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Preface

This edited book serves as a companion volume to the Ninth INFORMS
Telecommunications Conference held in College Park, Maryland, from March
27 to 29, 2008. The 17 papers in this book were carefully selected after a
thorough review process.

Rapid advances in telecommunications technology have spawned many new
innovative applications. These advances in technology have also fostered new
research problems. In a certain sense, each one of the papers in this book is
motivated by these advances in technology. Technologies considered range
from free-space optical networks and vehicular ad-hoc networks to wave divi-
sion multiplexing and multiprotocol label switching. The research contained
in these papers covers a broad spectrum that includes the design of business
models, tools for spectrum auctions, Internet charging schemes, Internet rout-
ing policies, and network design problems. Together, these papers address
issues that deal with both engineering design and policy.

We thank all of the authors for their hard work and invaluable contributions
to this book. We are very pleased with the outcome of this edited book, and
hope these papers will give rise to new ideas and research in their respective
domains.

S. Raghavan, Bruce Golden, and Edward Wasil



Chapter 1

SINGLE-LAYER CUTS FOR
MULTI-LAYER NETWORK DESIGN PROBLEMS

Arie M.C.A. Koster
University of Warwick, Centre for Discrete Mathematics and its Applications (DIMAP), Coven-
try CV4 7AL, United Kingdom

Arie.Koster@wbs.ac.uk

Sebastian Orlowski, Christian Raack
Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin

{orlowski,raack}@zib.de

Georg Baier
Siemens AG CT, Discrete Optimization, Munich, Germany

georg.baier@siemens.com

Thomas Engel
Nokia Siemens Networks GmbH & Co. KG, Munich, Germany

thomas.1.engel@nsn.com

Abstract We study a planning problem arising in SDH/WDM multi-layer telecommuni-
cation network design. The goal is to find a minimum cost installation of link
and node hardware of both network layers such that traffic demands can be re-
alized via grooming and a survivable routing. We present a mixed-integer pro-
gramming formulation for a predefined set of admissible logical links that takes
many practical side constraints into account, including node hardware, several
bit-rates, and survivability against single physical node or link failures. This
model is solved using a branch-and-cut approach with cutting planes based on
either of the two layers. On several realistic two-layer planning scenarios, we
show that these cutting planes are still useful in the multi-layer context, helping
to increase the dual bound and to reduce the optimality gaps.
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Keywords: Telecommunication networks; multi-layer network design; mixed-integer pro-
gramming; cutting planes.

1. Introduction

During the last decade, dense wavelength division multiplexing (DWDM)
has turned out to be the dominant network technology in high-capacity opti-
cal backbone networks. It provides a flexible way to expand capacity in op-
tical networks without requiring new cabling. Current DWDM systems usu-
ally provide 40 or 80 different wavelengths on a single optical fiber to carry
high capacity channels, e. g., 2.5, 10, or 40 Gbit/s per wavelength. Typically,
these capacities exhibit economies of scale, such that, for instance, the cost
of 10 Gbit/s is only three times the cost of 2.5 Gbit/s. Low-granularity traf-
fic given, for instance, in units of 2 Mbps, can be routed through these high-
capacity wavelength channels. Flexible optical network nodes selectively ter-
minate a wavelength or let them pass through to the next fiber, provided that
an add/drop multiplexer with sufficient switching capacity has been installed
to handle the terminating traffic. Ultra long-haul transmission permits high ca-
pacity optical channels via several fiber segments requiring transponders only
at the end of the whole path, whose cost depends on the data rate and the length
of the chosen path.

The corresponding network design problem can be summarized as follows.
Given is a set of network nodes together with potential optical fiber connections
between them. This optical network is called the physical layer. On every fiber,
a limited number of lightpath channels can be transmitted simultaneously, each
of them corresponding to a capacitated path in the physical network. The nodes
together with the lightpath connections form a so-called logical network on top
of the physical one. Setting aside some technical limitations, any path in the
physical network can be used for a lightpath, which leads to many parallel
logical links. In practice, however, the set of admissible lightpaths is often
restricted to several short paths between each node-pair. A lightpath can be
equipped with different bandwidths, and lower-rate traffic demands have to be
routed via the lightpaths without exceeding their capacities. A demand may be
1+1-protected, i. e., twice the demand value must be routed such that in case of
any single physical link or node failure, at least the demand value survives. To
terminate a lightpath, a sufficiently large electrical cross-connect (EXC) must
be installed at both end-nodes. The EXC converts the wavelength signal into
an electrical SDH signal and extracts lower-rate traffic from it. The latter is
either terminated at that node or recombined with other traffic to form new
wavelength signals which are sent out on other lightpaths. The goal of the
optimization is to minimize total installation cost.
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Like in any other publication where an integrated two-layer model is ac-
tually used for computations, we do not explicitly assign wavelengths to the
lightpaths because finding a suitable wavelength assignment is an extremely
hard problem on its own. Instead, we make sure that the maximum number of
lightpaths on each fiber is not exceeded, and propose to solve the wavelength
assignment and converter installation problem in a subsequent step, as done
successfully in [23]. It has been shown in [24] that such an approach causes at
most a marginal increase in the overall installation cost on practical instances.

The network planning task is particularly driven by two parameters: the
bound on the number of wavelengths per fiber and the transponder prices. A
shortage in wavelengths may force the network planner to employ optical chan-
nels with high data rates. To keep the total transponder cost low, a suitable set
of lightpaths has to be chosen in order to make the best possible use of these
high data rates. To draw the maximal benefit out of the optical and the aggre-
gation equipment, both layers have to be optimized together.

Already the optimal design of a single layer network is a challenging task
that has been considered by many research groups, see for instance [3, 18,
33, 34] and references therein. A branch-and-cut algorithm enhanced by user-
defined, problem-specific cutting planes has been proven to be a very success-
ful solution approach in this context. The combined optimization of two layers
significantly increases the complexity of the planning task. This is mainly due
to the combined network design problem with integer capacities on the logi-
cal layer and the fixed-charge network design problem on the physical layer,
and due to the large number of logical links with corresponding integer capac-
ity variables. In previous publications, mixed-integer programming techniques
have been used for designing a logical layer with respect to a fixed physical
layer [4, 14, 15] or for solving an integrated two-layer planning problem with
some simplifying assumptions, like no node hardware or wavelength granu-
larity demands [19, 25]. Recently, Belotti et al. [6] have used a Lagrangean
approach for a two-layer network design problem with simultaneous mean de-
mand values and non-simultaneous peak demand values. Orlowski et al. [30]
present several heuristics for a two-layer network design problem, which solve
a restricted version of the original problem as a sub-MIP within a branch-and-
cut framework. Raghavan and Stanojevic [35] consider the case where all log-
ical links are eligible and develop a branch-and-price algorithm with respect to
a fixed physical layer for the case of unprotected demands and one facility on
the logical links.

In this paper, we present a mathematical model for the described planning
problem with a predefined set of logical links and solve it using a branch-
and-cut approach with user-defined cutting planes. To our knowledge, this
is the first time that so many practically relevant side constraints are taken
into account in one integrated two-layer planning model. This includes node
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hardware, several bit-rates on the logical links, and survivability against phys-
ical node and link failures. Despite its practical importance, survivability has
not been considered in any previous integrated solution approach for two net-
work layers. This is probably due to the high complexity of the survivable
multi-layer network design problem, which is further discussed at the end of
Section 2.

On the algorithmic side, we show that a branch-and-cut approach is still
useful for an integrated planning of two network layers with all these side
constraints, provided that the MIP solver is accelerated by problem-specific
cutting plane routines. The algorithm is tested on several network instances
provided by Nokia Siemens Networks. By adding a variety of strong single-
layer cutting planes for both layers to the solver, we can significantly raise
the dual bounds on our network instances. Especially in the unprotected case,
most of the optimality gap is closed. With 1+1-protection, the problem is much
harder to solve due to the increased problem size and other effects discussed
in our computational results. However, the employed cutting planes turn out to
be useful also with protection.

The paper is structured as follows. In Section 2, we will present and discuss
our mixed-integer programming model. Section 3 describes the used cutting
planes and states some known results about their strength. We show in Sec-
tion 4 how to generate these inequalities during the branch-and-cut algorithm,
and provide computational results in Section 5. Eventually, we draw some
conclusions in Section 6.

2. Mathematical Model

We will now introduce the mixed-integer programming model on which our
cutting planes are based.

Parameters. The physical network is represented by an undirected graph
(V,E). The logical network is modeled by an undirected graph (V,L) with the
same set of nodes and a fixed set L of admissible logical links. Each logical
link represents an undirected path in the physical network. In consequence,
any two nodes i, j ∈ V may be connected by many parallel logical links cor-
responding to different physical paths, collected in the set Lij = Lji. Looped
logical links are forbidden, i. e., Lii = ∅ for all i ∈ V . Let δL(i) = ∪j∈V Lij be
the set of all logical links starting or ending at i. Eventually, Le ⊆ L denotes
the set of logical links containing edge e ∈ E, and likewise, Li ⊆ L refers to
the set of logical links containing node i ∈ V as an inner node.

We consider different types of capacities for logical links, physical links,
and nodes. Each logical link ℓ ∈ L has a set Mℓ of available capacity modules
(corresponding to different bit-rates), each of them with a cost of κm

ℓ ∈ R+

and a base capacity of Cm
ℓ ∈ Z+ that can be installed on ℓ in integer multiples.
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Similarly, every node i ∈ V has a set Mi of node modules (representing differ-
ent EXC types), at most one of which may be installed at i. Module m ∈ Mi

provides a switching capacity of Cm
i ∈ Z+ (e. g., in bits per second) at a cost

of κm
i ∈ R+. On a physical link e ∈ E, a fiber may be installed at a cost of

κe ∈ R+. Each fiber supports up to B ∈ Z+ lightpaths.
For the routing part, a set H of undirected point-to-point communication

demands is given, which may be protected or unprotected. Protected demands
are expected to survive any single physical node or link failure, whereas un-
protected demands are allowed to fail in such a case. Each demand h ∈ H
has a source node, a target node, and a demand value dh to be routed between
these two nodes. Without loss of generality, we may assume the demands
to be directed in an arbitrary way. For 1+1-protected demands, dh refers to
twice the original demand value that would have to be routed if the demand
was unprotected. By adding constraints that limit the amount of flow for a
protected commodity through a node or physical link to 1

2dh, it is guaranteed
that at least the original demand survives any single physical link or node fail-
ure. This survivability model, called diversification [2], is a slight relaxation of
1+1-protection, but its solutions can often be transformed into 1+1-solutions.

From the demands, two sets Kp and Ku of protected and unprotected com-
modities are constructed, where K := Kp ∪ Ku denotes the set of all com-
modities. With every commodity k ∈ K and every node i ∈ V , a net demand
value dk

i ∈ Z is associated such that
∑

i∈V dk
i = 0. Every protected commodity

k ∈ Kp consists of a single 1+1-protected point-to-point demand, i.e., dk
i 6= 0

only for the source and target node of the demand. In contrast, unprotected
commodities k ∈ Ku are derived by aggregating unprotected point-to-point
demands at a common source node. Summarizing, every commodity k ∈ K
has a unique source node sk ∈ V . Unprotected commodities may have several
target nodes, whereas protected commodities have a unique target tk ∈ V . The
(undirected) emanating demand of a node i ∈ V , i. e., the total demand value
starting or ending at node i, is given by di :=

∑

k∈K |dk
i |. The demand value

dk of a commodity is defined as the demand for k emanating from its source
node, i. e., dk := dk

sk > 0. Notice that for protected commodities, this value is
twice the requested bandwidth to ensure survivability.

Variables. The model comprises four classes of variables representing the
flow and different capacity types. First, for a logical link ℓ ∈ L and a module
m ∈ Mℓ, the logical link capacity variable ym

ℓ ∈ Z+ represents the number
of modules of type m installed on ℓ. For a physical link e ∈ E, the binary
physical link capacity variable ze ∈ {0, 1} indicates whether e is equipped
with a fiber or not. Similarly, for a node i ∈ V and a node module m ∈ Mi,
the binary variable xm

i ∈ {0, 1} denotes whether module m is installed at
node i or not. Eventually, the routing of the commodities is modeled by flow
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variables. In order to model diversification of protected commodities, we need
fractional flow variables fk

ℓ,ij, f
k
ℓ,ji ∈ R+ representing the flow for commodity

k ∈ K on logical link ℓ ∈ Lij directed from i to j and from j to i, respectively.
For notational convenience, fk

ℓ := fk
ℓ,ij +fk

ℓ,ji denotes the total flow for k ∈ K
on ℓ ∈ Lij in both directions.

In our model, a flow variable fk
ℓ,ij for commodity k and logical link ℓ ∈

Lij is omitted if any of the following conditions is satisfied: (i) j = sk, (ii)
k ∈ Kp and i = tk, and (iii) k ∈ Kp and ℓ contains the source or target
node of k as an inner node. The first two types of variables represent flow
into the unique source node or out of the unique target node of a protected
commodity. They are not generated in order to reduce cycle flows in the edge-
flow formulation. For aggregated unprotected commodities, we have to allow
flow from one target node to another, and thus flow out of target nodes. The
third type of variables would allow flow to be routed through an end-node u of
a protected commodity without terminating at that node, and then back to u on
another logical link. As such routings are not desired in practice, we exclude
flow variables whose logical link contains an end-node of the corresponding
commodity as an inner node. Again, in the unprotected case, such variables
have to be admitted because commodities may consist of several aggregated
demands.

Objective and Constraints. The objective and constraints of our mixed-
integer programming model read as follows:

min
∑

i∈V

∑

m∈Mi

κm
i xm

i +
∑

ℓ∈L

∑

m∈Mℓ

κm
ℓ ym

ℓ +
∑

e∈E

κeze (1)

s.t.
∑

j∈V

∑

ℓ∈Lij

(fk
ℓ,ij − fk

ℓ,ji) = dk
i

∀ i ∈ V,

∀ k ∈ K
(2)

∑

m∈Mℓ

Cm
ℓ ym

ℓ −
∑

k∈K

fk
ℓ ≥ 0 ∀ ℓ ∈ L (3)

∑

ℓ∈Li

fk
ℓ +

∑

ℓ∈δL(i)

1

2
fk

ℓ ≤
1

2
dk ∀ i ∈ V,

∀ k ∈ Kp (4)

fk
ℓ,sk,tk ≤

1

2
dk ∀ k ∈ Kp,

ℓ = e = {sk, tk}

(5)
∑

m∈Mi

xm
i ≤ 1 ∀ i ∈ V (6)
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2
∑

m∈Mi

Cm
i xm

i −
∑

ℓ∈δL(i)

∑

m∈Mℓ

Cm
ℓ ym

ℓ ≥ di ∀ i ∈ V (7)

Bze −
∑

ℓ∈Le

∑

m∈Mℓ

ym
ℓ ≥ 0 ∀ e ∈ E (8)

fk
ℓ,ij, f

k
ℓ,ji ∈ R+, ym

ℓ ∈ Z+, xm
i , ze ∈ {0, 1} (9)

The objective (1) aims at minimizing the total installation cost. The flow-
conservation (2) and capacity constraints (3) describe a multi-commodity flow
and modular capacity assignment problem on the logical layer. For protected
commodities, the flow diversification constraints (4) restrict the flow through
an intermediate node to half the demand value. In this way, the original de-
mand is guaranteed to survive single node failures as well as single physical
link failures, except for the direct physical link between source sk and target
tk. This exception is covered by the variable bound (5). In fact, to reduce cycle
flows in the LP, we set an upper bound of dk and 1

2dk on all flow variables for
unprotected and protected commodities, respectively. The generalized upper
bound constraints (6) guarantee that at most one node module is installed at
each node. The node switching capacity constraints (7) ensure that the switch-
ing capacity of the network element installed at a node is sufficient for all traffic
that can potentially be switched at that node. Since all traffic is counted twice,
it is compared to twice the installed node capacity. Eventually, the physical
link capacity constraints (8) make sure that the maximum number of modules
on a physical link is not exceeded, and set the physical link capacity variables
to 1 whenever a physical link is used.

Discussion of the model. There are three main challenges in solving this
planning task using standard MIP techniques. First, lower granularity traffic
has to be routed in integer capacity batches on the logical links, which in turn
have to be supported by the physical network. This is a capacitated network
design problem with modular integer capacities on the logical layer (see [3, 8,
27]) combined with an additional fixed-charge network design or Steiner tree
problem (see [12, 13, 16, 17, 21, 32]) on the physical layer. Both types of prob-
lems are well studied and strong valid inequalities are known, but integrated
approaches have been rarely considered. Second, the logical lightpath graph is
complete and may even contain many parallel links corresponding to different
paths on the fiber graph. This leads to a large number of integer capacity vari-
ables and an even larger number of flow variables. Even if these are fractional,
the time required for solving the LP relaxations during the branch-and-cut pro-
cess becomes a critical factor as the network size increases. Third, indirect
interdependencies, e. g., between physical fibers and the switching capacity of
a node module, are hard to detect for a black-box MIP solver.
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Several particular design choices in our model deserve a brief discussion.
First, we assume a fractional multi-commodity flow on the logical layer al-
though SDH requires an integer routing in practice. This is motivated by our
observation that in good solutions, the routing is often nearly integer even if
this is not required, and by the fact that relaxing the integrality conditions on
the flow variables significantly reduces the computation times. If an integral
routing is indispensable, it can be obtained in a postprocessing step, which usu-
ally does not deteriorate the cost of the solutions very much if properly done.
Notice that the lower bound computed for the model with fractional flow can
also be used to assess the quality of the postprocessed integral solutions.

Second, we aggregate unprotected demands by their source node. Com-
pared to using point-to-point commodities also in the unprotected case, this
standard approach (see [8], for instance) reduces the number of commodities
from O(|V |2) to O(|V |), which leads to a much smaller ILP formulation. As
every solution of the aggregated formulation can be transformed into a solution
of the model with disaggregated commodities and vice versa, the aggregation
does not affect the LP bound.

Third, we assume a predefined set of logical links for computational reasons.
The consideration of all possible physical paths as logical links in combination
with the practical side constraints and the survivability requirements would
ask for a branch-and-cut-and-price approach with a nontrivial pricing problem
already in the root node. Such an approach clearly can only be successful if
the problem with a limited set of logical links can be solved efficiently. For
a branch-and-price approach that deals with all possible logical links using a
simplified model without survivability, the interested reader is referred to [35].

3. Cutting Planes

Backed by theoretical results of polyhedral combinatorics, cutting plane
procedures have been proven to be a feasible approach to improve the perfor-
mance of mixed integer programming solvers for many single-layer network
design problems. In this section we show how an appropriate selection of these
inequalities can be adapted to our problem setting. Their separation and some
computational results are given in Sections 4 and 5, respectively.

3.1 Cutting Planes on the Logical Layer

On the logical layer, we consider cutset inequalities and flow-cutset inequal-
ities. These cutting planes have, for instance, been studied in [3, 8, 11, 26, 34]
for a variety of network settings (e. g., directed, undirected, and bidirected link
models, single or multiple capacity modules, etc.) and have been successfully
used within branch-and-cut algorithms for capacitated single-layer network de-
sign problems [7, 8, 18, 33].
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To be precise, the inequalities on the logical layer are valid for the polyhe-
dron P defined by the multi-commodity flow constraints (2) and the capacity
constraints (3). That is,

P := conv
{

(f, y) ∈ R
n1

+ × Z
n2

+ | (f, y) satisfies (2), (3)
}

,

where n1 := 2|K||L| and n2 :=
∑

ℓ∈L|Mℓ|. As P is a relaxation of the model
discussed in Section 2, the inequalities are also valid for that model.

We introduce the following notation. For any subset ∅ 6= S ⊂ V of the
nodes V , let

LS := {ℓ ∈ L | ℓ ∈ Lij, i ∈ S, j ∈ V \ S}

be the set of logical links having exactly one end-node in S. Furthermore,
define dk

S :=
∑

i∈S dk
i ≥ 0 to be the total demand value to be routed over

the cut LS for commodity k ∈ K . By reversing the direction of demands and
exchanging the corresponding flow variables, we may w. l. o. g. assume that
dk

S ≥ 0 for all k ∈ K (i. e., the commodity is directed from S to V \ S, or
the end-nodes of k are either all in S or all in V \ S). This reduction is done
implicitly in our code. More generally, let dQ

S :=
∑

k∈Q dk
S denote the total

demand value to be routed over the cut LS for all commodities k ∈ Q.

Mixed-integer rounding (MIR). In order to derive strong valid inequalities
on the logical layer we aggregate model inequalities and apply a strengthen-
ing of the resulting base inequalities that is known as mixed-integer rounding
(MIR). It exploits the integrality of the capacity variables. Further details on
mixed-integer rounding can be found in [28], for instance.

Let a, c, d ∈ R with c > 0 and d
c

/∈ Z and define a+ := max(0, a). Further-
more, let

ra,c := a − c(
⌈

a
c

⌉

− 1) > 0

be the remainder of the division of a by c if a
c

/∈ Z, and c otherwise. A function
f : R → R is called subadditive if f(a) + f(b) ≥ f(a + b) for all a, b ∈ R.
The MIR function

Fd,c : R → R : a 7→
⌈

a
c

⌉

rd,c − (rd,c − ra,c)
+

is subadditive and nondecreasing with Fd,c(0) = 0. If d/c /∈ Z then F̄d,c(a) :=

limtց0
Fd,c(at)

t
= a+ for all a ∈ R; otherwise F̄d,c(a) = a for all a ∈ R

[33]. Because of these properties, applying this function to the coefficients of
a valid inequality yields another valid inequality [29]. In particular, if a valid
inequality contains continuous flow variables and integer capacity variables
then applying Fd,c to its capacity coefficients and F̄d,c to its flow coefficients
yields a valid inequality. More details and explanations can be found in [33]



10 TELECOMMUNICATIONS MODELING, POLICY, AND TECHNOLOGY

where it is also shown that the MIR function Fd,c is integral if a, c, and d are
integral, and that |Fd,c(a)| ≤ |a| for all a ∈ R. Both properties are desirable
from a numerical point of view.

Cutset inequalities. Let LS be a cut in the logical network as defined
above. Obviously, the total capacity on the cut links LS must be sufficient to
accommodate the total demand over the cut:

∑

ℓ∈LS

∑

m∈Mℓ

Cm
ℓ ym

ℓ ≥ dK
S . (10)

Since all coefficients are nonnegative in (10) and ym
ℓ ∈ Z+, we can round down

all coefficients to the value of the right-hand side (if larger). For notational
convenience we assume from now on Cm

ℓ ≤ dK
S for all ℓ ∈ LS and m ∈

Mℓ. Mixed-integer rounding exploits the integrality of the capacity variables.
Setting c > 0 to any of the available capacities on the cut and applying the
MIR-function Fc := FdK

S
,c to the coefficients and the right-hand side of (10)

results in the cutset inequality
∑

ℓ∈LS

∑

m∈Mℓ

Fc(C
m
ℓ )ym

ℓ ≥ Fc(d
K
S ). (11)

A crucial necessary condition for (11) to define a facet for P is that the two
subgraphs defined by the network cut are connected, which is trivially fulfilled
if L contains logical links between all node pairs.

Flow-cutset inequalities. Cutset inequalities can be generalized to flow-
cutset inequalities, which have nonzero coefficients also for flow variables.
Like cutset inequalities, flow-cutset inequalities are derived by aggregating ca-
pacity and flow-conservation constraints on a logical cut LS and applying a
mixed-integer rounding function to the coefficients of the resulting inequal-
ity. However, the way of aggregating the inequalities is more general. Various
special cases of flow-cutset inequalities have been discussed in [3, 8, 11, 33,
34]. Necessary and sufficient conditions for flow-cutset inequalities to define
a facet of P can be found in [34].

Consider fixed nonempty subsets S ⊂ V of nodes and Q ⊆ K of commodi-
ties. Assume that logical link ℓ ∈ LS has end-nodes i ∈ S and j ∈ V \ S.
We will denote by fk

ℓ,− := fk
ℓ,ji inflow into S on ℓ while fk

ℓ,+ := fk
ℓ,ij refers

to outflow from S on ℓ. We now construct a base inequality to which a suit-
able mixed-integer rounding function will be applied. First, we obtain a valid
inequality from the sum of the flow conservation constraints (2) for all i ∈ S
and all commodities k ∈ Q:

∑

ℓ∈LS

∑

k∈Q

(fk
ℓ,+ − fk

ℓ,−) ≥ dQ
S
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Given a subset L1 ⊆ LS of cut links and its complement L̄1 := LS \ L1 with
respect to the cut, we can relax the above inequality by omitting the inflow
variables and by replacing the flow by the capacity on all links in L1:

∑

ℓ∈L1

∑

m∈Mℓ

Cm
ℓ ym

ℓ +
∑

ℓ∈L̄1

∑

k∈Q

fk
ℓ,+ ≥ dQ

S . (12)

Again we may assume Cm
ℓ ≤ dK

S for all ℓ ∈ L1 and m ∈ Mℓ.
Let c > 0 be the capacity of a module available on the cut and define Fc :=

F
d

Q
S

,c
and F̄c := F̄

d
Q
S

,c
. Applying these functions to the base inequality (12)

results in the flow-cutset inequality
∑

ℓ∈L1

∑

m∈Mℓ

Fc(C
m
ℓ )ym

ℓ +
∑

ℓ∈L̄1

∑

k∈Q

fk
ℓ,+ ≥ Fc(d

Q
S ). (13)

Notice that F̄c(1) = 1, so the coefficients of the flow variables remain un-
changed. This inequality can be generalized to a flow-cutset inequality also
containing inflow-variables [33]. By choosing L1 = LS and Q = K , inequal-
ity (13) reduces to the cutset inequality (11).

3.2 Cutting Planes on the Physical Layer

If the fixed-charge cost values κe are zero then the corresponding variables
ze can be assumed equal to 1 in any optimal solution. If, on the other hand,
this cost is positive, the variables will take on fractional values in linear pro-
gramming (LP) relaxations. By the demand routing requirements, we know
that certain pairs of nodes have to be connected not only on the logical layer
but also on the physical layer. Consequently, the variables ze have to satisfy
certain connectivity constraints. Note that information of the physical layer is
combined with the demands here, skipping the intermediate logical layer.

Connectivity problems have been studied on several occasions, in particular
in the context of the Steiner Tree problem and fixed-charge network design,
e. g., [10, 32]. Let S ⊂ V be a set of nodes and δ(S) the corresponding cut in
the physical network. If some demand has to cross the cut then the inequality

∑

e∈δ(S)

ze ≥ 1 (14)

ensures that at least one physical link is installed on the cut. If a protected
demand has to cross the cut, the right-hand side can even be set to 2 because
the demand must be routed on at least two physically disjoint paths.

If the demand graph (defined by the network nodes and edges corresponding
to traffic demands) has p connected components (usually p = 1) then

∑

e∈E

ze ≥ |V | − p (15)
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is valid, because the installed physical links can consist of at most p connected
components as well, each one being at least a tree. If protected demands exist
and the demand graph is connected, inequality (15) can be strengthened by
setting the right hand side to |V |. If protected demands exist for all demand
end nodes, this inequality is however dominated by the inequalities (14) for all
demand end nodes as single node subsets.

4. Separation and Implementation

We used the branch-and-cut framework SCIP 0.90 [1] with CPLEX 10.1
[20] as the underlying LP solver to tackle the multi-layer problem introduced
in Section 2. At every node of the search tree, SCIP applies various primal
heuristics to compute feasible solutions, as well as built-in and application-
specific separators to cut off fractional solutions. For the cutting planes de-
scribed in Section 3, three separation problems are addressed: Given a frac-
tional point, find a cutset inequality (11), a flow-cutset inequality (13) or one
of the fixed-charge inequalities (14) and (15) cutting off this point, or decide
that no such inequality exists. After calling all of its own and all user-defined
separators, SCIP selects the best inequalities based on criteria such as the
Euclidean distance to the current fractional point and the degree of orthogonal-
ity to the objective function. In the following we will describe the separation
algorithm that we have implemented for each of the considered inequalities.

4.1 Cutset Inequalities

As explained in Section 3.1, a cutset inequality (11) is completely deter-
mined by its base inequality (10), which in turn depends only on the choice of
the cut in the logical network. Our separation procedure works as follows:

1 Choose a subset S of nodes and compute the corresponding cut links
LS .

2 Compute the base inequality (10) corresponding to this logical cut.

3 For all different capacity coefficients c occurring in the base inequality,
compute the cutset inequality (11) using the function FdK

S
,c and check it

for violation.

In this way, the task reduces to finding a suitable cut in the logical network.
In general, it is NP-hard to find a cut where the cutset inequality is maxi-
mally violated, see [7]. We apply a heuristic shrinking procedure to the logical
network, similar to what has been done in [7, 18, 33] for single-layer prob-
lems. Define the link weights wℓ := sℓ + πℓ where sℓ and πℓ are the slack
and the dual value of the capacity constraint (3) for link ℓ with respect to the
current LP solution. We iteratively shrink links with the largest weight wℓ,
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aggregating parallel logical links if necessary, until k nodes are left. Using a
value of k between 2 and 6, we enumerate all cuts in the shrunken graph. The
definition of wℓ is based on the heuristic argument that a cutset inequality is
most likely to be violated if the slack of the base inequality is small. We thus
want to keep links in the shrunken graph that have a small slack in the capacity
constraints, i. e., we have to shrink links with a large slack sℓ. Since many
capacity constraints are usually tight in the LP solutions, many slacks are 0.
For those we use the dual values as a second sorting criterion. In addition to
the described shrinking procedure we check all cutset inequalities for violation
that correspond to single-node cuts, that is S = {i} for all i ∈ V .

4.2 Flow-cutset Inequalities

For separating a flow-cutset inequality, a suitable set S of nodes, a subset
Q of commodities, a capacity c, and a partition (L1, L̄1) of the cut links LS

have to be chosen. We apply two different separation heuristics. Both re-
strict the separation procedure to special subclasses of flow-cutset inequalities.
However, already with this restriction a large number of violated inequalities
is found.

The first heuristic considers commodity subsets Q that consist of a single
commodity k ∈ K and node-sets S consisting of one or two end-nodes of
k. After fixing S and k and choosing an available capacity c > 0 on the
cut, a partition of the cut links that maximizes the violation for flow-cutset
inequalities is obtained by setting

L1 :=







ℓ ∈ LS |
∑

m∈Mℓ

Fc(C
m
ℓ )ȳm

ℓ ≤
∑

k∈Q

f̄k
ℓ,+







, (16)

where (f̄ , ȳ) are flow and capacity values on the logical graph in the current
LP solution, see Atamtürk [3]. The calculation of L1 is done in linear time.

The second, more time-consuming heuristic finds a most violated flow-
cutset inequality for a fixed single commodity k ∈ K and a fixed capacity
c, see [3]. The crucial observation is that once k and c are fixed, the two values
compared in (16) are known, and thus the partition of the potential cut links
into L1 and L̄1. The only remaining question is which links are part of the
cut. This question can be answered in polynomial time by defining the log-
ical link weights wℓ := min{

∑

m∈Mℓ
Fc(C

m
ℓ )ȳm

ℓ , f̄k
ℓ,+} and searching for a

minimum-weighted cut between the end-nodes of the commodity with respect
to these weights (introducing artificial super-source and super-target nodes if
necessary).
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Table 1.1. Network instances used for testing cutting planes

instance |V | |E| |L| |H | |Mi| C1

ℓ , C2

ℓ , C3

ℓ physical cost?

Germany17 17 26 674 121 16 1, 4, 16 no
Germany17-fc 17 26 564 121 16 1, 4, 16 yes
Ring15 15 16 184 78 5 16, 64, 256 no
Ring7 7 8 32 10 5 16, 64, 256 no

4.3 Physical Layer Cutset Inequalities

The single tree inequality (15) can simply be added to the initial MIP formu-
lation. The number of components of the demand graph is determined using
depth-first search.

The physical cutset inequalities (14) can be separated using a min-cut al-
gorithm. The weight of a physical link e is set to its capacity value z̄e in the
current LP solution, which is exactly its contribution to the left-hand side of
the inequality if the link is part of the cut. Then a minimum cut with respect
to these weights is searched between every pair of nodes, and the correspond-
ing cutset inequality is tested for violation. Assuming all demands are either
protected or unprotected, the right-hand side of the inequality does not depend
on the cut, and thus this procedure is exact, i. e., a violated inequality exists if
and only if this algorithm finds it. In addition, we test all cuts defined by single
nodes i ∈ V in each iteration, as these cuts turned out to be quite important.

5. Computational Results

5.1 Test Instances and Settings

For our computational experiments we used the network instances summa-
rized in Table 1.1. In addition to the number of nodes, physical, and logical
links, the number |H| of communication demands is given from which the
commodities were constructed (|K| = |V | − 1 if all demands are unprotected
and |K| = |H| if all demands are protected). Further we report the number
|Mi| of node modules installable at each node and the size of the installable
logical link modules. Eventually, Table 1.1 indicates whether the instance has
physical link cost or not. The first three instances are realistic scenarios pro-
vided by Nokia Siemens Networks, whereas the small ring network Ring7 has
been constructed out of the larger instance Ring15 in order to study the effect
of the cutting planes on the number of branch-and-cut nodes needed to prove
optimality.

Germany17 and Germany17-fc are based on a physical 17-node German
network available at SNDlib [31]. In both networks, the set of admissible



Single-layer Cuts for Multi-layer Network Design Problems 15

 61000

 62000

 63000

 64000

 65000

 66000

 67000

 68000

 69000

 0  50  100  150  200  250  300  350

du
al

 b
ou

nd

time (seconds)

best known solution
no cutting planes
all cutting planes

flow cutset inequalities only
cutset inequalities only

(a) Germany17

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 105000

 110000

 0  50  100  150  200  250  300  350

du
al

 b
ou

nd

time (seconds)

best known solution
no cutting planes
all cutting planes

flow cutset inequalities only
cutset inequalities only

fixed-charge inequalities only

(b) Germany17-fc

 60400

 60600

 60800

 61000

 61200

 61400

 61600

 0  5  10  15  20  25

du
al

 b
ou

nd

time (seconds)

best known solution
no cutting planes
all cutting planes

flow cutset inequalities only
cutset inequalities only

(c) Ring15

 41700

 41800

 41900

 42000

 42100

 42200

 42300

 0  0.5  1  1.5  2

du
al

 b
ou

nd

time (seconds)

best known solution
no cutting planes
all cutting planes

flow cutset inequalities only
cutset inequalities only

(d) Ring7

Figure 1.1. Unprotected demands: dual bound at the root node

logical links consists of 3–5 short paths in the physical network between each
pair of nodes. Ring15 consists of a physical ring with a chord, representing a
regional subnetwork connected to a larger national network. The set of logical
links consists basically of the two possible logical links for each node pair,
one in each physical direction of the ring. Ring7 has been constructed from
Ring15 by successively removing nodes with the smallest emanating demand
value. Because in our ring instances, every node is a demand end-node and
the demand graph is connected, nearly all physical links have to be used in
any feasible solution. We thus do not consider ring variants with physical link
cost because doing so would basically add a constant to the objective function.
In all networks, up to three capacity modules corresponding to 2.5, 10, and
40 Gbit/s can be installed on each logical link, depending on its physical path
length.

All computations were done on a Linux-operated machine with a 2×3 GHz
Intel P4 processor and 2 GB of memory. In a first series of test runs, we
assumed unprotected demands with physical fibers supporting B = 40 wave-
lengths. In a second series, we made all demands 1+1-protected, assuming
B = 80 wavelengths in order to allow for feasible solutions with the doubled
demand values. We have used extended versions of the MIP-based heuristics
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Table 1.2. Number of violated cutset inequalities (11), flow-cutset inequalities (13), and fixed-
charge inequalities (14) found in the root node of branch-and-bound tree without separating
SCIP’s Gomory and c-mir cuts

# cuts unprotected # cuts protected
instance cutset flow-cutset fixed-charge cutset flow-cutset fixed-charge

Germany17 37 1521 - 4 940 -
Germany17-fc 34 1046 35 7 844 20
Ring15 66 652 - 26 489 -
Ring7 41 98 - 15 24 -

from [30] in all tests.To reduce the complexity of the problem, we also applied
preprocessing and probing techniques, as described in [22].

5.2 Unprotected Demands

As cutting planes are primarily thought to increase the lower bound of the
LP-relaxation, we first consider the effect of the different types of cutting
planes on the lower bound at the branch-and-bound root node. We separated
each of the classes cutset inequalities, flow-cutset inequalities and fixed-charge
inequalities on its own as well as all together. Figure 1.1 shows the improve-
ment over time of the lower bound in the root node of the search tree for all
test instances. The solid red line at the top marks the value of the best known
solution, which cannot be exceeded by the dual bound curves. The line “no
cutting planes” refers to the dual bound with SCIP’s built-in general-purpose
cuts only.

It can be seen that in the two Germany17 instances and on the small ring net-
work, our cutting planes reduce the gap between the lower bound and the best
known solution at the root node by 50–75%. In all three problem instances,
flow-cutset inequalities performed better than cutset inequalities, which is in
contrast to the results presented by Raack et al. [33] for a single-layer problem.
There might be several reasons for this effect. A good candidate is the struc-
tural difference between single-layer networks and the logical layer in multi-
layer problems: the logical layer graph (V,L) contains edges between almost
all node pairs, whereas only a few links cross a cut in single layer graphs. Fur-
ther, we have implemented our cutting planes as callbacks in SCIP, whereas in
[33], CPLEX was used as the underlying branch-and-cut framework, which
means that different general-purpose cutting planes have been used.

For the problem Germany17-fc with physical cost, most of the optimality
gap comes from the ze variables whose values are highly fractional and close
to zero in the solution of the LP-relaxation. A major part of this gap is closed
by the fixed-charge inequalities that operate on the physical layer. Of course,
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Figure 1.2. Unprotected demands: dual bound during 3h test runs

the contribution of these inequalities changes with the ratio of the cost of the
physical fiber links on the one hand and the logical wavelength links and the
node hardware on the other hand.

In contrast to these three instances, the problem-specific cutting planes have
only a marginal effect on the dual bound for Ring15 compared to SCIP’s
built-in general-purpose cuts. This is probably due to the fact that already in
SCIP’s default settings, the dual bound at the end of the root node is within
0.4 % of the optimal solution value, so there is not much room for improvement
at all. We also observed that on this instance, our cuts seem to interfere with
the c-mir and Gomory cuts separated by SCIP. Both classes are based on a
mixed-integer rounding procedure similar to the one described in Section 3.
With these two classes of cuts disabled in SCIP, our inequalities could reduce
the relative distance between the root dual bound and the best known solution
from 3.8 % to 0.4 %, thus achieving the same dual bound as SCIP’s cutting
planes. The number of violated cutting planes found in this setting is reported
in Table 1.2 for all instances.

In a second study, we have investigated the lasting effect of the cutting
planes on the dual bound in longer computations. Figure 1.2 shows the devel-
opment of the dual bound with and without all cutting planes from Section 3
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during a computation with a time limit of 3 hours for all four test instances,
compared to the best known solution. Similarly to most of SCIP’s own cut-
ting planes, we separated our inequalities only at the root node of the branch-
and-cut tree.

By applying all separators we could solve the problem Ring7 to optimality
within 10 minutes, whereas without our cutting planes the computation was
aborted after nearly one hour with a nonzero optimality gap due to the memory
limit of 2 GB. The size of search tree was 1.2 million unexplored nodes at
this point (and 4 million explored nodes). Figure 1.4 shows the relative gap
between the dual bound and the best known solution (defined as (bestsol −
dual)/dual), which overestimates the relative distance of the dual bound to the
optimal solution value. As the figure shows, this gap could be reduced by factor
10 on Germany17 and by factor 2 on Germany17-fc by raising the lower bound
only. It can be seen from Figures 1.2 and 1.4 that the dual bounds obtained with
our cutting planes are very close to their maximum possible value. In fact, as
also the upper bound improved in both cases, the relative gap between the dual
bound and the best solution found in that specific run (as opposed to the best
solution known at all) could be improved from 4 % to 0.36 % and from 12.4 %
to 3.1 %, respectively. For Ring15 the improvement of the dual bound by the
cutting planes was much smaller than for the other instances, probably for the
reasons discussed above.

5.3 Protected Demands

In the case of protected demands, we first of all would like to point out
that the problem size drastically increases compared to the unprotected case.
Instead of |V |−1 commodities, |H| commodities have to be routed, increasing
the number of variables and constraints considerably. Consequently, solving
the initial LP relaxation, as well as reoptimizing the LP after adding a cutting
plane or a branching constraint, takes more time with protection than without.

With 1+1 protected demands, the cutting planes have only a marginal ef-
fect of the dual bound. Figure 1.3 shows the increase of the dual bound in a
three hour test run with and without cutting planes (again, the solid red line
at the top indicates the best known solution value). It can be seen that the
dual bound always increases, but only by a very limited amount. Figure 1.4
shows the corresponding change in the relative gap between the dual bound
after three hours and the best known solution. More detailed investigations
revealed that the small progress is mainly due to the strength of the general-
purpose c-mir and Gomory cuts generated by SCIP. Experiments where these
cuts were turned off showed that our inequalities still contribute significantly
to closing the optimality gap at the root node. Table 1.2 shows the number of
violated inequalities found at the root node in this setting. Only slightly lower
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Figure 1.3. Protected demands: lower bound in 3h test runs

Figure 1.4. Relative gap (in %) between best dual bound after 3h and best known solution
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numbers of violated inequalities are found with c-mir and Gomory cuts turned
on, but their impact on the dual bound is limited in such a case, cf. Figure 1.3.

The strength of the general-purpose cuts originates from the potential to in-
clude all inequalities from the original formulation, as well as cutting planes
added later in the solution process. In contrast, our cutting planes only take
capacity and flow conservation constraints into account. The inclusion of sur-
vivability requirements into the generation of cutset and flow-cutset inequali-
ties might accelerate the increase of the lower bound compared to SCIP. For
this, the polyhedral studies of Bienstock and Muratore [9] and of Balakrishnan
et al. [5] for single layer survivability network design could be a good starting
point. We suspect that cuts that make use of such problem-specific information
will outperform the general-purpose cuts of SCIP, as in the unprotected case.

Nevertheless, the cutset inequalities and flow-cutset inequalities seem to
have a lasting effect on the performance of the branch-and-bound algorithm as
can be shown for the small ring network Ring7. This instance could be solved
to optimality in both cases. But as Figure 1.5 shows, the maximum number of
unexplored nodes in the search tree was roughly halved by our cutting planes,
even though they were added only in the root node. Moreover, optimality was
proven about 13 % faster (cf. Figure 1.3(d)) and with 16 % less nodes.

6. Conclusions

In this work, we have presented a mixed-integer programming model for
a two-layer SDH/WDM network design scenario. The model includes many
practically relevant side constraints like many parallel logical links, various
bit-rates, node capacities, and survivability with respect to physical node and
link failures. To accelerate the solution process for this planning task, we have
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applied a variety of network design specific cutting planes that are known to
be strong in single-layer network design to either of the two layers, namely
cutset inequalities and flow-cutset inequalities on the logical layer and fixed-
charge inequalities on the physical one. These cutting planes have been used
as callbacks within the branch-and-cut framework SCIP and tested on several
realistic planning scenarios provided by Nokia Siemens Networks.

With unprotected demands, our cutting planes significantly raised the lower
bounds until close to the optimal solution value. With 1+1 protection against
physical failures, they also helped to improve the dual bounds, but less than in
the unprotected case. This is partly due to the fact that with protection, many
of our cutting planes were already found by SCIP alone, and partly due to
the impact of the survivability constraints on the structure of the polyhedron.
We expect that adapting previous results for survivable single-layer network
design to the multi-layer setting could further raise the lower bound in these
cases. Moreover, new classes of specific multi-layer cuts have to be found for
multi-layer problems with protected demands.
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