AN INTRODUCTION TO THE MATHEMATICAL THEORY OF DYNAMIC MATERIALS

Advances in Mechanics and Mathematics

VOLUME 15

Series Editors:

David Y. Gao Virginia Polytechnic Institute and State University, U.S.A.

Ray W. Ogden University of Glasgow, U.K.

Advisory Editors:

I. Ekeland University of British Columbia, Canada

S. Liao Shanghai Jiao Tung University, P.R. China

K.R. Rajagopal Texas A&M University, U.S.A.

T. Ratiu Ecole Polytechnique, Switzerland

David J. Steigmann University of California, Berkeley, U.S.A.

W. Yang Tsinghua University, P.R. China

AN INTRODUCTION TO THE MATHEMATICAL THEORY OF DYNAMIC MATERIALS

By

KONSTANTIN A. LURIE Worcester Polytechnic Institute, Worcester, MA

Library of Congress Control Number: 2006940343

ISBN-10: 0-387-38278-X	e-ISBN-10: 0-387-38280-1
ISBN-13: 978-0-387-38278-4	e-ISBN-13: 978-0-387-38280-7

Printed on acid-free paper.

AMS Subject Classifications: 35L05, 35L70, 49S05, 49K20, 78A40, 78A48

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

To the memory of Ella

Contents

1	AC	General Concept of Dynamic Materials	1
	1.1	The idea and definition of dynamic materials	1
	1.2	Two types of dynamic materials	2
	1.3	Implementation of dynamic materials in electronics and optics	$\overline{7}$
		1.3.1 Ferroelectric and ferromagnetic materials	7
		1.3.2 Nonlinear optics	10
	1.4	Some applications of dynamic materials	11
	1.5	Dynamic materials and vibrational mechanics	12
\mathbf{Re}	ferer	ices	15
2	An	Activated Elastic Bar: Effective Properties	17
	2.1	Longitudinal vibrations of activated elastic bar	17
	2.2	The effective parameters of activated laminate	24
	2.3	The effective parameters: homogenization	28
	2.4	The effective parameters: the Floquet theory	31
	2.5	The effective parameters: discussion	33
	2.6	Balance of energy in longitudinal wave	
		propagation through an activated elastic bar	40
\mathbf{Re}	ferer	ices	49
3	Dy	namic Materials in Electrodynamics of Moving	
	Die	lectrics	51
	3.1	Preliminary remarks	51
	3.2	The basics of electrodynamics of moving	
		dielectrics	51
	3.3	Relativistic form of Maxwell's system	53
	3.4	Material tensor s : discussion. Two types of dynamic materials	58
	3.5	An activated dielectric laminate:	
		one-dimensional wave propagation	59

one dimensional wave propagation 61 3.7 A spatio-temporal polycrystallic laminate: 63 the bounds 63 3.8 An activated dielectric laminate: 63 negative effective material properties 70 3.9 An activated dielectric laminate: 70 an activated dielectric laminate: 70 a.9 An activated dielectric laminate: 70 a.9 An activated dielectric laminate: 70 a.10 Numerical examples and discussion 81 3.11 Effective properties of activated laminates calculated via 10 Lorentz transform. Case of spacelike interface 87 References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect 10 to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology. 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics 97 4.5 A stable Gmaclosure of a set U of two isotropic dielectrics 102		3.6	A spatio-temporal polycrystallic laminate:	
3.7 A spatio-temporal polycrystallic laminate: 63 3.8 An activated dielectric laminate: 63 3.8 An activated dielectric laminate: 70 3.9 An activated dielectric laminate: the energy 70 3.9 An activated dielectric laminate: the energy 75 3.10 Numerical examples and discussion 81 3.11 Effective properties of activated laminates calculated via 10 Lorentz transform. Case of spacelike interface 87 References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect 10 to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. 4 stable <i>G</i> -closure of a single isotropic dielectric 93 4.3 4.3 A stable <i>G</i> -closure of a set <i>U</i> of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable <i>G_m</i> -closure of a set <i>U</i> of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102			one dimensional wave propagation	61
the bounds 63 3.8 An activated dielectric laminate: 70 an activated dielectric laminate: the energy 70 considerations. Waves of negative energy 75 3.10 Numerical examples and discussion 81 3.11 Effective properties of activated laminates calculated via 1 Lorentz transform. Case of spacelike interface 87 References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through 91 one-dimensional wave propagation. A stable 67-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotoropic 96 4.4 The second invariant \mathcal{E}/M as an affine 97 4.5 A stable G-closure of a set U of two 102 97 4.5 A stable G-closure of a set U of two 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 102 5 Rectangular Microstructures in Space-Time </th <th></th> <th>3.7</th> <th>A spatio-temporal polycrystallic laminate:</th> <th></th>		3.7	A spatio-temporal polycrystallic laminate:	
3.8 An activated dielectric laminate: 70 3.9 An activated dielectric laminate: the energy 70 3.9 An activated dielectric laminate: the energy 75 3.10 Numerical examples and discussion 81 3.11 Effective properties of activated laminates calculated via 81 Lorentz transform. Case of spacelike interface 87 References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through 93 0.3.3 A stable G-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotropic 10 dielectrics with respect to one-dimensional 94 96 4.4 The second invariant \mathcal{E}/M as an affine 102 4.5 A stable G-closure of a set U of two 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 102 5 Rectangular Microstructures in Space-Time			the bounds	63
negative effective material properties 70 3.9 An activated dielectric laminate: the energy 75 3.10 Numerical examples and discussion 81 3.11 Effective properties of activated laminates calculated via 81 Lorentz transform. Case of spacelike interface 87 References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect 80 to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric. 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of a set U of two isotropic dielectrics 97 4.5 A stable Gm-closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113		3.8	An activated dielectric laminate:	
3.9 An activated dielectric laminate: the energy considerations. Waves of negative energy			negative effective material properties	70
considerations. Waves of negative energy 75 3.10 Numerical examples and discussion 81 3.11 Effective properties of activated laminates calculated via 1 Lorentz transform. Case of spacelike interface 87 References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through 91 a.2 Conservation of the wave impedance through 93 4.3 A stable G-closure of a set U of two isotropic 93 4.3 A stable G-closure of a set U of two isotropic 96 4.4 The second invariant \mathcal{E}/M as an affine 96 4.4 The second invariant \mathcal{E}/M as an affine 97 4.5 A stable G_m -closure of a set U of two 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 102 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 116 5.6 Kenerola		3.9	An activated dielectric laminate: the energy	
3.10 Numerical examples and discussion 81 3.11 Effective properties of activated laminates calculated via Lorentz transform. Case of spacelike interface 87 References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of a set U of two isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 127 5.6 Numerical analysis of energy accumulatio			considerations. Waves of negative energy	75
3.11 Effective properties of activated laminates calculated via Lorentz transform. Case of spacelike interface 87 References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133 8.7 Some remarks about disco		3.10	Numerical examples and discussion	81
Lorentz transform. Case of spacelike interface87References894G-closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation914.1Preliminary considerations. Terminology.914.2Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric934.3A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation964.4The second invariant \mathcal{E}/M as an affine function; a stable G-closure of a set U of two isotropic dielectrics974.5A stable Gm-closure of a set U of two isotropic dielectrics1024.6Comparison with an elliptic case1024.6Comparison with an elliptic case1075Rectangular Microstructures in Space-Time1095.1Introductory remarks1095.2Statement of a problem1105.3Case of separation of variables1135.4Checkerboard assemblage of materials with equal wave impedance1165.5Energy transformation in the presence of limit cycles1275.6Numerical analysis of energy accumulation1315.7Some remarks about discontinuous solutions for laminates133References133		3.11	Effective properties of activated laminates calculated via	
References 89 4 G-closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of a narbitrary set U of isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 7 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for lamina			Lorentz transform. Case of spacelike interface	87
4 G-closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 4.6 Comparison of variables 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 139	Re	feren	ces	89
to One-Dimensional Wave Propagation 91 4.1 Preliminary considerations. Terminology 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133	4	G-c	losures of a Set of Isotropic Dielectrics with Respect	
4.1 Preliminary considerations. Terminology. 91 4.2 Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of a narbitrary set U of isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133		to C	Dne-Dimensional Wave Propagation	91
4.2 Conservation of the wave impedance through one-dimensional wave propagation. A stable G-closure of a single isotropic dielectric 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 References 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133		4.1	Preliminary considerations. Terminology	91
one-dimensional wave propagation. A stable G -closure of a single isotropic dielectric.934.3 A stable G -closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation964.4 The second invariant \mathcal{E}/M as an affine function; a stable G -closure of an arbitrary set U of isotropic dielectrics974.5 A stable G_m -closure of a set U of two isotropic dielectrics974.6 Comparison with an elliptic case1024.6 Comparison with an elliptic case102 References 1075 Rectangular Microstructures in Space-Time1095.1 Introductory remarks1095.2 Statement of a problem1105.3 Case of separation of variables1135.4 Checkerboard assemblage of materials with equal wave impedance1165.5 Energy transformation in the presence of limit cycles1275.6 Numerical analysis of energy accumulation1315.7 Some remarks about discontinuous solutions for laminates139		4.2	Conservation of the wave impedance through	
G-closure of a single isotropic dielectric. 93 4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133 7 133			one-dimensional wave propagation. A stable	
4.3 A stable G-closure of a set U of two isotropic dielectrics with respect to one-dimensional wave propagation 96 4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics 97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 4.6 Comparison with an elliptic case 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133 7.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 139			<i>G</i> -closure of a single isotropic dielectric	93
dielectrics with respect to one-dimensional wave propagation		4.3	A stable G -closure of a set U of two isotropic	
wave propagation964.4The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics974.5A stable G_m -closure of a set U of two isotropic dielectrics1024.6Comparison with an elliptic case102 References 107 5Rectangular Microstructures in Space-Time 1095.1Introductory remarks1095.2Statement of a problem1105.3Case of separation of variables1135.4Checkerboard assemblage of materials with equal wave impedance1165.5Energy transformation in the presence of limit cycles1275.6Numerical analysis of energy accumulation1315.7Some remarks about discontinuous solutions for laminates133 References 133			dielectrics with respect to one-dimensional	
4.4 The second invariant \mathcal{E}/M as an affine function; a stable G-closure of an arbitrary set U of isotropic dielectrics 4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 References 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions 133 References 139			wave propagation	96
function; a stable G-closure of an arbitrary set U of isotropic dielectrics974.5A stable G_m -closure of a set U of two isotropic dielectrics1024.6Comparison with an elliptic case102 References 1075 Rectangular Microstructures in Space-Time 1095.1Introductory remarks1095.2Statement of a problem1105.3Case of separation of variables1135.4Checkerboard assemblage of materials with equal wave impedance1165.5Energy transformation in the presence of limit cycles1275.6Numerical analysis of energy accumulation1315.7Some remarks about discontinuous solutions for laminates133 References 133		4.4	The second invariant \mathcal{E}/M as an affine	
U of isotropic dielectrics97 4.5 A stable G_m -closure of a set U of two isotropic dielectrics102 4.6 Comparison with an elliptic case102 References 107 5 Rectangular Microstructures in Space-Time109 5.1 Introductory remarks109 5.2 Statement of a problem110 5.3 Case of separation of variables113 5.4 Checkerboard assemblage of materials with equal wave impedance116 5.5 Energy transformation in the presence of limit cycles127 5.6 Numerical analysis of energy accumulation131 5.7 Some remarks about discontinuous solutions for laminates139 References 139			function; a stable G -closure of an arbitrary set	
4.5 A stable G_m -closure of a set U of two isotropic dielectrics 102 4.6 Comparison with an elliptic case 102 References 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions 133 References 139			U of isotropic dielectrics	97
isotropic dielectrics		4.5	A stable G_m -closure of a set U of two	
4.6 Comparison with an elliptic case 102 References 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions 133 References 133			isotropic dielectrics1	.02
References 107 5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 116 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions 133 References 139		4.6	Comparison with an elliptic case1	.02
5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions 133 References 139	Re	feren	ces 1	07
5 Rectangular Microstructures in Space-Time 109 5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 110 5.4 Checkerboard assemblage of materials 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 116 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions 133 References 139				
5.1 Introductory remarks 109 5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 116 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions 133 References 139	5	Rec	tangular Microstructures in Space-Time1	.09
5.2 Statement of a problem 110 5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials 113 5.4 Checkerboard assemblage of materials 116 5.5 Energy transformation in the presence 116 5.6 Numerical analysis of energy accumulation 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions 133 References 139		5.1	Introductory remarks1	.09
5.3 Case of separation of variables 113 5.4 Checkerboard assemblage of materials with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133 References 139		5.2	Statement of a problem1	.10
5.4 Checkerboard assemblage of materials with equal wave impedance		5.3	Case of separation of variables1	.13
with equal wave impedance 116 5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133 References 139		5.4	Checkerboard assemblage of materials	
5.5 Energy transformation in the presence of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133 References 139			with equal wave impedance	.16
of limit cycles 127 5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133 References 139		5.5	Energy transformation in the presence	
5.6 Numerical analysis of energy accumulation 131 5.7 Some remarks about discontinuous solutions for laminates 133 References 139			of limit cycles1	.27
5.7 Some remarks about discontinuous solutions for laminates		5.6	Numerical analysis of energy accumulation	.31
tor laminates		5.7	Some remarks about discontinuous solutions	
References			tor laminates 1	.33
	Re	feren	ces 1	39

6	6 Some Applications of Dynamic Materials in Electrical Engineering and Optimal Design	
	Eng	A plane electromegnetic wave propagation through an
	0.1	A plane electromagnetic wave propagation through an
	0.0	activated laminate in 3D
	6.2	The homogenized equations. Elimination of the cutoff
		frequency in a plane waveguide
	6.3	The effective material tensor and homogenized
		electromagnetic field
	6.4	The transport of effective energy145
	6.5	On the necessary conditions of optimality in a typical
		hyperbolic control problem with controls in the coefficients 146
		6.5.1 Introduction
		6.5.2 Statement of the problem
		6.5.3 The necessary conditions of optimality
	6.6	Transformation of the expression for ΔI : the strip test
	6.7	A polycrystal in space-time 155
	0.1	
Ref	eren	nces
	App	pendix: 1
	App	pendix: 2
	App	pendix: 3
	App	pendix: 4
Ind	ex	

List of Figures

1.1	A discrete version of a transmission line	3
1.2	A moving (LC) -property pattern - an activated composite	4
1.3	An immovable material pattern with moving original	
	substances - a kinetic composite.	4
1.4	Material laminate in space-time.	6
1.5	E-P hysteresis curve for ferroelectric materials	8
1.6	H-M hysteresis curve for ferromagnetic materials	8
1.7	Single cell of ferroelectric/ferromagnetic material.	10
1.8	Multiple cells of ferroelectric/ferromagnetic material	10
2.1	A moving interface	18
2.2	An immovable interface: $V = 0$	21
2.3	A moving interface: $ V < a_1 \dots \dots$	21
2.4	A moving interface: $a_1 < V < a_2$	22
2.5	A moving interface: $-a_2 < V < -a_1 \dots \dots$	22
2.6	A moving interface: $ V > a_2$	23
2.7	A matrix microstructure in space-time violating ineqs. (2.5)	23
2.8	Effective parameters K versus P with variable V (case	
	$\bar{\rho}\left(\frac{1}{\rho}\right) - \bar{k}\left(\frac{1}{k}\right) \ge 0$	36
2.9	Effective parameters K versus P with variable V (case	
	$\rho\left(\frac{1}{\rho}\right) - k\left(\frac{1}{k}\right) \le 0).$	37
2.10	Screening effect produced by a shadow zone	38
3.1	The "caterpillar" construction.	62
3.2	The hyperbola $\mathcal{E}/M = \epsilon/\mu$	66
3.3	The hyperbolic strip $\epsilon_2/\mu_2 > \mathcal{E}/M > \epsilon_1/\mu_1, \ \mathcal{E}, M \ge 0$	69
3.4	The hyperbolic strip $\epsilon_2/\mu_2 > \mathcal{E}/M > \epsilon_1/\mu_1, \ \mathcal{E}, M \leq 0$	70
3.5	Effective permittivities and permeabilities of dielectric	
	laminate with $(\epsilon_1, \mu_1) = (1, 1), (\epsilon_2, \mu_2) = (9, 0.1), m_1 = 0.5$, for	
	variable V.	72

$3.6 \\ 3.7$	Effective wave impedance versus V
3.8	$(\epsilon_1, \mu_1) = (1, 1), (\epsilon_2, \mu_2) = (9, 0.1), m_1 = 0.5$, for variable $V. \ldots 83$ Wave propagation through a fast range laminate where $V = 1.3$ yields a homogenized material with negative effective
3.9	coefficients
3.10	coefficients
3.11	density of pure material 2
	density of pure material 2
4.1	A stable G -closure of a set of two isotropic dielectrics of the same sign 97
49	Case $a^{(1)} < a^{(1)} < V < a^{(2)} < a^{(2)}$ 100
4.3	Case $a_1^{(1)} < a_2^{(1)} < V < a_1^{(2)} < a_2^{(2)}$ 100
4.4	Case $a_1^{(1)} < a_2^{(1)} < V < a_1^{(2)} < a_2^{(2)} < V$ 101
4.5	Case $V < a_1^{(1)} < a_2^{(2)} < v < u_1^{(2)} < u_2^{(2)}$ 101
4.6	A gap in the values $\kappa_1(c^2)$ and $\kappa_1(0)$
4.7	G-closure of a binary set of two anisotropic heat conductors in
	a plane
5.1	Rectangular microstructure in <i>z</i> - <i>t</i>
5.2	Limit cycles in the checkerboard structure with
F 0	$a_{(1)} = 0.6, a_{(2)} = 1.1, m_1 = 0.4, n_1 = 0.5. \dots $
5.3	Evolution of a disturbance through a structure with $m = 0.4 \text{ m} = 0.5 \text{ a} = -0.6 \text{ and } a = -1.1$
54	$m_1 = 0.4, n_1 = 0.5, u_{(1)} = 0.0,$ and $u_{(2)} = 1.1, \dots, 110$ Solution at time 10 of a disturbance with wide support through
0.1	a structure with $m_1 = 0.4, n_1 = 0.5, a_{(1)} = 0.6, a_{(2)} = 1.1$, and
	initial data shifted right 10 units
5.5	Low frequency pattern in trajectories through structure with
50	$m_1 = 0.4, n_1 = 0.8, a_{(1)} = 0.6, \text{ and } a_{(2)} = 1.1, \dots, 120$
5.0	Closer view of wave trajectories through structure with $m_{\rm e} = 0.4$ m $= 0.8$ g $= 0.6$ and $g = 1.1$ 120
5.7	Structure with $m_1 = 0.4$, $n_1 = 0.1$, $a_{(1)} = 0.6$, and $a_{(2)} = 1.1$
5.8	Wave speed as a function of m_1 and n_1 for $a_{(1)} = 0.6$ and
	$a_{(2)} = 1.1.$
5.9	Trajectories in material with $a_{(1)} = 0.6, a_{(2)} = 1.1, m_1 = 0.4$
5 10	and n_1 as indicated
9.10	speed versus n_1 in material with $a_{(1)} = 0.0, a_{(2)} = 1.1, m_1 = 0.4.123$

5.11	Wave speed as a function of $a_{(2)}$ and n_1 , for $a_{(1)}$ between 0.6
5 19	and 1.4
0.12	wave speed as a function of $a_{(2)}$ and n_1 , for $a_{(1)}$ between 1.5 and 2.3
5 1 2	Limit evelop have speeds that are rational multiples of $\delta/\tau = 1$
0.10	Here $a_{(1)} = 0.6$ $a_{(2)} = 0.0$ $m_1 = 0.15$ 125
5.14	Wave speed = $3/4$ when $a_{(1)} = 0.6$ $a_{(2)} = 0.9$ $m_1 = 0.15$ and
0.11	$n_1 = 0.55$ 125
5.15	Wave speed = $2/3$ when $a_{(1)} = 0.6$, $a_{(2)} = 0.9$, $m_1 = 0.15$, and
0.20	$n_1 = 0.2.$
5.16	Solution at time 30 of a disturbance with wide support through
	a structure with $a_{(1)} = 0.6, a_{(2)} = 0.9, m_1 = 0.15, n_1 = 0.2$,
	and initial data shifted right 20 units
5.17	Wave speed = $1/2$. Use $m_1 = 0.0579, n_1 = 0.3529, a_{(1)} =$
	$0.8132, a_{(2)} = 0.0099$ (randomly generated parameters)
5.18	Wave speed = $2/7$. Use $m_1 = 0.8757, n_1 = 0.7373, a_{(1)} =$
	$0.4096, a_{(2)} = 0.0353$ (randomly generated parameters) 127
5.19	Wave speed = $2/5$. Use $m_1 = 0.5651, n_1 = 0.9692, a_{(1)} =$
	$0.1187, a_{(2)} = 4.3511$ (randomly generated parameters)
5.20	The bunch of characteristics in the vicinity of a limit cycle.
	The spatial and temporal periods of the microstructure
	are taken equal to ϵ , other parameters specified as
	$a_{(1)} = 0.6, a_{(2)} = 1.1, m_1 = 0.4, n_1 = 0.5.\dots 130$
5.21	Characteristic paths through checkerboard material (5.36) 132
5.22	Solution at time 4 to $a_{(1)} = 0.55, a_{(2)} = 2a_1, m_1 = 0.5, n_1 = 0.5$. 132
5.23	Energy variation up to time 4 for $a_{(1)} = 0.55, a_{(2)} =$
	$2a_{(1)}, m_1 = 0.5, n_1 = 0.5.$
5.24	Characteristic paths through checkerboard material (5.37) 134
5.25	Right going characteristic paths through material (5.37) 135
5.26	Energy variation in material (5.37)
5.27	Solution at time 10 to material (5.37)
5.28	The pattern of characteristics in a laminate violating ineqs. $(2.5)136$
A3.1	A section of the elastic bar
A3.2	A suspended section of the bar
A3.3	An elastic bar as an assembly of sections
A3.4	Rolls from two adjacent sections mounted on the common axis. 172
A3.5	A pipeline assembled of sections

Preface

This book has emerged from the study of a new concept in material science that has been realized about a decade ago. Before that, I had been working for more than 20 years on conventional composites assembled in space and therefore adjusted to optimal material design in statics. The reason for that adjustment is that such composites appeared to become necessary participants in almost any optimal material design related to a state of equilibrium.

A theoretical study of conventional composites has been very extensive over a long period of time. It received stimulation through many engineering applications, and some of the results have become a part of modern industrial technology. But again, the ordinary composites are all about statics, or, at the utmost, are related to control over the free vibration modes, a situation conceptually close to a static equilibrium.

The world of dynamics appears to be quite different in this aspect. When it comes to motion, the immovable material formations distributed in space alone become insufficient as the elements of design because they are incapable of getting fully adjusted to the temporal variation in the environment. To be able to adequately handle dynamics, especially the wave motion, the material medium *must itself be time dependent*, i.e. its material properties should vary in space and time alike. Any substance demonstrating such variation has been termed a *dynamic material* [1].

The wave propagation through dynamic materials may be accompanied by a number of special effects that are unthinkable with regard to purely *static materials* mentioned above. In general, dynamic materials may be thought of as assemblages of conventional materials distributed in *space and time*; particularly, they may be involved in their own material motion. When such assemblage is furnished with a microstructure, we may call it a *dynamic composite*, or a *spatio-temporal composite*, contrary to its conventional (i.e. static) counterpart.

Unlike conventional composites, dynamic materials are rarely found in mother nature: all of them known so far have come into the scene as the products of modern technology. The only exception, though of extreme significance, is a living tissue. There is one fundamental feature that brings the two substances together: they both participate in a permanent exchange of energy and momentum with the environment and therefore appear to be thermodynamically open systems. Due to this exchange, the dynamic materials represent a suitable environment for dynamics, especially for the wave propagation. This particular feature adds much to the resources available to a designer because it makes it possible to establish an effective control over both spatial and temporal behavior of a dynamic system.

Regardless of a material implementation, it is now the time to investigate some general features of dynamic materials mathematically. A general scheme for such investigation may be similar to the one successfully tested with regard to ordinary static composites. One of the most exciting problems that received solution in this connection is the problem of material mixing in space. A study of this problem has put forth a special concept of a G-closure (GU) of the original set U of materials [2],[3],[4]. A G-closure is defined as a set of the effective properties of all mixtures that are produced when the original materials become intermingled on a microscale, regardless of a structural geometry. Clearly, $U \in GU$. The G-closures were found explicitly for a number of sets U with regard to some important elliptic differential operators arising in electrostatics and in the theory of elasticity. Analytically, all of the G-closures known so far have been found with the aid of a special technique named the translation method [3]; it has been worked out specifically for this purpose. The knowledge of a G-closure is sufficient for a correct formulation of many design problems that remain ill-posed without such knowledge.

The idea of a G-closure has emerged from the desire to make a set of available materials complete, simply by adding all possible mixtures to it. This idea surely persists in a hyperbolic context, too, and it has been an intriguing task to investigate G-closures produced by some typical hyperbolic operators governing the non-stationary phenomena developing in dynamic materials. Some results of such studies are included into this book. The analysis is related to a simple wave operator

$$(\rho u_t)_t - (ku_z)_z,\tag{0.1}$$

with coefficients ρ, k being both t and z-dependent. The problem is therefore two dimensional, with one spatial coordinate z and time t. The operator (1) serves as a good model, similar to that given by the operator

$$\operatorname{div}\mathcal{D}\operatorname{grad} u, \quad \mathcal{D} = \mathcal{D}(x, y), \tag{0.2}$$

in a relevant elliptic situation. Many features of hyperbolic G-closures revealed through the study of (1) are quite special and substantially different from the properties of the G-closures associated with (2). These differences are likely to be even more pronounced in the case of higher spatial dimensions. The latter has not been investigated in detail in this introductory text; however, the very notion of a dynamic material, as well as the procedure of material mixing in space-time received a clear mathematical implementation in many spatial dimensions as well. Remarkably there is a fundamental physical theory, namely Maxwell's theory for moving dielectrics, that perfectly embodies dynamic materials as a natural dielectric medium capable of conducting electromagnetic waves. It was rewarding to find such a theory, so to speak, on the surface, because it immediately offered a natural classification of dynamic materials produced by two conceptually different ways of mixing in space-time. The reader will find a brief account of these ideas on the opening pages of the main text.

I fully realize that the presentation below is a first step towards an extensive theory that should unveil in the future. My purpose was to try to get a clear vision of the base ideas, and I believe that an interested reader will be able to share the excitement that I experienced while working on this beautiful subject.

Acknowledgments

This text would probably not appear without invaluable support that I had from many people. My thanks go to my dear colleague and friend, Dr. Suzanne L. Weekes, whose contribution to this new field is quite solid; many of her results are included into the text as its indefeasible part. Dr. Brian King of the Department of Electrical and Computer Engineering in Worcester Polytechnic Institute has contributed most of the text of sections 1.3, 1.4 of Chapter 1. Colleen Lewis and Elizabeth Teixeira of the Department of Mathematical Sciences in Worcester Polytechnic Institute did a magnificent job on typing and graphics. Major inspiration has come from discussions that I had with my old friend Professor Ilya I. Blekhman at all stages of this work. I am deeply obliged to my colleagues and friends for their remarkable effort.

My special thanks and admiration go to my wife Sonia, to my son Dmitri and daughter Aleksandra whose exceptional perseverance gave me inspiration and force to go through a difficult time when this text was written.

Support for the study of dynamic materials given through NSF Grants DMS-9803476, DMS-0204673, and DMS-0350240 is gratefully acknowledged.

Worcester, Massachusetts December 2005 The Author

XVIII Preface

References

- Blekhman, I.I., and Lurie, K.A.: On dynamic materials. Proceedings of the Russian Academy of Sciences (Doklady) 37, 182–185 (2000)
- Lurie, K.A.: Applied Optimal Control of Distributed Systems, Plenum Press, 499 pp (1993)
- Lurie, K.A., and Cherkaev, A.V.: The effective characteristics of composite materials and optimal design of constructions. Advances in Mechanics (Poland), vol. 9, 3–81 (in Russian) (1986)
- 4. Cherkaev, A.V.: Variational Methods for Structural Optimization, Springer Verlag, xii + 627 pp (2000)

1.1 The idea and definition of dynamic materials

The idea of composites is one of the key ideas in material science. When different substances are used as primary elements through the constructing of material assemblages, these new formations may demonstrate properties that are alien to original constituents. Of such properties, the structural anisotropy is probably the most critical. This property is created artificially, through making composites, thanks to their special microgeometry; an anisotropic composite may thus be built from isotropic original constituents. Anisotropy is vitally important for optimal design: every such design is a custom-tailored formation built purposefully to fit in the environment peculiar to a concrete working situation. Examples illustrating this are numerous; they may be found in many texts, (see, e.g., [1], [2], [3]).

Until recently, the concept of composites has been viewed as essentially static: a composite that is ordinary in a conventional sense, is assembled once and for all in space, and this assemblage remains invariable in time. This concept fits well into the problems related to a static equilibrium; however, it fails to be adequate with regard to a dynamic environment.

To work effectively in a dynamic world, a material medium should be responsive to dynamic disturbances allowing for the energy and momentum exchange take place between various parts of the system on a suitable spatiotemporal scale. It should be able to maintain selective interaction between the material property patterns and dynamic disturbances, i.e. such interaction should occur wherever and whenever necessary. This fundamental requirement could be met if we resort to a special material arrangement termed a *dynamic material*.

Dynamic materials are defined as formations assembled from ordinary materials distributed in space *and* time. When such formation is allotted with a microstructure, a dynamic material becomes a dynamic (spatio-temporal) composite. The appearance of time is special: it serves as an additional fast variable. The presence of such a variable combined with the fast variable spatial coordinate, transforms an ordinary composite assembled in *space alone*, into a dynamic composite distributed in *space and time*.

The dynamic disturbances whose spatio-temporal scale is much greater than the corresponding scale of the assemblage, may perceive this one as a new material allotted its own effective properties. By changing the material parameters of original substances, as well as the microgeometry, we shall be able to selectively control the dynamic processes by creating effects that are unattainable so far as we operate with ordinary materials or composites.

One may set a difference between various types of dynamic materials, and we will introduce their formal classification in Chapter 3. At the same time, such materials share one special feature that is common to all of them: they universally appear to be substantially non-equilibrium formations. To create a dynamic material, we have to maintain the energy exchange between it and its surroundings. Energy should either be pumped into the medium, or it should be extracted from it. The effective properties of dynamic materials are therefore specifically affected by the relevant energy flows. For this reason, dynamic materials themselves appear to be thermodynamically open systems; only a combination of such material and the environment may be considered as closed.

To some extent, dynamic materials fall outside a stock notion of a material as of something that can be taken into your hands, stored, moved, manufactured once for all, individualized by placing some "indelible" labels, etc. There is no such thing as "a piece of dynamic material". Instead, they would rather be "brought into the scene" and exist with the environment. For example, a TV screen on which a movie is demonstrated represents a dynamic material: our eye perceives it, through a movie performance, as a plane with the reflection properties variable in space and time. A human mechanism of vision implements a spatio-temporal averaging of a pattern of rapidly alternating sequences and thereby detects a "slow motion" carrying information stored in the movie.

The concept of dynamic materials appears to be a special realization of the idea of *smart* materials, i.e. substances able to respond to environmental variations by changing their properties, structure or composition, or their function both in space and time.

1.2 Two types of dynamic materials

Dynamic materials have originally been introduced in [4], [5] in both mechanical and electromagnetic contexts. They have been classified into two major categories termed *activated* and *kinetic* materials. The difference between such categories is fundamental, and it is best illuminated by examples.

Fig. 1.1. A discrete version of a transmission line.

Fig. 1.2. A moving (*LC*)-property pattern - an activated composite.

Fig. 1.3. An immovable material pattern with moving original substances - a kinetic composite.

Consider a transmission line. Its discrete version may be interpreted as an array of LC-cells connected in series (Fig. 1.1). Assume that each cell offers two possibilities: (L_1, C_1) and (L_2, C_2) , turned on/off by a toggle switch S. If the cells are densely distributed along the line, then, by due switching, the linear inductance L and capacitance C of the line may become, with any desired accuracy, almost arbitrary functions of a spatial coordinate z along the line, and time t. In particular, we may produce in a (z, t)-plane a periodic LC-laminate assembled from segments with properties (L_1, C_1) and (L_2, C_2) , respectively (Fig. 1.2). In this figure, a periodic pattern of such segments is shown moving along the z-axis at velocity V, and this motion creates a laminated structure in space-time. It is essential that this construction does not include any motion of the material itself; what is allowed to move, is the property pattern alone. This is a pure case of activation, and activated

4