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Preface

This book has emerged from the study of a new concept in material science
that has been realized about a decade ago. Before that, I had been working
for more than 20 years on conventional composites assembled in space and
therefore adjusted to optimal material design in statics. The reason for that
adjustment is that such composites appeared to become necessary participants
in almost any optimal material design related to a state of equilibrium.

A theoretical study of conventional composites has been very extensive
over a long period of time. It received stimulation through many engineering
applications, and some of the results have become a part of modern industrial
technology. But again, the ordinary composites are all about statics, or, at
the utmost, are related to control over the free vibration modes, a situation
conceptually close to a static equilibrium.

The world of dynamics appears to be quite different in this aspect. When
it comes to motion, the immovable material formations distributed in space
alone become insufficient as the elements of design because they are incapable
of getting fully adjusted to the temporal variation in the environment. To be
able to adequately handle dynamics, especially the wave motion, the material
medium must itself be time dependent, i.e. its material properties should vary
in space and time alike. Any substance demonstrating such variation has been
termed a dynamic material [1].

The wave propagation through dynamic materials may be accompanied by
a number of special effects that are unthinkable with regard to purely static
materials mentioned above. In general, dynamic materials may be thought
of as assemblages of conventional materials distributed in space and time;
particularly, they may be involved in their own material motion. When such
assemblage is furnished with a microstructure, we may call it a dynamic com-
posite, or a spatio-temporal composite, contrary to its conventional (i.e. static)
counterpart.

Unlike conventional composites, dynamic materials are rarely found in
mother nature: all of them known so far have come into the scene as the
products of modern technology. The only exception, though of extreme signif-
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icance, is a living tissue. There is one fundamental feature that brings the two
substances together: they both participate in a permanent exchange of energy
and momentum with the environment and therefore appear to be thermody-
namically open systems. Due to this exchange, the dynamic materials repre-
sent a suitable environment for dynamics, especially for the wave propagation.
This particular feature adds much to the resources available to a designer be-
cause it makes it possible to establish an effective control over both spatial
and temporal behavior of a dynamic system.

Regardless of a material implementation, it is now the time to investi-
gate some general features of dynamic materials mathematically. A general
scheme for such investigation may be similar to the one successfully tested
with regard to ordinary static composites. One of the most exciting problems
that received solution in this connection is the problem of material mixing in
space. A study of this problem has put forth a special concept of a G-closure
(GU) of the original set U of materials [2],[3],[4]. A G-closure is defined as
a set of the effective properties of all mixtures that are produced when the
original materials become intermingled on a microscale, regardless of a struc-
tural geometry. Clearly, U ∈ GU . The G-closures were found explicitly for a
number of sets U with regard to some important elliptic differential operators
arising in electrostatics and in the theory of elasticity. Analytically, all of the
G-closures known so far have been found with the aid of a special technique
named the translation method [3]; it has been worked out specifically for this
purpose. The knowledge of a G-closure is sufficient for a correct formulation
of many design problems that remain ill-posed without such knowledge.

The idea of a G-closure has emerged from the desire to make a set of
available materials complete, simply by adding all possible mixtures to it. This
idea surely persists in a hyperbolic context, too, and it has been an intriguing
task to investigate G-closures produced by some typical hyperbolic operators
governing the non-stationary phenomena developing in dynamic materials.
Some results of such studies are included into this book. The analysis is related
to a simple wave operator

(ρut)t − (kuz)z, (0.1)

with coefficients ρ, k being both t and z-dependent. The problem is therefore
two dimensional, with one spatial coordinate z and time t. The operator (1)
serves as a good model, similar to that given by the operator

divDgradu, D = D(x, y), (0.2)

in a relevant elliptic situation. Many features of hyperbolic G-closures revealed
through the study of (1) are quite special and substantially different from the
properties of the G-closures associated with (2). These differences are likely
to be even more pronounced in the case of higher spatial dimensions. The
latter has not been investigated in detail in this introductory text; however,
the very notion of a dynamic material, as well as the procedure of material
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mixing in space-time received a clear mathematical implementation in many
spatial dimensions as well. Remarkably there is a fundamental physical the-
ory, namely Maxwell’s theory for moving dielectrics, that perfectly embodies
dynamic materials as a natural dielectric medium capable of conducting elec-
tromagnetic waves. It was rewarding to find such a theory, so to speak, on the
surface, because it immediately offered a natural classification of dynamic ma-
terials produced by two conceptually different ways of mixing in space-time.
The reader will find a brief account of these ideas on the opening pages of the
main text.

I fully realize that the presentation below is a first step towards an ex-
tensive theory that should unveil in the future. My purpose was to try to
get a clear vision of the base ideas, and I believe that an interested reader
will be able to share the excitement that I experienced while working on this
beautiful subject.
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1

A General Concept of Dynamic Materials

1.1 The idea and definition of dynamic materials

The idea of composites is one of the key ideas in material science. When
different substances are used as primary elements through the constructing of
material assemblages, these new formations may demonstrate properties that
are alien to original constituents. Of such properties, the structural anisotropy
is probably the most critical. This property is created artificially, through
making composites, thanks to their special microgeometry; an anisotropic
composite may thus be built from isotropic original constituents. Anisotropy
is vitally important for optimal design: every such design is a custom-tailored
formation built purposefully to fit in the environment peculiar to a concrete
working situation. Examples illustrating this are numerous; they may be found
in many texts, (see, e.g., [1],[2],[3]).

Until recently, the concept of composites has been viewed as essentially
static: a composite that is ordinary in a conventional sense, is assembled once
and for all in space, and this assemblage remains invariable in time. This
concept fits well into the problems related to a static equilibrium; however, it
fails to be adequate with regard to a dynamic environment.

To work effectively in a dynamic world, a material medium should be
responsive to dynamic disturbances allowing for the energy and momentum
exchange take place between various parts of the system on a suitable spatio-
temporal scale. It should be able to maintain selective interaction between
the material property patterns and dynamic disturbances, i.e. such interaction
should occur wherever and whenever necessary. This fundamental requirement
could be met if we resort to a special material arrangement termed a dynamic
material.

Dynamic materials are defined as formations assembled from ordinary ma-
terials distributed in space and time. When such formation is allotted with
a microstructure, a dynamic material becomes a dynamic (spatio-temporal)
composite. The appearance of time is special: it serves as an additional fast
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variable. The presence of such a variable combined with the fast variable spa-
tial coordinate, transforms an ordinary composite assembled in space alone,
into a dynamic composite distributed in space and time.

The dynamic disturbances whose spatio-temporal scale is much greater
than the corresponding scale of the assemblage, may perceive this one as a
new material allotted its own effective properties. By changing the material
parameters of original substances, as well as the microgeometry, we shall be
able to selectively control the dynamic processes by creating effects that are
unattainable so far as we operate with ordinary materials or composites.

One may set a difference between various types of dynamic materials, and
we will introduce their formal classification in Chapter 3. At the same time,
such materials share one special feature that is common to all of them: they
universally appear to be substantially non-equilibrium formations. To create
a dynamic material, we have to maintain the energy exchange between it
and its surroundings. Energy should either be pumped into the medium, or
it should be extracted from it. The effective properties of dynamic materials
are therefore specifically affected by the relevant energy flows. For this reason,
dynamic materials themselves appear to be thermodynamically open systems;
only a combination of such material and the environment may be considered
as closed.

To some extent, dynamic materials fall outside a stock notion of a material
as of something that can be taken into your hands, stored, moved, manufac-
tured once for all, individualized by placing some “indelible” labels, etc. There
is no such thing as “a piece of dynamic material”. Instead, they would rather
be “brought into the scene” and exist with the environment. For example, a
TV screen on which a movie is demonstrated represents a dynamic mater-
ial: our eye perceives it, through a movie performance, as a plane with the
reflection properties variable in space and time. A human mechanism of vision
implements a spatio-temporal averaging of a pattern of rapidly alternating se-
quences and thereby detects a “slow motion” carrying information stored in
the movie.

The concept of dynamic materials appears to be a special realization of
the idea of smart materials, i.e. substances able to respond to environmental
variations by changing their properties, structure or composition, or their
function both in space and time.

1.2 Two types of dynamic materials

Dynamic materials have originally been introduced in [4], [5] in both mechan-
ical and electromagnetic contexts. They have been classified into two major
categories termed activated and kinetic materials. The difference between such
categories is fundamental, and it is best illuminated by examples.
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Fig. 1.1. A discrete version of a transmission line.
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Fig. 1.2. A moving (LC)-property pattern - an activated composite.
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Fig. 1.3. An immovable material pattern with moving original substances - a kinetic
composite.

Consider a transmission line. Its discrete version may be interpreted as an
array of LC-cells connected in series (Fig. 1.1). Assume that each cell offers
two possibilities: (L1, C1) and (L2, C2), turned on/off by a toggle switch S.
If the cells are densely distributed along the line, then, by due switching,
the linear inductance L and capacitance C of the line may become, with any
desired accuracy, almost arbitrary functions of a spatial coordinate z along
the line, and time t. In particular, we may produce in a (z, t)-plane a periodic
LC-laminate assembled from segments with properties (L1, C1) and (L2, C2),
respectively (Fig. 1.2). In this figure, a periodic pattern of such segments
is shown moving along the z-axis at velocity V , and this motion creates a
laminated structure in space-time. It is essential that this construction does
not include any motion of the material itself; what is allowed to move, is
the property pattern alone. This is a pure case of activation, and activated


