A/S
j i i i i	Nymøllevej 55, DK2800
	Lyngby, Denmark
M. Andrew Crews	CB&I Process and Technology
	3102 E. Fifth St
	Tyler, TX 75701-5013
Geoffrey E. Dolbear	G.E. Dolbear & Associates
5	23050 Aspen Knoll Drive
	Diamond Bar, California 91765, USA
T. Rig Forbus	The Valvoline Co. of Ashland, Inc.
0	Lexington, KY 40512 USA
Thomas Gentzis	CDX Canada Co
	1210, 606-4th Street SW,
	Calgary, Alberta, Canada T2P 1T1

Adrian Gruia	UOP LLC
	Des Plaines, Illinois, USA
Nick Hallale	AspenTech UK Limited
	Warrington, UK
Suzzy C. Ho	ExxonMobil Chemical Co.
	Edison, NJ. 08818-3140
Teh C. Ho	ExxonMobil Research & Engineering Co.
	Annandale, NJ 08801, USA
Gang Hou	Department of Chemical Engineering
	University of Delaware, Newark, DE 19716
Maurice D. Jett	Aspen Technology, Inc.
	2500 City West Boulevard, Suite 1500
	Houston, Texas 77042
Michael T. Klein	Dept. of Chemical and Biochemical Engineering
	School of Engineering
	Rutgers University, Piscataway, NJ 08854
Ian Moore	AspenTech UK Limited
	Warrington, UK
Sriganesh Karur	Aspen Technology, Inc.
C	2500 City West Boulevard, Suite 1500
	Houston, Texas 77042
Kim G. Knudsen	Haldor Topsøe A/S
	Nymøllevej 55, DK2800
	Lyngby, Denmark
Zaiting Li	Research Institute of Petroleum Processing
C	SINOPEC
	Beijing, China
Xiaoliang Ma	Dept. of Energy & Geo-Environmental Engineering
C	The Pennsylvania State University
	University Park, PA 16802, USA
Blaine McIntyre	Aspen Technology, Inc.
•	125 9th Avenue SE, Suite 900
	Calgary, Alberta T2G OP6 Canada
Milo D. Meixell, Jr.	Aspen Technology, Inc.
	2500 City West Boulevard, Suite 1500
	Houston, Texas 77042
Isao Mochida	Kyushu University
	Kasuga, Fukuoka 816-8580, Japan
Dale R. Mudt	Suncor Inc
	1900 River Road
	Sarnia, Ontario N7T 7J3 Canada

х

Douglas E. Nelson	Haldor Topsøe, Inc.
-	770 The City Drive, Suite 8400
	Orange, CA 92668
Paul O'Connor	Albemarle Nobel Catalysts
	Stationsplein 4, P.O.Box 247, 3800AE
	Amersfoort, The Netherlands
Clifford C. Pedersen	Suncor Inc.
	1900 River Road
	Sarnia, Ontario N7T 7J3 Canada
J. L. Peña-Díez	Technology Centre, Repsol-YPF
	P.O. Box 300
	28930 Móstoles – Madrid, Spain
John K. Pudelski	The Lubrizol Corporation
	29400 Lakeland Blvd
	Wickliffe OH 44092
Parviz M Rahimi	National Centre for Upgrading Technology
	1 Oil Patch Drive Suite A202
	Devon Alberta Canada T9G 1A8
Zhigniew Ring	National Centre for Upgrading Technology
Zoigine (* rung	1 Oil Patch Drive Suite A202
	Devon Alberta T9G 1A8 Canada
Paul R Robinson	PO Ontimization Services
i dui IX. IXoomson	3418 Clearwater nark Drive
	Katy Texas 77450 USA
James P. Roski	The Lubrizol Corporation
	29400 Lakeland Blvd
	Wickliffe OH 44092 USA
Stilianos G. Roussis	Sarnia Research Centre Imperial Oil
Stillallos G. Roussis	Sarnia Ontario N7T 8C8 Canada
B Gregory Shumake	CB&I Process and Technology
D. Gregory Shumake	3102 F Fifth St
	Tyler TX 75701-5013 USA
Fli I. Shaheen	International Institute of Technology Inc
En 1. Shuneen	830 Wall Street
	Jonlin MO 64801 USA
Fbbe R Skov	Hetagon Energy Systems Inc
LUUC R. SKOV	Mission Viejo, California USA
Chunshan Song	Dent of Energy & Geo-Environmental Engineering
Chunshan Song	The Pennsylvania State University
	University Park Pennsylvania 16802 USA
Dennis Vauk	Air Liquide America I P
	Houston Texas
	110051011, 1 CAAS

xi

ExxonMobil Research & Engineering Co. Annandale, NJ 08801, USA
Sarnia Research Centre, Imperial Oil
Sarnia, Ontario, N7T 8C8 Canada
Research Institute of Petroleum Processing
SINOPEC
Beijing, China
ExxonMobil Research & Engineering Co.
Annandale, NJ 08801, USA
Research Institute of Petroleum Processing
SINOPEC
Beijing, China
National Centre for Upgrading Technology
1 Oil Patch Drive, Suite A202
Devon, Alberta T9G 1A8, Canada
Research Institute of Petroleum Processing
SINOPEC
Beijing, China

xii

In 1964, Bob Dylan released an album and song named, *The Times They Are A-Changin'*. He was right. Times were changing, but nobody, not even Dylan, could have foreseen just how dramatically the great, wide world – and the smaller world of petroleum processing – would change during the next forty years.

In 1964, a wall divided Berlin. The moon was free of foot-prints. And in America we said, "Fill 'er up with ethyl" as a team of fueling-station attendants hurried to wash the windows of our thirsty Fords and Chevies.

In 1970, the Nixon administration created the U.S. Environmental Protection Agency (EPA), which, in 1973, initiated a lead phase-down program for gasoline. By the end of the decade, thanks to an oil embargo in 1973-74 and a revolution in Iran in 1978-79, fuel-efficient Japanese cars were displacing home-made brands in the United States and Europe.

In the 1980s, refiners built new process units to close the "octane gap" created by ever-tighter limits on lead in gasoline. Due to record-high prices, the worldwide demand for petroleum actually was decreasing. The drive to conserve energy created a market for rigorous models and advanced process control in refineries and petrochemical plants.

The Clean Air Act Amendments (CAAA) of 1990 again changed the industry. For gasoline, the CAAA required the addition of oxygenates such as MTBE. Billions of dollars, francs, marks, and yen were spent building methanol and MTBE plants. For on-road diesel, the CAAA emulated California by limiting sulfur content to 500 wppm. Across the Atlantic, the European Commission imposed a different set of limits. By the end of 2003, refiners were making low-sulfur gasoline and preparing to make ultra-low-sulfur diesel. Ironically, in 1999, Governor Gray Davis issued an executive order banning the use of MTBE in California gasoline. Soon thereafter, Davis was replaced by Arnold Schwarzenegger.

Purpose of this Book. This historical digression illustrates, we hope, that petroleum processing is a dynamic industry driven by global political, economic, and environmental forces. That's one of the reasons we're writing this book: to explain how the industry has changed during the past 40 years,

particularly since 1994. We also wanted to cover cutting-edge topics usually missing from other general books on refining – FCC gasoline post-treatment, catalytic production of lubes, optimization of hydrogen and utility networks, process modeling, model-predictive control, and online optimization. And in addition: pollution control, staffing, reliability and safety.

Target Audience. Our target audience includes engineers, scientists and students who want an update on petroleum processing. Non-technical readers, with help from our extensive glossary, will benefit from reading Chapter 1 and the overview chapters that precede each major section.

Contributors. We are pleased to have contributions from several sources, including integrated oil companies, catalyst suppliers, licensors, consultants, and academic researchers. Our 50 contributors hail from three continents – Asia, Europe, and North America.

Many of the chapters are based on presentations given at a symposium at the 222nd National Meeting of the American Chemical Society (ACS), which was held in Chicago, Illinois in 2001. The symposium was entitled, "Kinetics and Mechanisms of Petroleum Processes." We thank ACS and the Division of Petroleum Chemistry, Inc. for allowing us to co-chair that session.

Organization and Overview. The book is divided into two volumes. The first contains 14 chapters, which cover the origin and characterization of petroleum, major processes for fuel-production, and environmental pollution control. The second volume contains 13 chapters, which focus on lubricants, hydrogen production, process modeling, automation, and refining management.

Chapter 1 introduces the book by giving an overview of petroleum and petroleum processing. Chapters 2-4 focus on the origin and characterization of oil and gas. Chapter 5 reports recent advances in the production of light olefin feedstocks for petrochemicals by catalytic processes, especially the balance between propylene and ethylene. Chapter 6 gives an overview of the kinetics and mechanism of fluidized catalytic cracking, an important process for producing gasoline.

The next five chapters discuss hydroprocessing and alternative ways to remove sulfur from fuels. Chapter 7 gives an overview of hydrotreating and hydrocracking and Chapter 8 gives more detail on hydrocracking. Chapters 9-11 discuss aspects of hydrotreating catalysts and processes, especially those related to meeting clean fuel specifications. Chapter 12 describes an extractive desulfurization process, and Chapter 13 discusses improvements in reactor design for hydroprocessing units.

One of the most important elements in modern petroleum refining is to keep the environment clean. Chapter 14 covers a wide range of pollution

xiv

control issues: regulations, types of pollutants, informative examples of major environmental incidents, and pollution control technology.

The first four chapters in Volume 2 describe processes for making lubricating oils, including synthetic lubes. Chapter 15 gives an overview of conventional manufacturing processes for lube base-stocks, Chapter 16 discusses selective hydroprocessing for making high quality lubricants to meet new standards, Chapter 17 discusses synthetic lube base stocks, and Chapter 18 describes additives and formulation technology for engine oils.

As the world's supplies of light crude oils dwindle, processes for refining heavy oils and bitumen are becoming increasingly important. Chapter 19 deals with heavy oil processing. It reviews the chemical composition, physical and chemical properties, and upgrading chemistry of bitumen and heavy oils.

During the past twenty years, competitive pressures, including industry consolidation, forced the closure of some refineries even as others expanded. More and more, surviving refiners are using automation – model-predictive control, composition-based modeling, and computerized analysis of analytical data – to gain or maintain a competitive edge. Chapter 20 describes the application of kinetic modeling tools based on molecular composition to the development of a mechanistic kinetic model for the catalytic hydrocracking of heavy paraffins. Chapter 21 provides a general survey of process models based on two types of kinetic lumping: partition-based lumping and total lumping. Chapter 22 describes how model-predictive control can increase throughput, product quality, and stability in refining operations. Chapter 23 describes the real-time, online refinery-wide optimization application at Suncor-Sarnia.

As refiners reconfigure their plants to produce clean fuels, they are looking at ways to optimize the value of the hydrogen they now produce. They are also looking at different ways to supply the extra hydrogen required to make clean fuels. Chapter 24 discusses the online application of models of hydrogen production from the steam reforming of naphtha and other hydrocarbons. Chapter 25 addresses the issues of hydrogen demand, production and supply in refineries, and Chapter 26 tells refiners why they should think of their hydrogen as an asset, not a liability.

Chapter 27 reviews a new methodology to generate complete and reliable crude oil assays from limited laboratory data. Better crude quality control can improve refinery planning to ensure the profitability to survive in highly competitive global markets. It has also potential to be used in upstream operations for preliminary assessment of the oil quality of new reservoirs and new wells.

Putting this book together has been a rewarding challenge. We hope that you, our readers, will find it useful.

Acknowledgements. We wish to thank Dr. Kenneth Howell, Senior Editor for Chemistry at Springer, for his guidance and limitless patience. We also want to thank our many contributors for their time and effort. Obviously, without them, this book would not exist.

Most of all, we wish to thank our devoted, magnificent wives, Grace Miao-Miao Chen and Carrie, for putting up with our absences – mental if not physical – during so many nights and lost weekends throughout the past two years.

xvi

CONTENTS

1. Petrol	eum]	Process	ing Overview	
Paul F	R. Rob	inson		
1.	Intro	oduction	1	1
	1.1	Histor	y of Petroleum Production	1
	1.2	What	is Petroleum?	4
		1.2.1	The Chemicals in Petroleum	7
			1.2.1.1 Paraffins	7
			1.2.1.2 Aromatics and Naphthenes	8
			1.2.1.3 Hetero-atom Compounds	9
			1.2.1.4 Olefins	9
	1.3	Histor	v of Petroleum Processing	11
		1.3.1	Demand for Conversion	11
		1.3.2	Demand for a Clean Environment	13
	1.4	Mode	rn Petroleum Processing	14
2.	Sepa	ration.	~	15
	2.1	Distill	ation	15
		2.1.1	Atmospheric Distillation	15
		2.1.2	Vacuum Distillation	19
	2.2	Solver	nt Refining	19
		2.2.1	Solvent Deasphalting	19
		2.2.2	Solvent Extraction	20
		2.2.3	Solvent Dewaxing, Wax Deoiling	21
3.	Con	version		21
	3.1	Visbre	aking	22
	3.2	Cokin	g	22
		3.2.1	Delayed Coking	22
		3.2.2	Fluid Coking	24
	3.3	Fluid	Catalytic Cracking	25
		3.3.1	FCC Process Flow	25
		3.3.2	Heat Balance	26
		3.3.3	Houdry Catalytic Cracking (HCC)	27
		3.3.4	Residue FCC	28
	3.4	Hydro	treating and Hydrocracking	28
		3.4.1	Chemistry of Hydrotreating and Hydrocracking	29
		3.4.2	Hydrotreating Process Flow	29
		3.4.3	Hydrotreating Objectives	31

		3.4.4 Hydrocracking 33	3
		3.4.5 Hydrocracking Objectives	3
		3.4.6 Hydrocracker Feeds	3
		3.4.7 Hydrocracking Process Flow	3
		3.4.8 Hydrocracker Products	4
	3.5	Ebullated Bed Units 34	4
4	Ung	rading Naphtha 35	5
	41	Catalytic Reforming 34	5
		4 1 1 Catalytic Reforming Objective 34	5
		4.1.2 Chemistry of Catalytic Reforming	5
		4.1.3 Catalytic Reforming Catalysts 37	7
		4.1.4 Process Flows	, 7
	12	Isomerization	'n
	4.2	4.2.1 Isomerization Objectives	0
		4.2.1 Isomerization Cotalysta) 1
		4.2.2 Isomerization Catalysis	1 1
		4.2.3 Process Flow, C4 Isomerization 41	1 1
	4.2	4.2.4 Process Flow: C_5C_6 isomerization	1
	4.3	Catalytic Oligomerization	3
		4.3.1 Catalytic Oligomerization Objectives	3
		4.3.2 Catalysis	3
		4.3.3 Process Flow	3
	4.4	Alkylation	1
		4.4.1 Alkylation Objectives	4
		4.4.2 Process Flow: Sulfuric Acid Alkylation 44	4
		4.4.3 Process Flow: HF Alkylation	5
5.	Lub	es, Waxes and Greases 46	6
	5.1	Lube Base Stocks 46	6
		5.1.1 Catalytic Dewaxing 46	6
	5.2	Waxes	6
	5.3	Greases	7
6.	Asp	halt Production	7
7.	Dry	ng, Sweetening, and Treating	8
	7.1	Drying and Sweetening	8
	7.2	Treating	8
8.	Proc	uct Blending	9
	8.1	Product Specifications	9
	8.2	Gasoline Blending	0
		8.2.1 Octane Numbers for Hydrocarbons	0
		8.2.2 Reformulated Gasoline (RFG) 51	1
		8 2 3 Gasoline Additives	3
		8 2 4 Low-Sulfur Gasoline and Ultra-Low-Sulfur Diesel 54	4
		8.2.5 FCC Gasoline Post-Treating	5
	83	Kerosene and Jet Fuel	5
		· · · · · · · · · · · · · · · · · · ·	-

xviii

	8.4 Diesel Blending	56
0	8.4.1 Diesel Additives	58
9.	Protecting the Environment	59
	9.1 Air Quality	59
	9.1.1 Sulfur Recovery	59
	9.2 Waste Water Treatment	62
	9.2.1 Primary Treatment	62
	9.2.2 Secondary Treatment	63
	9.2.3 Tertiary Treatment	63
	9.3 Solid Waste	63
10.	Power, Steam, Hydrogen, and CO ₂	63
	10.1 Power	64
	10.2 Steam	64
	10.3 Hydrogen and CO ₂	64
11.	Refining Economics	65
	11.1 Costs	65
	11.2 Revenues	67
	11.3 Margins	68
	11.3.1 Location, Location, Location	68
	11.3.2 Size	69
	11.3.3 Conversion Capability and Complexity	69
	1134 Automation	70
12	Safety Reliability and Maintenance	70
	12.1 Refinery Staffing	70
	12.2 Safety	71
	12.2 Survey	72
13	Petroleum Processing Trends	73
15.	13.1 Industry Consolidation	73
	13.2 Environmental Regulations	7/
	13.2 Residue Ungrading	75
	13.4 Increased Oil Consumption in Developing Countries	75
	13.4 Increased on consumption in Developing countries	75
14	13.3 Automation	76
14.	Deferences	76
13.		/0

2. The Origin of Petroleum *Clifford C. Walters*

liffor	rd C. Walters	
1.	Historical Overview	79
2.	The Petroleum System	81
3.	Deposition of Organic-Rich Sedimentary Rocks	82
4.	Kerogen Formation and the Generative Potential of Source Rocks	86

xix

5.	Generation and Expulsion of Oil and Gas	91
6.	Composition of Produced Petroleum	95
7.	Summary	97
8.	References	97

xx

3. Crude Assay
Murray R. Watt and Stilianos G. Roussis
1 Introduction

1.	Intro	duction	103
2.	Prop	erty Measurements/Crude Inspections	104
	2.1	API Gravity	104
	2.2	Sulfur Content	104
	2.3	Pour Point	104
	2.4	Whole Crude Simulated Distillation	104
	2.5	Full Assay	105
	2.6	Physical Distillation – ASTM D 2892 Method	105
	2.7	ASTM D5236 Method	106
	2.8	TBP Curves	106
	2.9	Property Measurement/Assay Grid	106
	2.10	Physical Property Test	107
		2.10.1 API Gravity	107
		2.10.2 Aniline Point	107
		2.10.3 Cloud Point	107
		2.10.4 Freeze Point	108
		2.10.5 Metals	108
		2.10.6 Mercaptan Sulfur	108
		2.10.7 Micro Carbon Residue	108
		2.10.8 Nitrogen	108
		2.10.9 Pour Point	109
		2.10.10 Refractive Index	109
		2.10.11 Reid Vapor Pressure RVP	109
		2.10.12 Salt Content	109
		2.10.13 Smoke Point	109
		2.10.14 Sulfur Content	110
		2.10.15 Total Acid Number	110
		2.10.16 Viscosity	110
		2.10.17 Water & Sediment	110
	2.11	Asphalt Properties	111
		2.11.1 Penetration	111
		2.11.2 Softening Point	111
3.	The	Prediction of Crude Assay Properties	111
	3.1	Needs for Rapid and Accurate Prediction of Crude	
		Assay Properties	111
		· -	

		3.2 Predictions from Measurement of Selected Whole	
		Crude Oil Properties	112
		3.3 Predictions from NMR Measurements	112
		3.4 Predictions from Chromatographic Data	113
		3.5 Predictions from GC/MS Measurements	113
		3.6 Predictions from NIR Data	114
		3.7 Property Determination from First Principles	115
	4.	References	115
4.	Integr	ated Methodology for Characterization of Petroleum Samples	5
	and It	s Application for Refinery Product Quality Modeling	
	Yevger	nia Briker, Zbigniew Ring, and Hong Yang	
	1.	Introduction	117
	2.	Class-Type Separation	118
		2.1 Modification of ASTM D2007 LC Separation	119
		2.2 SPE Method	121
		2.2.1 SAP (Saturates, Aromatics and Polars)	121
		2.2.2 SOAP (Saturates, Olefins, Aromatics, Polars)	123
	3.	Detailed Hydrocarbon Type Analysis	131
		3.1 Mass Spectrometry	131
		3.2 Distributions by Boiling Point	137
	4.	Neural Network Correlations	142
	5.	Acknowledgments	147
	6.	References	147
-			
5.	Cataly	the Processes for Light Olefin Production	
	Wang.	Xieqing, Xie Chaogang, Li Zaiting, and Zhu Genquan	1.40
	l.	Introduction	149
	2.	Fundamentals of the Cracking Mechanism for Light Olefin	
		Production	151
	3.	Catalysts	153
	4.	New Technology	155
		4.1 Deep Catalytic Cracking (DCC)	156
		4.2 Catalytic Pyrolysis Process (CPP)	157
		4.3 PetroFCC	160
		4.4 Propylur	161
		4.5 Superflex	162
		4.6 Mobil Olefin Interconversion (MOI)	163
		4.7 Propylene Catalytic Cracking (PCC)	164
		4.8 Olefins Conversion Technology (OCT)	164
		4.9 Methanol to Olefin (MTO) Process	166
	5.	Prospects	167
	6.	References	168

xxi

	Introduction
1. 2	Process Development
2. 2	Chamistry and Kinatios
З. Л	Catalysts
4. 5	Catalysis
5. 6	Eaddtooks Products and the Environment
0. 7	Frequencies Flouders and the Environment
7. 8.	References
vdro	otreating and Hydrocracking: Fundamentals
ul I	R. Robinson and Geoffrey E. Dolbear
1.	Introduction
	1.1 Hydroprocessing Units: Similarities and Differences .
2.	Process Objectives
	2.1 Clean Fuels
	2.2 The Process In-Between
3.	Chemistry of Hydroprocessing
	3.1 Saturation Reactions
	3.2 HDS Reactions
	3.3 HDN Reactions
	3.4 Cracking Reactions
	3.5 Coke Formation
	3.6 Mercaptan Formation
	3.7 Reaction Kinetics
4.	Hydroprocessing Catalysts
	4.1 Catalyst Preparation
	4.1.1 Precipitation
	4.1.2 Filtration, Washing and Drying
	4.1.3 Forming
	4.1.4 Impregnation
	4.1.5 Activation
	4.1.6 Noble-Metal Catalysts
	4.2 Hydrotreating Catalysts
	4.3 Hydrocracking Catalysts
	4.4 Catalyst Cycle Life
	4.4.1 Catalyst Regeneration and Rejuvenation
	4.4.2 Catalyst Reclamation
5.	Process Fow
	5.1 Trickle-Bed Units
	5.2 Slurry-Phase Hydrocracking

xxii

6.	Proc	ess Conditions	211
7.	Yiel	ds and Product Properties	212
8.	Over	rview of Economics	212
	8.1	Costs	212
	8.2	Benefits	214
	8.3	Catalyst Cycle Life	214
9.	Hyd	rocracker-FCC Comparison	215
10.	Oper	rational Issues	215
11.	Lice	nsors	216
12.	Cone	clusion	217
13.	Refe	rences	217

8. Recent Advances in Hydrocracking Adrian Gruia

1	Intro	duction	219	
2	History			
3	Flow	Schemes	221	
5.	31	Single Stage Once-Through Hydrocracking	221	
	32	Single Stage with Recycle Hydrocracking	222	
	33	Two Stage Recycle Hydrocracking	224	
	3.4	Separate Hydrotreat Two Stage Hydrocracking	224	
4	Chen	nistry	225	
1.	4 1	Treating Reactions	225	
	4.2	Cracking Reactions	223	
5	Catal	vsts	231	
0.	51	Acid Function of the Catalyst	232	
	5.2	Metal Function of the Catalyst	234	
6	Catal	vst Manufacturing	234	
0.	61	Precipitation	235	
	6.2	Forming	235	
	63	Drving and Calcining	238	
	6.4	Impregnation	238	
7	Catal	vst Loading and Activation	239	
	71	Catalyst Loading	239	
	7.2	Catalyst Activation	240	
8	Catal	vst Deactivation and Regeneration	241	
0.	81	Coke Deposition	241	
	8.2	Reversible Poisoning	242	
	83	Agglomeration of the Hydrogenation Component	242	
	8.4	Metals Deposition	242	
	8.5	Catalyst Support Sintering	242	
	8.6	Catalyst Regeneration	243	
	5.0			

xxiii

).	Design and Operation of Hydrocracking Reactors	. 243
	9.1 Design and Construction of Hydrocracking Reactors	. 243
	9.2 Hydrocracking Reactor Operation	. 245
10.	Hydrocracking Process Variables	. 246
	10.1 Catalyst Temperature	. 247
	10.2 Conversion	. 248
	10.3 Fresh Feed Quality	. 249
	10.3.1 Sulfur and Nitrogen Compounds	. 249
	10.3.2 Hydrogen Content	. 249
	10.3.3 Boiling Range	. 250
	10.3.4 Cracked Feed Components	. 250
	10.3.5 Permanent Catalyst Poisons	. 250
	10.4 Fresh Feed Rate (LHSV)	. 250
	10.5 Liquid Recycle	. 251
	10.6 Hydrogen Partial Pressure	252
	10.7 Recycle Gas Rate	. 253
	10.8 Makeup Hydrogen	. 253
	10.8.1 Hydrogen Purity	. 254
	10.8.2 Nitrogen and Methane Content	. 254
	10.8.3 $CO + CO_2$ Content	. 254
11.	Hydrocracker Licensors and Catalyst Manufacturers	. 255
	11.1 Licensors	. 255
	11.2 Catalyst Suppliers	. 255
10		255
12.	References	. 255
12. 9. Curre	nt Progress in Catalysts and Catalysis for Hydrotreating	. 255
12. 9. Curre Isao M	nt Progress in Catalysts and Catalysis for Hydrotreating lochida and Ki-Hyouk Choi	. 255
12. 9. Curre Isao M 1. 2	References	. 255 . 257 . 261
12. 9. Curre Isao M 1. 2. 3	References nt Progress in Catalysts and Catalysis for Hydrotreating <i>lochida and Ki-Hyouk Choi</i> Introduction Hydrotreating Process Bases for Hydrotreating	. 255 . 257 . 261 262
12. 9. Curre Isao M 1. 2. 3.	References nt Progress in Catalysts and Catalysis for Hydrotreating Introduction Introduction Hydrotreating Process Bases for Hydrotreating 3.1	. 255 . 257 . 261 . 262 262
12. 9. Curre Isao M 1. 2. 3.	References Int Progress in Catalysts and Catalysis for Hydrotreating Jochida and Ki-Hyouk Choi Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization	. 255 . 257 . 261 . 262 . 262 . 262 . 264
12. 9. Curre Isao M 1. 2. 3.	References Int Progress in Catalysts and Catalysis for Hydrotreating <i>lochida and Ki-Hyouk Choi</i> Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deen Hydrodesulfurization of Gasoline	. 255 . 257 . 261 . 262 . 262 . 264 . 264
12. 9. Curre Isao M 1. 2. 3. 4.	References nt Progress in Catalysts and Catalysis for Hydrotreating Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel	. 255 . 257 . 261 . 262 . 262 . 262 . 264 . 269 . 271
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6	References nt Progress in Catalysts and Catalysis for Hydrotreating Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN HDQ and HDM Reactions	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7	References Int Progress in Catalysts and Catalysis for Hydrotreating Jochida and Ki-Hyouk Choi Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7. 8	References nt Progress in Catalysts and Catalysis for Hydrotreating <i>lochida and Ki-Hyouk Choi</i> Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS Deactivation and Regeneration of Hydrotreating Catalysts	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275 . 275
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7. 8. 9	References Int Progress in Catalysts and Catalysis for Hydrotreating Jochida and Ki-Hyouk Choi Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS Deactivation and Regeneration of Hydrotreating Catalysts Process Flow of Hydrotreating	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275 . 275 . 275
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7. 8. 9. 10	References Int Progress in Catalysts and Catalysis for Hydrotreating Jochida and Ki-Hyouk Choi Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS Deactivation and Regeneration of Hydrotreating Catalysts Process Flow of Hydrotreating Two Successive Layers in Catalyst Beds	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275 . 275 . 276 . 279
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11	References Int Progress in Catalysts and Catalysis for Hydrotreating Introduction Hydrotreating Process Bases for Hydrotreating Catalysts 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS Deactivation and Regeneration of Hydrotreating Catalysts Two Successive Layers in Catalyst Beds Process and Catalyst Development for Deep and Selective	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275 . 275 . 276 . 279
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	References Int Progress in Catalysts and Catalysis for Hydrotreating <i>lochida and Ki-Hyouk Choi</i> Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS Deactivation and Regeneration of Hydrotreating Catalysts Two Successive Layers in Catalyst Beds Process and Catalyst Development for Deep and Selective HDS of ECC Gasoline	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275 . 275 . 276 . 279 280
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12	References nt Progress in Catalysts and Catalysis for Hydrotreating <i>lochida and Ki-Hyouk Choi</i> Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS Deactivation and Regeneration of Hydrotreating Catalysts Two Successive Layers in Catalyst Beds Process and Catalyst Development for Deep and Selective HDS of FCC Gasoline Progress in Support Materials for More Active HDS	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275 . 275 . 276 . 279 . 280
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	References nt Progress in Catalysts and Catalysis for Hydrotreating <i>lochida and Ki-Hyouk Choi</i> Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS Deactivation and Regeneration of Hydrotreating Catalysts Process Flow of Hydrotreating Two Successive Layers in Catalyst Beds Process and Catalyst Development for Deep and Selective HDS of FCC Gasoline Progress in Support Materials for More Active HDS Catalysts	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275 . 275 . 276 . 279 . 280 283
12. 9. Curre Isao M 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13	References nt Progress in Catalysts and Catalysis for Hydrotreating <i>lochida and Ki-Hyouk Choi</i> Introduction Hydrotreating Process Bases for Hydrotreating 3.1 Hydrotreating Catalysts 3.2 Chemistry of Hydrodesulfurization Deep Hydrodesulfurization of Gasoline Deep Hydrodesulfurization of Diesel HDN, HDO and HDM Reactions Inhibition of HDS Deactivation and Regeneration of Hydrotreating Catalysts Process Flow of Hydrotreating Two Successive Layers in Catalyst Beds Process and Catalyst Development for Deep and Selective HDS of FCC Gasoline Progress in Support Materials for More Active HDS Catalysts Recognition and Control of the Shape and Size of Active Site	. 255 . 257 . 261 . 262 . 262 . 264 . 269 . 271 . 273 . 275 . 275 . 275 . 276 . 279 . 280 . 283

xxiv

	14.	Catalytic Active Sites for HDS and Hydrogenation	288
	15.	Roles of Steric Hindrance in Adsorption and Kinetic Processes	
		of HDS	291
	16.	Further Scope and Acknowledgements	293
	17.	References	294
10.	Ultra]	Deep Desulfurization of Diesel: How an Understanding of th	e
	Under	lying Kinetics Can Reduce Investment Costs	
	Barry	H. Cooper and Kim G. Knudsen	
	1.	Changes in Diesel Specifications and Demand	297
	2.	Challenges Facing the Refiner	298
	3	The Selection of Catalyst for Ultra Deep Desulfurization	299
	5.	3.1 Desulfurization	299
		3.2 Choice of Catalysts for Ultra Deep Desulfurization	301
		3.3 Inhibitors for the Hydrogenation Route	303
		3.4 Consequences for the Choice of Catalyst in Ultra Deep	202
		Desulfurization	309
	4	Case Studies for the Production of Ultra Low Sulfur Diesel	309
		4.1 Case 1: Straight-run, Low Sulfur Feed at 32 Bar	310
		4.2 Case 2: Straight-run, High Sulfur Feed at 32 Bar	311
		4.3 Case 3: Blended, High Sulfur Feed at 32 Bar	312
		4.4 Case 4: Blended, High Sulfur Feed at 54 Bar	314
		4.5 Revamp vs. Grassroots Unit	315
	5.	Conclusion	316
	6.	References	316
11.	Ultra-	Clean Diesel Fuels by Deep Desulfurization and Deep	
	Dearo	matization of Middle Distillates	
	Chuns	han Song and Xiaoliang Ma	
	1	Introduction	317
	2	Sulfur Compounds in Transportation Fuels	321
	3	Challenges of Ultra Deep Desulfurization of Diesel Fuels	324
	5.	3.1 Reactivities of Sulfur Compounds in HDS	324
		3.2 Mechanistic Pathways of HDS	328
	4.	Design Approaches to Ultra Deep Desulfurization	330
		4.1 Improving Catalytic Activity by New Catalyst	
		Formulation	332
		4.2 Tailoring Reaction and Processing Conditions	336
		4.3 Designing New Reactor Configurations	338
		4.4 Developing New Processes	340
		4.4.1 S Zorb Process for Sulfur Absorption and Capture	340
		4.4.2 Selective Adsorption for Deep Desulfurization at	
		Ambient Temperature	341
		1 I	

xxv

Contents

	4.4.3 New Integrated Process Concept Based on	
	Selective Adsorption	344
	4.4.4 Adsorption Desulfurization Using Alumina	
	Based Adsorbents	345
	4.4.5 Charge Complex Formation	345
	4.4.6 Oxidative Desulfurization	346
	4.4.7 Biodesulfurization	348
5.	FCC Feed Hydrotreating and LCO Undercutting	352
	5.1 FCC Feed Hydrotreating and Sulfur Reduction in LCO	352
	5.2 Undercutting LCO	353
6.	Deep Hydrogenation of Diesel Fuels	355
	6.1 Benefits of Aromatics Reduction	355
	6.2 Challenges of Deep Aromatization	356
	6.3 Application of Noble Metal Catalysts	356
7.	Design Approaches to Deep Hydrogenation	358
	7.1 Deep Hydrogenation at Low Temperatures	358
	7.2 Saturation of Aromatics in Commercial Process	360
8.	Summary and Conclusions	361
9.	Acknowledgment	362
10	Glossary of Terms	362
11	. References	363
12. Syne <i>Ebbe</i> 1. 2.	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes	373 375
12. Syne <i>Ebbe</i> 1. 2. 3.	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS	373 375 376
12. Syne Ebbe 1. 2. 3. 4.	rgistic Extractive Desulfurization Processes <i>R. Skov and Geoffrey E. Dolbear</i> Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary	373 375 376 378
12. Syne Ebbe 1. 2. 3. 4. 5.	rgistic Extractive Desulfurization Processes <i>R. Skov and Geoffrey E. Dolbear</i> Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References	373 375 376 378 379
12. Syne Ebbe 1. 2. 3. 4. 5. 13. Adva F. En	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Inced Reactor Internals for Hydroprocessing Units Inmett Bingham and Douglas E. Nelson	373 375 376 378 379
12. Syne <i>Ebbe</i> 1. 2. 3. 4. 5. 13. Adva <i>F. En</i> 1.	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Inced Reactor Internals for Hydroprocessing Units Introduction	373 375 376 378 379 381
12. Syne <i>Ebbe</i> 1. 2. 3. 4. 5. 13. Adva <i>F. En</i> 1. 2.	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Introductor Internals for Hydroprocessing Units Introduction Elements of Hydroprocessing Reactor Design	373 375 376 378 379 381 382
12. Syne <i>Ebbe</i> 1. 2. 3. 4. 5. 13. Adva <i>F. En</i> 1. 2. 3. 3. 3. 4. 5. 13. Adva <i>F. En</i> 1. 2. 3. 3. 3. 4. 5. 13. Adva <i>F. En</i> 3. 3. 3. 3. 5. 13. Adva <i>F. En</i> 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Introduction Internals for Hydroprocessing Units Introduction Elements of Hydroprocessing Reactor Design Liquid Distribution Tray Design	373 375 376 378 379 381 382 383
12. Syne Ebbe 1. 2. 3. 4. 5. 13. Adva F. En 1. 2. 3. 4.	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Introduction Internals for Hydroprocessing Units Introduction Introduction Liquid Distribution Tray Design Quench Mixing Chamber Design	373 375 376 378 379 381 382 383 388
12. Syne Ebbe 1. 2. 3. 4. 5. 13. Adva <i>F. En</i> 1. 2. 3. 4. 5. 13. Adva 5. 13. Adva 5. 13. Adva 5. 1. 5. 1. 5. 1. 5. 1. 5. 5. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References meed Reactor Internals for Hydroprocessing Units mett Bingham and Douglas E. Nelson Introduction Elements of Hydroprocessing Reactor Design Liquid Distribution Tray Design Quench Mixing Chamber Design Example of Reactor Internals Revamp	373 375 376 378 379 381 382 383 388 389
 12. Syne Ebbe 1. 2. 3. 4. 5. 13. Adva F. En 1. 2. 3. 4. 5. 	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Introduction Introduction Internals for Hydroprocessing Units Introduction Elements of Hydroprocessing Reactor Design Liquid Distribution Tray Design Quench Mixing Chamber Design Example of Reactor Internals Performance (Pre-revamp)	373 375 376 378 379 381 382 383 388 389 390
 12. Syne Ebbe 1. 2. 3. 4. 5. 13. Adva F. En 1. 2. 3. 4. 5. 	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Introduction Introduction Internals for Hydroprocessing Units Introduction Introduction Introduction Elements of Hydroprocessing Reactor Design Liquid Distribution Tray Design Quench Mixing Chamber Design Example of Reactor Internals Revamp 5.1 Reactor Internals Modifications and Improvements	373 375 376 378 379 381 382 383 388 389 390 391
 12. Syne Ebbe 1. 2. 3. 4. 5. 13. Adva F. En 1. 2. 3. 4. 5. 	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Introduction Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Inced Reactor Internals for Hydroprocessing Units Introduction Introduction Elements of Hydroprocessing Reactor Design Liquid Distribution Tray Design Quench Mixing Chamber Design Example of Reactor Internals Revamp 5.1 Reactor Internals Performance (Pre-revamp) 5.2 New Reactor Internals Modifications and Improvements 5.3 Performance Improvement Results	373 375 376 378 379 381 382 383 388 389 390 391 392
 12. Syne Ebbe 1. 2. 3. 4. 5. 13. Adva F. En 1. 2. 3. 4. 5. 	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Introduction Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Inced Reactor Internals for Hydroprocessing Units Introduction Elements of Hydroprocessing Reactor Design Liquid Distribution Tray Design Quench Mixing Chamber Design Example of Reactor Internals Revamp 5.1 Reactor Internals Performance (Pre-revamp) 5.2 New Reactor Internals Modifications and Improvements 5.3 Performance Improvement Results 5.4 Radial Temperature Differences	373 375 376 378 379 381 382 383 388 389 390 391 392 392
 12. Syne Ebbe 1. 2. 3. 4. 5. 13. Adva F. En 1. 2. 3. 4. 5. 	rgistic Extractive Desulfurization Processes R. Skov and Geoffrey E. Dolbear Introduction Extractive Desulfurization Processes Synergism Between HDS and EDS Summary References Introduction Extractor Internals for Hydroprocessing Units Introduction Elements of Hydroprocessing Reactor Design Liquid Distribution Tray Design Quench Mixing Chamber Design Example of Reactor Internals Performance (Pre-revamp) 5.1 Reactor Internals Modifications and Improvements 5.3 Performance Improvement Results 5.4 Radial Temperature Differences 5.5	373 375 376 378 379 381 382 383 388 389 390 391 392 392 393

xxvi

14. Environmental Pollution Control

Paul R	. Rob	inson, Eli I. Shaheen, and Esber I. Shaheen				
1.	Why Control Pollution?					
2.	Pollı	ation from Petroleum Processing	395			
	2.1	Particulate Matter	395			
	2.2	Carbon Monoxide	396			
	2.3	Sulfur Oxides	396			
	2.4	Nitrogen Oxides, VOC, and Ozone	397			
	2.5	Chemicals that React with Stratospheric Ozone	397			
	2.6	Greenhouse Gases	399			
		2.6.1 Global CO ₂ and Temperature Balances	399			
		2.6.2 Global Warming	400			
	2.7	Waste Water	400			
	2.8	Solid Waste	401			
	2.9	Oil Spills	401			
3.	Envi	ronmental Incidents	401			
	3.1	London Fog (1952)	402			
	3.2	Amoco Cadiz (1978)	402			
	3.3	Bhopal, India (1984)	403			
	3.4	Chernobyl (1986)	404			
	3.5	The Rhine (1986)	406			
	3.6	Prince William Sound, Alaska (1989)	407			
	3.7	Kuwait (1991)	408			
	3.8	Lessons Learned	409			
4.	Envi	ronmental Agencies	411			
	4.1	Environmental Protection Agency	411			
	4.2	Other Environmental Agencies	412			
	4.3	Occupational Safety and Health Administration	412			
		4.3.1 Material Safety Data Sheets (MSDS)	413			
5.	Key	Regulations	414			
	5.1	Clean Air Acts	415			
		5.1.1 Title I – Non-Attainment	416			
		5.1.2 Title II – Mobile Sources	417			
		5.1.3 Title III – Air Toxics	419			
		5.1.4 Title IV – Acid Rain	420			
		5.1.5 Title VIII – Enforcement	420			
	5.2	River and Harbors Act, Refuse Act	421			
	5.3	Federal Water Pollution Control Act	421			
	5.4	Clean Water Acts, Water Quality Act	422			
	5.5	Marine Protection, Research, and Sanctuaries Act	423			

xxvii

		5.6	Safe D	rinking Water Act	423
		5.7	Resour	ce Conservation and Recovery Act (RCRA)	423
		5.8	Superfi	und, CERCLA	425
		5.9	Toxic S	Substance Control Act (TSCA)	426
		5.10	Asbest	os School Hazard Abatement Act	427
		5.11	Stockh	olm Conference	427
		5.12	Contro	l of Dumping at Sea	427
		5.13	Climat	e Control: Rio and Kyoto	427
			5.13.1	Rio Earth Summit	427
			5.13.2	Kyoto Protocol	428
			5.13.3	Plan B for Climate Control: Contraction and	
				Convergence	429
	6.	Pollu	tion Co	ntrol Technology	430
		6.1	Particu	late Matter	430
		6.2	Carbon	Monoxide and VOC	431
		6.3	Sulfur	Oxides	431
		6.4	Nitroge	en Oxides	433
		6.5	Greenh	ouse Gases, Stratospheric Ozone	434
		6.6	Waste	Water	434
			6.6.1	Primary Treatment	434
			6.6.2	Secondary Treatment	436
			6.6.3	Tertiary Treatment	436
		6.7	Cleanin	ng Up Oil Spills	436
			6.7.1	Natural Forces	436
			6.7.2	Containment and Physical Removal	437
			6.7.3	Adsorbents	438
			6.7.4	Dispersion Agents	439
			6.7.5	Non-dispersive Methods	439
			6.7.6	Cleanup of Oil Contaminated Beaches	440
			6.7.7	Amoco Cadiz Oil Spill Cleanup: A Case Study	441
		6.8	Solid V	Vaste Recovery and Disposal	442
			6.8.1	Super-critical Fluid Extraction	443
			6.8.2	Sludge	444
			6.8.3	Spent Catalysts	445
	7.	Ficti	on vs. F	act	445
	8.	Refe	rences		446
Index					449

xxviii

Chapter 1

PETROLEUM PROCESSING OVERVIEW

Paul R. Robinson PQ Optimization Services, Inc. 3418 Clearwater park Drive, Katy, Texas, 77450

1. INTRODUCTION

The ground begins to rumble, then shake. The hero of the film – a lean excowboy with a square jaw under his hat and a gorgeous brunette on his arm – reaches out to brace himself against his horse. A smile creases his face as the rumbling grows louder. Suddenly, a gush of black goo spurts into the air and splashes down on him, his side-kick and his best gal. They dance with ecstasy until the music swells and the credits start to roll.

Why is our hero so happy? Because he's rich! After years of drilling dry holes in every county between the Red River and the Rio Grande, he finally struck oil.

1.1 History of Petroleum Production

So why is he rich? What makes oil so valuable?

Actually, crude oil straight from the ground has some value, but not a lot. *Table 1* shows the history of petroleum before 1861. Before 1859, oil that was mined or that simply seeped up out of the ground was used to water-proof ships, as an adhesive in construction, for flaming projectiles, and in a wide variety of ointments.¹⁻⁴

After 1859, petroleum became more and more important to the world's economy, so important that today, without a steady flow of oil, most human activities on this planet would grind to a halt. Petroleum accounts for 60% of the world's shipping on a tonnage basis.³ It provides fuels and lubricants for our trucks, trains, airplanes, and automobiles. Ships are powered by fuel oil derived from petroleum. Bottom-of-the-barrel petroleum derivatives pave our roads and provide coke for the steel industry. Together with natural gas,

Robinson

petroleum provides precursors for the world's petrochemical industries. At the end of 2003, the world was consuming 78 million barrels of oil per day.⁵ In August 2005, that volume of petroleum was worth \$4.6 billion per day, or \$1.7 trillion per year.

Table 1. History of Petroleum Before 1861

Date	Description
3000 BC	Sumerians use asphalt as an adhesive for making mosaics.
	Mesopotamians use bitumen to line water canals, seal boats, and build
	roads. Egyptians use pitch to grease chariot wheels, and asphalt to
	embalm mummies.
1500 BC	The Chinese use petroleum for lamps and for heating homes.
600 BC	Confucius writes about the drilling of 100-foot (30-meter) natural gas
	wells in China. The Chinese build pipelines for oil using bamboo poles.
600-500 BC	Arab and Persian chemists mix petroleum with quicklime to make Greek
	fire, the napalm of its day.
1200-1300 AD	The Persians mine seep oil near Baku (now in Azerbaijan).
1500-1600 AD	Seep oil from the Carpathian Mountains is used in Polish street lamps.
	The Chinese dig oil wells more than 2000 feet (600 meters) deep.
1735 AD	Oil is extracted from oil sands in Alsace, France.
Early 1800s	Oil is produced in United States from brine wells in Pennsylvania.
1847	James Oakes builds a "rock oil" refinery in Jacksdale, England. ⁶ The unit
	processes 300 gallons per day to make "paraffin oil" for lamps. James
	Young builds a coal-oil refinery in Whitburn, Scotland. ⁷
1848	F.N. Semyenov drills the first "modern" oil well near Baku.
1849	Canadian geologist Abraham Gesner distills kerosene from crude oil.
1854	Ignacy Lukasiewicz drills oil wells up to 150 feet (50 meters) deep at
	Bóbrka, Poland.
1857	Michael Dietz invents a flat-wick kerosene lamp (Patent issued in 1859).
1858	Ignacy Lukasiewicz builds a crude oil distillery in Ulaszowice, Poland. ⁸
	The first oil well in North America is drilled near Petrolia, Ontario,
	Canada.
1859	Colonel Edwin L. Drake triggers the Pennsylvania oil boom by drilling a
	well near Titusville, Pennsylvania that was 69-feet deep and produced 35
	barrels-per-day.
1859	An oil refinery is built in Baku (now in Azerbaijan).
1860-61	Oil refineries are built near Oil Creek, Pennsylvania; Petrolia, Ontario,
	Canada; and Union County, Arkansas.

So what happened in 1859? What began the transformation of petroleum from a convenience into the world's primary source of energy? As often is the case with major socioeconomic shifts, the move toward oil was instigated not by just a single event, but by the juxtaposition of several:

• In the 1850s, most home-based lamps burned whale oil or other animal fats. Historically, whale-oil prices had always fluctuated wildly, but they peaked in the mid-1850s due to the over-hunting of whales; by some estimates, in 1860 several species were almost extinct. Whale oil sold for an average price of US\$1.77 per gallon between 1845 and 1855. In contrast, lard oil sold for about US\$0.90 per gallon.^{9,10} Lard oil was more abundant, but it burned with a smoky, smelly flame.

2

Petroleum Processing Overview

- Michael Dietz invented a flat-wick kerosene lamp in 1857. The Dietz lamp was arguably the most successful of several devices designed to burn something other than animal fats.
- The availability of kerosene got a sudden boost on August 27, 1859, when Edwin L. Drake struck oil with the well he was drilling near Titusville, Pennsylvania. By today's standards, the well was shallow about 69 feet (21 meters) deep and it produced only 35 barrels per day. Drake was able to sell the oil for US\$20 per barrel, a little less than the price of lard oil and 70% less than the price of whale oil. In 1861, US\$700 per day was a tidy sum, equivalent to US\$5 million per year in 2002 dollars.¹¹ Drake's oil well was not the first according to one source, the Chinese beat Drake by about 2200 years but it may have been the first drilled through rock, and it certainly triggered the Pennsylvania oil rush. Figure 1 shows some of the closely spaced wells that sprang up in 1859 in the Pioneer Run oil field a few miles from Titusville.

Figure 1. Pioneer Run oil field in 1859. Photo used with permission from the Pennsylvania Historical Collection and Musem Commission, Drake Well Museum Collection, Titusville, PA.

According to a report issued in 1860 by David Dale Owens,¹² the state geologist of Arkansas:

"On Oil Creek in the vicinity of Titusville, Pennsylvania, oil flows out from some wells at the rate of 75 to 100 gallons in 24 hours already fit for the market. At least 2000 wells are now in progress and 200 of these are already pumping oil or have found it."

According to *The Prize*,¹³ a prize-winning book by Daniel Yergin:

3