CONTAMINATED SOILS, SEDIMENTS AND WATER
Volume 10:
Successes and Challenges
Contents

FOREWORD xi

CONTRIBUTING AUTHORS xiii

ACKNOWLEDGMENTS ixx

ABOUT THE EDITORS xxiii

PART I: ENVIRONMENTAL FATE

1. SLOW DESORPTION OF PHENANTHRENE FROM SILICA PARTICLES: INFLUENCE OF PORE SIZE, PORE WATER, AND AGING TIME
 Michael H. Huesemann, Timothy J. Fortman, Robert G. Riley, Christopher J. Thompson, Zheming Wang, Michael J. Truex, and Brent Peyton 1

PART II: HEAVY METALS

2. UNDERSTANDING THE CAUSES OF AND THE PERMANENT SOLUTIONS FOR GROUNDWATER ARSENIC POISONING IN BANGLADESH
 Meer T. Husain and Thomas E. Bridge 25
3. **Evaluation of Heavy Metal Availability in the Mining Areas of Bulgaria**

 Penka S. Zaprianova, Violina R. Angelova, and Krasimir I. Ivanov

4. **Average Particle Size Ratios and Chemical Speciation of Copper and Zinc in Road-Dust Samples**

 Adnan M. Massadeh and Qasem M. Jaradat

PART III: MODELING

5. **Contaminant Fate and Transport in the Courtroom**

 Charles M. Denton and Michael G. Sklash

6. **A New Method of Delineating Three-Dimensional Capture Zones with Models**

 John P. Glass, Scott DeHainaUT, and Rose Forbes

7. **Comparing Air Measurements and Air Modeling at a Residential Site Overlying a TCE Groundwater Plume**

 Dennis Goldman, Ron Marnicio, Wilson Doctor, and Larry Dudus

8. **Development and Application of a Multimedia Model to Assess Fate and Transport of Organic Chemicals in a South Texas Lake**

 Venkatesh Uddameri and Dhanuja Kumar

PART IV: MTBE and Oxygenates

9. **The MTBE Removal Effectiveness of Air Sparging, Tested on an Intermediate Scale Laboratory Apparatus**

 Claudio Alimonti and Daniele Lausdei

10. **Maine's Experiment With Gasoline Policy to Manage MTBE in Groundwater**

 John M. Peckenham, Jonathan Rubin, and Cecilia Clavet
CONTENTS

PART V: RADIONUCLIDES

11. DEVELOPMENT OF RADON ENRICHMENT IN SOIL GAS OVER QUARTZ-MICA SCHIST IN VIRGINIA
 DOUGLAS MOSE, GEORGE MUSHRUSH, CHARLES CHROSNIAK AND PAUL DIBENEDETTO

12. INFLUENCE OF HOME SIZE ON THE RISK FROM SOIL-GAS AND WATERBORNE INDOOR RADON
 DOUGLAS MOSE, GEORGE MUSHRUSH, GEORGE SAIWAY AND FIORELLA SIMONI

PART VI: REGULATORY

13. HOW INTERSTATE COLLABORATION CAN IMPROVE SITE CLEANUPS: TRIAD AND THE ITRC
 RUTH R. CHANG AND STUART J. NAGOURNEY

PART VII: REMEDIATION

14. ORGANOCLAY/CARBON SYSTEMS AT MILITARY INSTALLATIONS
 GEORGE ALTHER

15. REMEDIATION OF PETROLEUM-CONTAINING SOIL AND GROUNDWATER AT A FORMER RAIL YARD LOCOMOTIVE FUELING AREA
 SCOTT R. COMPSTON, BRUCE R. NELSON, SCOTT A. UNDERHILL, ANDREW R. VITOLINS, AND LEANN M. H. THOMAS

16. PHYTO-EXTRACTION OF FIELD-WEATHERED DDE BY SUBSPECIES OF CUCURBITA AND EXUDATION OF CITRIC ACID FROM ROOTS
 MARTIN P.N. GENT, ZAKIA D. PARRISH, AND JASON C. WHITE

17. PHYTOREMEDIATION OF LEAD-CONTAMINATED SOIL IN THE URBAN RESIDENTIAL ENVIRONMENT USING SEED MUSTARD
 ILANA S. GOLDOWITZ AND JOSHUA GOLDOWITZ

18. CVOC SOURCE IDENTIFICATION THROUGH IN SITU CHEMICAL OXIDATION IN FRACTURED BEDROCK
 MARK D. KAUFFMAN, ANDREA M. TRAVIGLIA, JAMES H. VERNON, AND JOHN C. LACHANCE
19. ISCO TECHNOLOGY OVERVIEW: DO YOU REALLY UNDERSTAND THE CHEMISTRY?
 IAN T. OSGERBY 287

20. BROWNFIELD SITE ASSESSMENT AND REMEDIATION
 RONALD RICHARDS, CHRISTEN SARDANO, LESTER TYRALA, AND JOHN ZUPKUS 309

21. TREATMENT OF PCP-CONTAMINATED SOIL USING AN ENGINEERED EX SITI BIOPILE PROCESS ON A FORMER WOOD TREATMENT SUPERFUND SITE
 CARL RODZEWICH, CHRISTIAN BÉLANGER, NICOLAS MOREAU, MICHEL POULIOT, AND NILE FELLOWS 327

PART VIII: RISK ASSESSMENT AND REMEDIAL APPROACHES TOWARDS RESTORATION AND MANAGEMENT OF CONTAMINATED RIVERS

22. EXPLORING INNOVATIVE AND COST-EFFECTIVE SOLUTIONS TO CONTAMINATED SEDIMENTS TO ACHIEVE ECOLOGICAL RESTORATION OF THE LOWER NEPONSET RIVER
 KAREN PELTO 339

23. RESTORING AN URBAN RIVER
 ROBERT BREAULT AND MATTHEW COOKE 345

24. A FRAMEWORK FOR RIVER CLEANUP DECISION MAKING
 DAVID F. LUDWIG, STEPHEN P. TRUCHON, AND CARL TAMMI 359

25. NEPONSET RIVER WORKSHOP
 DALE W. EVANS 367

26. OPTIONS FOR THE NEPONSET
 DANNY D. REIBLE 373

27. SORBENT-AMENDED "ACTIVE" SEDIMENT CAPS FOR IN-PLACE MANAGEMENT OF PCB-CONTAMINATED SEDIMENTS
 G.V. LOWRY, P.J. MURPHY, A. MARQUETTE, AND D. REIBLE 379

28. RIVER RESTORATION: A VIEW FROM WISCONSIN
 MARK VELLEUX AND EDWARD LYNCH 393
CONTENTS

29. CHARACTERIZATION OF CONTAMINATED SEDIMENTS FOR REMEDIATION PROJECTS IN HAMILTON HARBOUR
 ALEX J. ZEMAN AND TIMOTHY S. PATTERSON 401

PART IX: SITE ASSESSMENT

30. EVALUATION OF SOLVENT PLUME DISCHARGE TO A WETLAND STREAM USING AN INNOVATIVE PASSIVE DIFFUSION SAMPLING METHODOLOGY
 LUCAS A. HELLERICH, JOHN L. ALBRECHT, AND RICHARD C. SCHWENGER 423

31. A PRELIMINARY ENVIRONMENTAL SITE INVESTIGATION FOR A BRIDGE OVER THE MISSISSIPPI RIVER AT MOLINE, ILLINOIS
 C. BRIAN TRASK 445

32. TARGETED BROWNFIELDS ASSESSMENT OF A FORMER POWER PLANT USING THE TRIAD APPROACH
 BARBARA A. WEIR, JAMES P. BYRNE, ROBERT HOWE, DENISE M. SAVAGEAU, AND KATHY YAGER 471

33. CASE STUDY OF TCE ATTENUATION FROM GROUNDWATER TO INDOOR AIR AND THE EFFECTS OF VENTILATION ON ENTRY ROUTES
 ALBORZ WOZNIAK AND CHRISTOPHER LAWLESS 493

INDEX 505
Foreword

Every spring, the University of Massachusetts – Amherst welcomes all “Soils Conference” Scientific Advisory Board members with open arms as we begin the planning process responsible for bringing you quality conferences year after year. With this “homecoming” of sorts comes the promise of reaching across the table and interacting with a wide spectrum of stakeholders, each of them bringing their unique perspective in support of a successful Conference in the fall.

This year marks the 20th anniversary of what started as a couple of thoughtful scientists interested in developing partnerships that together could fuel the environmental cleanup dialogue. Since the passage of the Superfund Law, regulators, academia and industry have come to realize that models that depend exclusively on “command and control” mandates as the operative underpinning limit our collective ability to bring hazardous waste sites to productive re-use. It is with this concern in mind that the Massachusetts Department of Environmental Protection privatized its cleanup program in 1993, spurring the close-out of over 20,000 sites and spills across the Commonwealth to date, in a manner that is both protective of human health and the environment while also flexible and responsive to varied site uses and redevelopment goals.

So we gather together again, this year, to hear our collective stories and share success and challenges just as we share stories at a family gathering. Take a read through the stories contained in these proceedings, Volume 10 of the Contaminated Soils, Sediments and Water. This jewel of a volume
contains a valuable collection of successes (and challenges) in the areas of environmental fate, heavy metals, modeling, MtBE and oxygenates, regulatory, remediation, risk assessment, site assessment and sampling methodology. As you can see, there is something for everybody. Most importantly, in our minds at least, is the embodiment of how, as a community, we have worked together toward the optimization of established approaches as well as embracing departures from traditional regulatory models in order to address the challenges posed by emerging unregulated constituents that threaten our natural resources.

It is with great joy and pride that we write this Foreword, an affirmation of our commitment to this international, one-of-a-kind conference. A conference that over the last 20 years has taken into account where we all have been – public and private sector alike – so we can responsibly chart where we need to go as stewards of the environment.

Millie Garcia-Surette, MPH and Janine Commerford, LSP
Massachusetts Department of Environmental Protection
Contributing Authors

John L. Albrecht, Metcalf & Eddy, Inc., 860 North Main Street Extension, Wallingford, CT 06392
Claudio Alimonti, Universita di Roma "La Sapienza", Via Eudossiana, 18, 00184 Rome, Italy
George Alther, Biomin, Inc., PO Box 20028, Ferndale, MI 48220
Dora Angelova, Bulgarian Academy of Science, Geological Institute, Acad. G. Bonchev Str., Block 24, Sofia 1113, Bulgaria
Christian Bélanger, Biogenie S.R.D.C. Inc., 350, rue Franquet, entrée 10, Sainte-Foy, Québec, Canada G1P 4P3
Rob Breault, U.S. Geological Survey, 10 Bearfoot Road Northborough, MA 01532
Thomas E. Bridge, Emporia State University, Emporia, Kansas
James P. Byrne, US EPA Region 1, Brownfields Team, Work Assignment Manager, 1 Congress Street, Suite 1100 (HIO), Boston, MA 02114-2023
Ruth Chang, Sr. Hazardous Substances Scientist, Department of Toxic Substances Control, Hazardous Materials Laboratory, 700 Heinz Avenue, Suite 100, Berkeley, CA 94710
Charles Chrosniak, George Mason University, Chemistry Department, Fairfax, VA 22030
Cecilia Clavet, University of Maine, Department of Resource Economics and Policy, Orono, ME
Scott R. Compston, Malcolm Pirnie, Inc., 15 Cornell Road, Latham, NY 12110
Matthew Cooke, U.S. Geological Survey, 10 Bearfoot Road Northborough, MA 01532
Mark D. Kauffman, ENSR International, 2 Technology Park Drive, Westford, MA 01886
Dhanuja Kumar, Department of Environmental and Civil Engineering, Texas A&M University-Kingsville, MSC 213, Kingsville, TX 78363
John C. LaChance, Terra Therm, 356 Broad St., Fitchburg, MA 01420
Daniele Lausdei, Golder Associates S.r.l., Via Mesina, 25, 00198 Rome, Italy
Christopher Lawless, Johnson Wright, Inc., 3687 Mt. Diablo Blvd, Suite 330, Lafayette, CA 94549
Gregory V. Lowry, Carnegie Mellon University, Department of Civil & Environmental Engineering, 119 Porter Hall, Pittsburgh, PA 15213-3890
David Ludwig, Blasland, Bouck & Lee, Inc., 326 First Street, Suite 200, Annapolis, MD 21403-2675
Edward Lynch, Wisconsin Department of Natual Resources (RR/3), 101 S. Webster Street, Masison, WI 53701
Ron Marnicio, Tetra Tech FW, Inc., 133 Federal Street, 6th Floor, Boston, MA, 617-457-8262
A. Marquette, Lousiana State University, Department of Chemical Engineering
A. Massadeh, Jordan University of Science and Technology (JUST), Dept of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, PO Box 3030, Irbid 22110 Jordan
Nicolas Moreau, Biogenic Corporation, 2085 Quaker Pointe Dr, Quakertown, PA 18951
Douglas Mose, Center for Basic and Applied Sciences, Center for Basic and Applied Sciences, 20099 Camp Road, Culpepper, VA 22701
P.J. Murphy, Carnegie Mellon University, Department of Civil and Environmental Engineering, 119 Porter Hall, Pittsburgh, PA 15213-389
George Mushrush, Center for Basic and Applied Science, 20099 Camp Road, Culpepper, VA 22701
Stuart Nagourney, NJDEP, Office of Quality Assurance, PO Box 424, Trenton, NJ 08625
Bruce R. Nelson, Malcolm Pirnie, Inc., 43 British American Boulevard, Latham, NY 12110
Ian T. Osgerby, US Army Corp of Engineers New England District, 696 Virginia Road, Concord, MA 01742
Zaki Parrish, Connecticut Agricultural Experiment Station, Dept of Soil and Water, 123 Huntington Street, New Haven, CT 06504
Timothy S. Patterson, Environment Canada, National Water Research Institute, 867 Lakeshore Road, PO Box 5050, Burlington, Ontario, L7R 4A6 Canada
C. Brian Trask, Illinois State Geological Survey, Environmental Site Assessments Section, 615 E. Peabody Dr., Champaign, IL 61820-6964
Andrea M. Traviglia, ENSR International, 2 Technology Park Drive, Westford, MA 01886
Stephen P. Truchon, Blasland, Bouck & Lee, Inc., 326 First Street, Suite 200, Annapolis, MD 21403-2678
Michael Truex, Pacific Northwest National Lab, Marine Sciences Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382
Lester Tyrala, Stone and Webster Massachusetts, Shaw Environmental and Infrastructure, 100 Technology Center Drive, Stoughton MA
Venkatesh Uddameri, Dept. of Environmental and Civil Engineering, MSC 213, Texas A&M University-Kingsville, Kingsville, TX 78363
Scott A. Underhill, Malcolm Pirnie, Inc., 15 Cornell Road, Latham, NY 12110
Mark Velleux, Colorado State University, Dept of Civil Engineering, A211 Engineering Research Center, Fort Collins, CO 80523-1372
James H. Vernon, ENSR International, 2 Technology Park Drive, Westford, MA 01886
Andrew R. VitoHns, Malcolm Pirnie, Inc., 15 Cornell Road, Latham, NY 12110
Zheming Wang, Pacific Northwest National Lab, Marine Sciences Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382
Barbara Weir, Metcalf & Eddy, Inc., 701 Edgewater Drive, Wakefield, MA 01880
Jason C. White, The Connecticut Agricultural Experiment Station, Department of Soil and Water, 123 Huntington Street, New Haven, CT 06504
Alborz Wozniak, Johnson Wright, 3687 Mt Diablo Blvd, Suite 330, Lafayette, CA 94549
Kathy Yager, US EPA, Technology Innovation Office, 11 Technology Drive, Chelmsford, MA 01863
Penka S. Zaprjanova, Institute of Tobacco and Tobacco Products, Markovo, 4108, Bulgaria
Alex J. Zeman, Environment Canada, National Water Research Institute, 867 Lakeshore Road, PO Box 5050, Burlington, Ontario, L7R 4A6 Canada
John Zupkus, Massachusetts Department of Environmental Protection, BWCC, NE Regional Office, 1 Winter Street, Boston, MA 02108
Acknowledgments

We wish to thank all agencies, organizations and companies that sponsored the conference. Without their generosity and assistance, the conference and this book would not have been possible.

Benefactors

ENSR International
Environmental Remediation and Financial Services, LLC
MA DEP
Massachusetts Riverways Program
Regenesis Bioremediation Products
US EPA, ORD, National Risk Management Research Laboratory

Sponsors

AMEC Earth and Environmental Inc.
American Petroleum Institute
BBL
U.S. Army Engineer Research and Development Center
US EPA, Office of Superfund Remediation and Technology Innovation (OSRTI)

Supporters

3M
Adventus Americas
Alpha Analytical Labs
DPRA, Inc.
EA Engineering, Science & Technology
In addition, we express our deepest appreciation to the members of the Scientific Advisory Boards. The tremendous success of the conference has been result of the dedication and hard work of our board members.

Scientific Advisory Board

Nader Al-Awadhi
Akram N. Alshawabkeh
Ernest C. Ashley
Alan J.M. Baker
Ralph S. Baker
Ramon M. Barnes
Michael Battle
Bruce Bauman
Mark Begley
Gary Bigham
Scott R. Blaha
Carol de Groot Bois
Clifford Bruell
Peter Cagnetta
Barbara Callahan
Robert H. Clemens
Andrew Coleman
Janine Commerford
Abhijit V. Deshmukh
Mary Donohue
James Dragun
John W. Duggan
Mohamed Elnabarawy
Timothy E. Fannin
Samuel P. Farnsworth
Linda Fiedler
Kevin T. Finneran

Kuwait Institute for Scientific Research
Northeastern University
Camp, Dresser & McKee, Inc.
The University of Melbourne
Terra Therm, Inc.
University Research Institute for Analytical Chemistry
EA Engineering, Science & Technology
American Petroleum Institute
Environmental Management Commission
Exponent Environmental Group
GE Global Research Center
Bois Consulting Company
University of Massachusetts Lowell
SIAC
University Research
AMEC Earth & Environmental, Inc.
Electric Power Research Institute
MA Department of Environmental Protection
University of Massachusetts Amherst
Environmental Forensics
The Dragun Corporation
Wentworth Institute of Technology
3M (retired)
US Fish and Wildlife Service
AMEC Earth & Environmental, Inc.
US EPA
GeoSyntec Consultants
ACKNOWLEDGMENTS

John Fitzgerald MA Department of Environmental Protection
Millie Garcia-Surette MA Department of Environmental Protection, South East Region
Connie Gaudet Environment Canada, Soil & Sediment Quality Section
Steve Goodwin Associate Dean, University of Massachusetts Amherst
Michael Gorski MA Department of Environmental Protection
Peter R. Guest Parsons
Eric Hince Geovation Technologies, Inc.
Ihor Hlohowskyj Argonne National Laboratory
Duane B. Huggett Pfizer, Inc.
Barry L. Johnson Assistant Surgeon General (ret.)
Evan Johnson Tighe & Bond
William B. Kerfoot Kerfoot Technologies, Inc.
Stephen S. Koenigsberg Regenesis Bioremediation Products
Bill Kucharski Ecology & Environment, Inc.
Cindy Langlois Journal of Children’s Health
Steven C. Lewis University of Medicine & Dentistry of New Jersey
Dave Ludwig Blasland, Bouck & Lee, Inc.
Ronald J. Marnicio TetraTech FW, Inc.
Rick McCullough MA Turnpike Authority
Chris Mitchell ENSR
Robert Morrison DPRA, Inc.
Ellen Moyer Greenvironment, LLC
Willard Murray
Lee Newman University of South Carolina
Gopal Pathak Birla Institute of Technology
Brad Penney
Frank Peduto Spectra Environmental Group
Ioana G. Petrisor DPRA, Inc.
David Reckhow University of Massachusetts Amherst
Corinne E. Schultz RED Technologies, LLC
Nicholas P. Skoulis Arch Chemicals, Inc.
Frank Sweet ENSR International
Christopher Teaf Florida State University
James C. Todaro Alpha Analytical Labs
Allen D. Uhler Newfields -Environmental Forensics Practice, LLC
Mark Vigneri Environmental Remediation and Financial Services, LLC
A. Dallas Wait Gradient Corporation
Richard Waterman
Jason C. White
Katie Winogroszki
Peter Woodman
Baoshan Xing,
Ed Zillioux

EA Engineering, Science, and Technology, Inc.
The Connecticut Agricultural Experiment Station
3M
Risk Management Incorporated
University of Massachusetts
FPL Environmental Services

Federal Advisory Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Abraham</td>
<td>HML Consultants</td>
</tr>
<tr>
<td>John Cullinane</td>
<td>US Army Engineer Waterways Exp. Sta.</td>
</tr>
<tr>
<td>John Glaser</td>
<td>US Environmental Protection Agency, ORD</td>
</tr>
<tr>
<td>Stephen J. Grady</td>
<td>US Dept of the Interior, USGS</td>
</tr>
<tr>
<td>Leslie Karr</td>
<td>Naval Facilities Engineering Service</td>
</tr>
<tr>
<td>Lynn Kucharski</td>
<td>AMEC Earth and Environmental</td>
</tr>
<tr>
<td>Jeffrey Marqusee</td>
<td>SERDP and ESTCP</td>
</tr>
<tr>
<td>Paul Rakowski</td>
<td>Naval Facilities Engineering Command</td>
</tr>
<tr>
<td>Mike Reynolds</td>
<td>USA - Cold Regions Research and Engineering Laboratory (CRREL)</td>
</tr>
<tr>
<td>Brian D. Rogers</td>
<td>Department of the Army</td>
</tr>
<tr>
<td>Alex Sherrin</td>
<td>US EPA, Boston</td>
</tr>
<tr>
<td>Michael Sivak</td>
<td>US EPA, Region 2</td>
</tr>
<tr>
<td>Mike Sowinski</td>
<td>DPRA, Inc.</td>
</tr>
<tr>
<td>Henry H. Tabak</td>
<td>US EPA, ORD</td>
</tr>
</tbody>
</table>

An appreciated acknowledgement to **Denise Leonard**, Conference Coordinator, for her time and energy contributed throughout the year to the organization of The Annual International Conference on Soils, Sediment & Water at the University of Massachusetts, Amherst. Also acknowledgement to her assistant, **Holly Dodge**, for her support over the last year in her contribution to the compilation of this book and other aspects pertaining to the conference.
Edward J. Calabrese is a board certified toxicologist and professor of toxicology at the University of Massachusetts School of Public Health at Amherst. Dr. Calabrese has researched extensively in the area of host factors affecting susceptibility to pollutants and has authored more than three hundred papers in scholarly journals, as well as twenty-four books, including: Principles of Animal Extrapolation; Nutrition and Environmental Health, Vols. 1 and 2; Ecogenetic: Safe Drinking Water Act: Amendments. Regulations, and Standards; Soils Contaminated by Petroleum: Environmental and Public Health Effects; Petroleum Contaminated Soils, Vols. 1, 2 and 3; Ozone Risk Communication and Management; Hydrocarbon Contaminated Soils, Vols. 1, 2, 3, 4 and 5; Hydrocarbon Contaminated Soils and Groundwater, Vols. 1, 2, 3, and 4; Multiple Chemical Interactions; Air Toxics and Risk Assessment; Alcohol Interactions with Drugs and Chemicals; Regulating Drinking Water Quality; Biological Effects of Low Level Exposures to Chemicals and Radiation; Contaminated Soils; Diesel Fuel Contamination; Risk Assessment and Environmental Fate Methodologies; Principles and Practices for Petroleum Contaminated Soils, Vols. 1, 2, 3, 4, and 5; Contaminated Soils, Vol. 1; and Performing Ecological Risk Assessments. He has been a member of the U.S. National Academy of Sciences and NATO Countries Safe Drinking Water Committees, and the Board of Scientific Counselors for the Agency for Toxic Substances and Disease Registry (ATSDR). Dr. Calabrese also serves as Director of the Northeast Regional Environmental Public Health Center at the University of Massachusetts, Chairman of the BELLE Advisory Committee and Director of the International Hormesis Society.
Paul T. Kostecki, Vice Provost for Research Affairs, University of Massachusetts at Amherst and Associate Director, Northeast Regional Environmental Public Health Center, School of Public Health, University of Massachusetts at Amherst, received his Ph.D. from the School of Natural Resources at the University of Michigan in 1980. He has been involved with human and ecological risk assessment and risk management research for the last 13 years. Dr. Kostecki has co-authored and co-edited over fifty articles and sixteen books on environmental assessment and cleanup including: remedial Technologies for Leaking Underground Storage Tanks; Soils Contaminated by Petroleum Products; Petroleum Contaminated Soils, Vols. 1, 2, and 3; Hydrocarbon Contaminated Soils and Groundwater, Vols. 1, 2, 3 and 4; Hydrocarbon Contaminated Soils, Vols. 1, 2, 3, 4 and 5; Principles ad Practices for Petroleum Contaminated Soils; Principles and Practices for Diesel Contaminated Soils, Vols. 1, 2, 3, 4 and 5; SESOIL in Environmental Fate and Risk modeling; Contaminated Soils, Vol. 1; and Risk Assessment and Environmental Fate Methodologies. Dr. Kostecki also serves as Associate Editor for the Journal of Soil Contamination, Chairman of the Scientific Advisory Board for Soil and Groundwater Cleanup Magazine, as well as an editorial board member for the journal Human and Ecological Risk Assessment.

In addition, Dr. Kostecki serves as Executive Director for the Association for the Environmental Health of Soils (AEHS). He is a member of the Navy's National Hydrocarbon Test Site Advisory Board and a member of the Steering Committee for the Total Petroleum Hydrocarbon Criteria Working Group and the Association of American Railroads Environmental Engineering and Operations Subcommittee.

James Dragun, as a soil chemist (Ph.D. Penn State University in Agronomy), has a rich background in the fate of hazardous materials in soil systems and groundwater. He has assessed the migration and degradation of chemicals and waste of national concern in soil-groundwater systems such as dioxin, PBB, Radionuclides at Three Mile Island Nuclear Power Plant, PCB and petroleum spills, organics and inorganics at the Stringfellow Acid Pits, pesticides in San Joaquin Valley groundwater, and solvents in Silicon Valley groundwater. In addition, he has analyzed engineering controls designed to prevent the leakage of chemicals and wastes from landfills, surface impoundments, deepwell injection systems, underground storage tanks, land treatment systems, manufacturing and processing facilities, and hazardous waste sites. He has analyzed the chemical integrity and reactivity of materials used to treat and store hazardous and nonhazardous wastes. He has served as an expert reviewer of over 40 projects and programs involving
the siting, design, construction, performance, and failure mechanisms of landfills, land treatment systems, surface impoundments, and waste piles. In addition, he has authored exposure assessments for over 100 chemicals and wastes.

Widely recognized for his expertise, Dr. Dragun was appointed the primary technical advisor on exposure assessment to the Interagency Testing Committee, a consortium of 14 federal agencies that selects chemicals for potential regulatory control. He directs the Association of Official Analytical Chemist's development of standard methods to measure the migration and degradation of chemicals and wastes, and has authored test methods that are used today by environmental laboratories in North America, Europe, and Asia. His counsel and scientific findings have been disseminated and utilized by 24 nations including Japan, Canada, the United Kingdom, Australia, West Germany, Switzerland, Italy, France, Spain, Scandinavia, and the Netherlands.

Dr. Dragun is a member of Phi Kappa Phi and Sigma Xi, both international honorary scientific societies, and was awarded the U.S. EPA Bronze Medal for distinguished service in 1980.
PART 1: ENVIRONMENTAL FATE

CHAPTER 1

SLOW DESORPTION OF PHENANTHRENE FROM SILICA PARTICLES: INFLUENCE OF PORE SIZE, PORE WATER, AND AGING TIME

Michael H. Huesemann¹, Timothy J. Fortman¹, Robert G. Riley¹, Christopher J. Thompson¹, Zheming Wang¹, Michael J. Truex¹, and Brent Peyton²

¹Marine Sciences Laboratory, Pacific Northwest National Laboratory, 1529 West Sequim Bay Rd, Sequim, WA 98382; ²Chemical Engineering Department, Washington State University, Pullman, WA 99164

Abstract: When micro-porous and meso-porous silica particles were exposed to aqueous phenanthrene solutions for various durations it was observed that sorbed-phase phenanthrene concentrations increased with aging time only for meso-porous but not micro-porous silicas. Desorption equilibrium was reached almost instantaneously for the micro-porous particles while both the rate and extent of desorption decreased with increasing aging time for the meso-porous silicas. These findings indicate that phenanthrene can be sequestered within the internal pore-space of meso-porous silicas while the internal surfaces of micro-porous silicas are not accessible to phenanthrene sorption, possibly due to the presence of physi-sorbed water that may sterically hinder the diffusion of phenanthrene inside water-filled micro-pores. By contrast, the internal surfaces of these micro-porous silicas are accessible to phenanthrene when incorporation methods are employed which assure that pores are devoid of physi-sorbed water. Consequently, when phenanthrene was incorporated into these particles using either supercritical CO₂ or via solvent soaking, the aqueous desorption kinetics were extremely slow indicating effective sequestration of phenanthrene inside micro-porous particles. Finally, a two-
compartment conceptual model is used to interpret the experimental findings and the implications for contaminant fate and transport are discussed.

Key words: Contaminant Fate and Transport, Contaminant Sequestration, Desorption Kinetics, Aging Methodology, Porous Silica, Phenanthrene, Two-Compartment Model.

1. **INTRODUCTION**

The remediation of aged hydrophobic contaminants in soils and sediments has in many cases been complicated by the extremely slow or incomplete release of these compounds from the mineral particles. It has been postulated that the slow desorption and related sequestration of these hydrophobic contaminants is most likely caused by several mechanisms such as the slow diffusion within either hard or soft organic matter domains or by sorption-retarded and sterically hindered diffusion in small mineral pores (Alexander, 1995; Huesemann, 1997; Hatzinger and Alexander, 1997; Luthy et al., 1997; Pignatello, 1990; Pignatello and Xing, 1996; Steinberg et al., 1987; Weber and Huang, 1996; Weber et al., 1998; Xing and Pignatello, 1997).

Considering that most naturally occurring soils and sediments contain significant amounts of organic matter, it is not surprising that most research has focused on elucidating the nature of contaminant sequestration in the various organic matter (OM) phases. In fact, it has been suggested by Cornelissen et al. (1998) that the presence of OM is more important for slow desorption than mineral micropores in soils and sediments with more than 0.1-0.5% OM. As a result, comparatively little contaminant sequestration research has been carried out to evaluate the role of mineral micropores in the absence of OM (Nam and Alexander, 1998; Huang et al., 1996; Farrell and Reinhard, 1994a, 1994b; Alvarez-Cohen et al., 1993; Werth and Reinhard, 1997a, 1997b; McMillan and Werth, 1999).

Huang et al. (1996) studied the aqueous sorption and desorption of phenanthrene in meso-porous silica gels (40Å, 100Å, and 150Å) and found that little or no phenanthrene sorption occurred on internal pore-surfaces. These investigators hypothesized that the presence of physi-sorbed water in silica pores results in the size-exclusion of phenanthrene from the interior pore space. They therefore concluded that the use of models that invoke solute diffusion in meso- and micro-porous mineral structures as a significant rate-limiting factor for sorption by soils and sediments is highly questionable. Nam and Alexander (1998) measured the biodegradation kinetics of phenanthrene that had been incorporated onto non-porous and
meso-porous (25Å, 60Å, and 150Å) silica particles via aqueous sorption. Since no significant difference in biodegradation rates between non-porous and porous silicas was observed, these investigators also concluded that the internal surfaces of these porous beads sorb little or no phenanthrene.

It is the objective of this research to further elucidate the various factors that affect slow desorption and sequestration of hydrophobic contaminants in mineral micro- and meso-pores in the absence of organic matter. Specifically, we are interested in how the pore-diameter, the presence (or absence) of water during the phenanthrene incorporation process, and the aging time influence the aqueous desorption kinetics of phenanthrene from silica particles.

2. MATERIAL AND METHODS

2.1 Silica Particles

The types of silica particles used in this study are listed in Table 1. Four batches of meso-porous silica particles ranging in size from 1 -10μ and median pore diameter (based on pore-volume) from 18Å to 76Å were synthesized using techniques similar to those described by Bruinsma et al. (1998) and Beck et al. (1992). Cetyltrimethylammonium chloride was used in combination with tetraethoxysilane to prepare the particles in batches 1 and 2. A cetyltrimethylammonium hydroxide/cetyltrimethylammonium chloride mixture in combination with sodium aluminate and mesitylene was employed to prepare the silicas in batches 3 and 4. The synthesized particles were calcined by heating using a temperature ramp from 20°C to 540°C under a nitrogen purge. Prior to use in the experiments, the cooled particles were ground lightly with a mortar and pestle to break up large aggregates.

<table>
<thead>
<tr>
<th>Particle Type</th>
<th>Particle Diameter (μ)</th>
<th>Median Pore Diameter (Å)</th>
<th>Surface Area (m²/g)</th>
<th>TOC (%, w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch #1</td>
<td>1 - 10</td>
<td>18</td>
<td>825</td>
<td>0.0031</td>
</tr>
<tr>
<td>Batch #2</td>
<td>1 - 10</td>
<td>21</td>
<td>755</td>
<td>0.0096</td>
</tr>
<tr>
<td>Batch #3</td>
<td>1 - 10</td>
<td>76</td>
<td>858</td>
<td>0.0047</td>
</tr>
<tr>
<td>Batch #4</td>
<td>1 - 10</td>
<td>66</td>
<td>845</td>
<td>0.0068</td>
</tr>
<tr>
<td>Davisol</td>
<td>250 - 500</td>
<td>202</td>
<td>314</td>
<td>0.0078</td>
</tr>
<tr>
<td>Spheriglass</td>
<td>2</td>
<td>NA</td>
<td>2</td>
<td>ND</td>
</tr>
</tbody>
</table>

NA = Not Applicable, ND = Not Determined

Davisil silica gel with a median pore diameter of 202Å and a particle size range of 250-500μ was purchased from Supelco, Bellefonte, PA. Finally,
non-porous silica beads (i.e., spheriglass solid spheres) with a mean particle size of 2μ were purchased from Potters Industries, Inc., Carlstadt, NJ.

The total organic carbon (TOC) content of the silica particles was determined by placing an aliquot into a platinum crucible and heating it at 550°C for 16.5 hours. The carbon dioxide that was released as a result of this oxidation process was catalytically converted to methane which was subsequently analyzed by gas chromatography. The BET surface area and the pore-diameter distribution (based on pore-volume) of the silica particles was determined using a Micrometrics Surface Area Analyzer (Model 2010 Micrometrics Instrument Corp., Norcross, GA) according to procedures given in the operating manual (Micrometrics, 1995).

2.2 Hydration of Silica Particles

Preliminary aqueous sorption experiments involving dry silica particles from batches 1 and 2 indicated that phenanthrene sorption processes are significantly affected by changes in the silica surface chemistry that occur slowly when dry silica is exposed to water. In order to eliminate this confounding factor, all silica particles used in aqueous sorption experiments were pre-wetted in de-ionized water for one week. After the wetting period, the supernatant was carefully removed, and the sorption experiments were initiated by adding aqueous phenanthrene solution as described in more detail below.

In addition, all silica particles that were loaded with phenanthrene using non-aqueous methods (see details below) were also hydrated prior to phenanthrene loading to avoid the unusual aqueous desorption kinetics that are due to changes in silica surface chemistry. Five to ten grams of silica particles were equilibrated with 150 mL of de-ionized water over a period of 3 to 4 days at room temperature. The equilibrated particles were then filtered and dried under house vacuum in a dessicator containing Drierite for 5 to 6 days. The loss of water was monitored during the drying process. Drying was terminated when the weight of silica closely approximated its original starting weight. Additional water was then removed by subjecting the silica particles to high vacuum (4 to 5 X10⁻⁶ torr) for a period of 5 to 6 days. This procedure is known to remove all physi-sorbed water while chemi-sorbed water remains on the silica surfaces (Young, 1958).
2.3 Phenanthrene Sorption

2.3.1 Preparation of Phenanthrene Stock Solution

The phenanthrene stock solution was prepared as follows. 100 mg of ultrapure (99.5%+) phenanthrene (Aldrich Chemical Company) was placed into a small polyethylene bag (1.5" X 1.5", 4 mil). After the addition of 10 mL hexane (95% pure, Burdick and Jackson Chemical Company), the polyethylene bag was heat-sealed. The bag was slowly inverted until all phenanthrene crystals were dissolved. The hexane was evaporated by placing the bag into a hood for 2-3 days.

The bag was then transferred to an amber glass bottle (ca. 3.8 L) filled with a buffered (pH 7) solution containing 5 mg/L sodium bicarbonate (NaHCO₃) and 100 mg/L sodium azide (NaN₃) dissolved in de-ionized water (Huang et al., 1996). The bottle was sparged with nitrogen, capped, and then placed on a magnetic stirrer. The submerged polyethylene bag was mixed within the bottle until the aqueous phenanthrene concentration reached after 9 days equilibrium levels at 874 ug/L, which is close to the maximum reported solubility of this compound (Mackay et al., 1992). Aliquots of this phenanthrene stock solution were used in all sorption experiments.

This particular procedure was developed to assure that the aqueous solution is truly free of phenanthrene crystals that have been known to negatively affect the reproducibility of sorption and desorption experiments. In addition, in this method the use of solvents (e.g., methanol) that are commonly used to dissolve phenanthrene prior to the spiking of water was also avoided, thereby eliminating any potential negative influences that a co-solvent may have on sorption kinetics or equilibria.

2.3.2 Sorption Experiments

All sorption experiments were carried out in 30 mL amber centrifuge glass tubes with screw caps and Teflon-lined silicone septa. Prior to use, the glass tubes were ashed at 450°C for 4 hours to remove any potential organic materials that may interfere with phenanthrene sorption to silica particles. To initiate sorption experiments, 20 mL of the phenanthrene stock solution (874 ug/L) was added to 0.2 grams of silica particles (18Å, 76Å, and 202Å) that had been placed inside the glass tube. Thus, the water-to-solids ratio was equal to 100 in all sorption experiments.

During the sorption studies, the centrifuge tubes were tightly capped, covered with paper towels to protect against potential photo-oxidation of phenanthrene by fluorescent laboratory lights, and placed on a modified rock roller (Model NF-1, Lortone Inc.) @100 to 250 rpm for mixing. At specified
sampling times, the tubes were taken from the rollers and centrifuged at 4000 rpm (2960g) for 5 minutes. A supernatant sample (0.1mL) was taken from each tube and analyzed for phenanthrene as outlined in the Phenanthrene Analysis section. The glass tubes were again tightly capped and placed back on the roller until the next sampling event. For the “time zero” measurements, the glass tubes were briefly mixed manually (i.e., they were not put on the roller) and placed immediately in the centrifuge. In this case, the total time for mixing, centrifugation, and sampling took ca. 15 minutes.

A detailed mass balance calculation was carried out for each tube to determine the sorbed-phase phenanthrene concentration at termination of the sorption experiments. Thus, the mass of sorbed phenanthrene was computed as the initial mass of phenanthrene added to each tube minus any phenanthrene that was either removed via sampling or remained dissolved in the supernatant. An acetonitrile extraction of tubes and septa used in sorption experiments indicated that the mass of phenanthrene sorbed to glass walls or septa is negligible (< 0.1 ug per tube, or equivalently <5% (wt) of the initial mass of phenanthrene). In addition, control experiments carried out with tubes containing no silica particles confirmed that the observed decreases in aqueous phenanthrene concentrations are due to sorption and are not caused by biodegradation, photo-oxidation, or volatilization.

2.4 Incorporation of Phenanthrene into Silica Particles Using Non-Aqueous Methods

In the aqueous sorption methods outlined above, the pores of all silica particles were filled with water. In order to determine whether the presence of water has any significant effect on phenanthrene sequestration, we used the following three different “non-aqueous” methods to incorporate phenanthrene into the internal pore space of the silica particles in the absence of pore water. (Note: As outlined above, all silica particles were subjected to a specific hydration procedure that assured the elimination of all physi-sorbed water from the pores.)

2.4.1 Incorporation of Phenanthrene into Silica Particles Using Supercritical Carbon Dioxide

Phenanthrene (Aldrich, zone-refined) was used for all supercritical fluid (SCF) loading experiments. The SCF system consisted of a Dionex model SFE-703 supercritical extraction instrument that was modified to circulate supercritical carbon dioxide in a closed loop (Riley et al., 2001). Included in the closed loop system was a high-pressure stainless steel vessel (10 mL,
Keystone Scientific) used to dissolve the phenanthrene in supercritical carbon dioxide. A second vessel (10 mL) in the system contained the silica particles. An Eldex model B-100-S HPLC pump was used to circulate the supercritical solution through the closed loop system and a Shimadzu UV-2401PC spectrophotometer equipped with a custom-mounted high-pressure flow cell (Shimadzu SPD-M6A) was employed to monitor real-time changes in phenanthrene concentrations during loading.

The general procedure for the SCF incorporation of phenanthrene into the silica particles was as follows. Before starting the experiment, the two high-pressure vessels were removed from the system and loaded with appropriate amounts of silica (substrate vessel) and phenanthrene (sorbate vessel). After re-installing the vessels, the SFE-703 oven chamber was maintained at 30°C and the system was pressurized at 300 atm (4409 psi) with SFE-grade carbon dioxide. The supercritical carbon dioxide was then pumped through the sorbate vessel until all phenanthrene had been dissolved in CO2 as indicated by a stabilized UV absorbance reading. Following baseline stabilization, valves were switched to allow the phenanthrene containing supercritical CO2 to contact the silica particles in the substrate vessel. The solution was pumped through the substrate vessel for four hours. This contact time was long enough to ensure that phenanthrene in the circulating supercritical CO2 reached a steady-state concentration as indicated by a stabilized UV absorbance measurement. The circulating pump was then turned off, a valve was switched to depressurize the system, and the loaded silica particles were removed for use in aqueous desorption experiments. Using these procedures, rehydrated 21Å, 66Å and 202Å silica particles were loaded with phenanthrene resulting in final solid-phase concentrations of 2.9 ug/g, 5.7 ug/g, and 2.0 ug/g, respectively.

2.4.2 Incorporation of Phenanthrene into Silica Particles Using Solvent Soaking

Approximately 0.8 grams of rehydrated 21Å, 66Å and 202Å particles were each fully submerged in 10 mL methylene chloride containing 20 ug, 40 ug and 14 ug dissolved phenanthrene, respectively. The resulting slurry was mixed on a shaker table (@ 100 rpm) for four hours. A gentle stream of nitrogen was then used to evaporate the solvent while stirring the slurry periodically with a spatula until a constant weight was reached (ca. 3 hours). A subsample of the phenanthrene loaded particles was taken and analyzed for phenanthrene as outlined below. The solid-phase phenanthrene concentrations for the 21Å, 66Å and 202Å particles were 8.5 ug/g, 11.0 ug/g, and 1.1 ug/g, respectively (Note: g dry weight). All silica particles
Contaminated Soils- Environmental Fate

were placed into a freezer (-20 °C for 5 days) to immobilize the phenanthrene until the initiation of desorption experiments.

2.4.3 Incorporation of Phenanthrene into Silica Particles Using Solvent Spiking with Aging

This method involves the spiking of a small volume of solvent containing phenanthrene onto silica particles and the subsequent addition of water for moisture adjustment. It should be recognized that this phenanthrene incorporation procedure is a hybrid between a non-aqueous spiking procedure and an aqueous sorption experiment. It is most likely that phenanthrene is deposited on the outside surfaces of the silica particles during the spiking procedure while the subsequent addition of moisture will not only fill the pores with water but cause the dissolution of phenanthrene which in turn enables the diffusion along pores and aqueous sorption on silica surfaces. Despite the mechanistic complexity of this phenanthrene incorporation procedure, it was decided to evaluate this method because it is the "aging" technique that is most commonly reported in the literature (Chung and Alexander, 1998; Nam and Alexander, 1998; Hatzinger and Alexander, 1995; Kelsey and Alexander; 1997).

Approximately 1 gram of rehydrated 21Å, 66Å and 202Å particles were each spiked with 10µL methylene chloride containing 3 ug, 6 ug, and 2 ug dissolved phenanthrene, respectively. In addition, ca. 1 gram of dry 18Å particles were spiked with 10µL methylene chloride containing 110ug dissolved phenanthrene. All spiked silica particles were mixed every 30 minutes with a spatula for a total duration of four hours. A gentle stream of nitrogen was then used to evaporate the solvent while stirring the slurry periodically until a constant weight was reached (ca. 30 minutes). At this point, an aqueous solution containing 2% (wt) sodium azide was added to the spiked silica particles in order to adjust the moisture content to ca. 80% of the field capacity. The silica particles were subsequently mixed with a spatula for ca. 15 minutes and then transferred to an amber glass jar. The jar was tightly capped and stored in the dark at room temperature until the initiation of desorption experiments. The 21Å, 66Å and 202Å particles were aged in this manner for 61 days whereas the 18Å particles were aged for 100 days.

At the end of the aging period, the solid-phase phenanthrene concentrations were determined as outlined below. For the 18Å, 21Å, 66Å and 202Å particles, the phenanthrene concentrations were found to be 89 ug/g, 1.0 ug/g, 2.8 ug/g, and 0.9 ug/g, respectively. The corresponding moisture contents (g water/g moist silica) for these particles were 0.65, 0.66, 0.62, and 0.55, respectively. Finally, non-porous silica beads were spiked