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Foreword

This present volume is the Proceedings of the 18th International Con-
ference on Nearrings and Nearfields held in Hamburg at the Universität
der Bundeswehr Hamburg from July 27 to August 03, 2003. This Confer-
ence was organized by Momme Johs Thomsen and Gerhard Saad from
the Universität der Bundeswehr Hamburg and by Alexander Kreuzer,
Hubert Kiechle and Wen-Ling Huang from the Universität Hamburg.¨

It was already the second Conference on Nearrings and Nearfields in
Hamburg after the Conference on Nearrings and Nearfields at the same
venue from July 30 to August 06, 1995.

The Conference was attended by 57 mathematicians and many accom-
panying persons who represented 16 countries from all five continents.

The first of these conferences took place 35 years earlier in 1968 at
the Mathematische Forschungsinstitut Oberwolfach in the Black Forest
in Germany. This was also the site of the second, third, fifth and eleventh
conference in 1972, 1976, 1980 and 1989. The other twelve conferences
held before the second Hamburg Conference took place in nine different
countries. For details about this and, moreover, for a general histori-
cal overview of the development of the subject we refer to the article
”On the beginnings and developments of near-ring theory” by Gerhard
Betsch [3] in the proceedings of the 13th Conference in Fredericton, New
Brunswick, Canada.

During the last fifty years the theory of nearrings and related algebraic
structures like nearfields, nearmodules, nearalgebras and seminearrings
has developed into an extensive branch of algebra with its own features.
In its position between group theory and ring theory, this relatively
young branch of algebra has not only a close relationship to these two
more well-known areas of algebra, but it also has, just as these two
theories, very intensive connections to many further branches of mathe-
matics.

Thanks to the foresight of the early workers in the field, a comprehen-
sive classified bibliography was established and is updated regularly in
the Nearring Newsletter. The latest version [9] appeared at the end of
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2003. It listed 2485 publications contributed by a total of 708 authors.
Within this large number of papers is reflected the great diversity of the
subject.

That the development of nearrings and nearfields has matured to a
substantial theory with numerous applications can now be best retraced
by studying the five existing books on the subject. They are written
by the authors G. Pilz [11], J.D.P. Meldrum [10], H. Wähling [15], J.R.
Clay [4], C. Cotti Ferrero and G. Ferrero [6].

This present volume is the ninth proceedings of a nearring confer-
ence following the proceedings [13], [5], [1], [2], [12], [7], [14] and [8].
It contains the written version of five invited lectures followed by 13
contributed papers. All papers in the volume have been refereed.

This Proceedings opens with the invited paper by Wen-Fong Ke which
reports on some recent developments of planar nearrings and points out
several possible research directions in this area for the future.

The second paper is an expanded version of the invited survey talk by
Carl J. Maxson on nearrings of mappings which mentions several open
questions in this field of research. This paper is a continuation of the
invited survey paper by the same author on nearrings of homogeneous
functions in the Proceedings of the first Hamburg Conference of 1995.

Next we have the invited paper by John D.P. Meldrum which presents
an account of some of the work on group nearrings, emphasizing the
parallels with matrix nearrings and the most recent developments.

The invited paper of Silvia Pianta on loop-nearrings considers a gen-
eralization of the notion of nearring by relaxing the associativity of the
addition. Then for these loop-nearrings several generalizations of pla-
narity and corresponding Ferrero pairs are investigated.

Just as eight years before, Stuart R. Scott brought to Hamburg from
the opposite side of our planet the by far longest paper of this Proceeding
“The Z-Constrained Conjecture”. For an overview of this substantial
work, we refer to its first twelve pages.

The topics of the 13 contributed papers are so diverse that, for an
overview, we refer to the Table of Contents and the abtracts or intro-
ductions at the beginning of each paper.
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INVITED ADDRESSES



ON RECENT DEVELOPMENTS OF
PLANAR NEARRINGS

Wen-Fong Ke∗
Department of Mathematics
National Cheng Kung University
Tainan 701, Taiwan
wfke@mail.ncku.edu.tw

1. Introduction
Since the first appearance of planar nearrings in 1968, there has been

plenty of research results attributed to the understanding and applica-
tions of them. However, it appears to us that, at this stage, we have just
begun to unearth this beautiful mathematical object.

In February 2002, a two year international joint project on research of
planar nearrings was established between the research group in Kepler
University, Linz and that in National Cheng Kung University, Tainan.
This project was supported by the Austrian Science Foundation (FWF)
and the National Science Council, R.O.C. (NSC), and has been proven
fruitful.

The goal of this survey article is to report some recent developments
of planar nearrings, and point out some possible research directions for
future researches. Some of the directions have been under investigations
by the Linz-Tainan cooperation. The materials presented in this article
are organized based on the one-hour-talk the author gave at the Inter-
national Conference on Nearrings and Nearfields, Universität der Bun-¨
deswehr Hamburg and Universität Hamburg, 27 July–3 August 2003.
We would also like to point out that there is a whole chapter in Clay’s
book Nearrings: Genesis and Applications (reference item [10]) devoted
to this subject that one would like to go through and refer back from
time to time.

∗Supported by the National Science Council, Taiwan under the project NSC-92-2115-M-006-
001.

3

H. Kiechle et al. (eds.), Nearrings and Nearfields, 3–23.
©c 2005 Springer. Printed in the Neatherlands.
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2. Definitions and examples
Let (N, +, ·) be a (left) nearring. An equivalence relation ≡m can be

defined on N by

a ≡m b ⇔ ax = bx for all x ∈ N.

We say that (N, +, ·) is planar if |N/≡m| ≥ 3, and for each triple a, b, c ∈
N with a �≡m b, the equation ax = bx + c has a unique solution for x in
N . It is custom to denote by N∗ the set of elements not multiplicative
equivalent to 0, i.e. N∗ = {x ∈ N | x �≡m 0}. On the other hand, the set
of “zero-multipliers” is denoted by A, i.e. A = {x ∈ N | x ≡m 0}.

Certainly all fields are planar nearrings. It is also true that all finite
nearfields are planar nearrings (cf. [10, Theorem 4.26]). The first three
nontrivial examples of planar nearrings were given in [1] which we record
again in the following.

Consider the field of complex numbers C. For a, b ∈ C, where a =
a1 + ia2 with a1, a2 ∈ R and i2 = −1, define

a ∗1 b =

{
a1 · b if a1 �= 0,��
a2 · b if a1 = 0;

a ∗2 b = |a| · b;

a ∗3 b =

⎧⎨⎧⎧⎩⎨⎨
a

|a| · b if a �=�� 0,

0 if a = 0.

Then (C, +, ∗1), (C, +, ∗2), and (C, +, ∗3) are planar nearrings which
are not rings. These three examples have served as models for many
researches on planar nearrings since.

It is natural at this point to ask for more examples of planar nearrings.
Indeed, one can construct planar nearrings (somewhat) freely when the
relationship between planar nearrings and Ferrero pairs is studied.

3. Planar nearrings and Ferrero pairs
It was shown by G. Ferrero in 1970 [13] that every planar nearring N

gives rise to a group of automorphisms Φ of the additive group (N, +)
having specific properties (to be discussed below). On the other hand,
if an additive group (G, +) is given together with a group of automor-
phisms of G satisfying the specific properties, then G can be turned into
a planar nearring through a fixed process.
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3.1 From planar nearrings to Ferrero pairs
Let N be a planar nearring. For a ∈ N∗, define ϕa : N → N ; x �→ ax

for all x ∈ N . Then

ϕa ∈ Aut (N, +), and ϕa �= 1 if and only if�� a �≡m 1;

ϕa(x) = x if and only if ϕa = 1 or x = 0;

−1 + ϕa is surjective if ϕa �= 1.��
Thus, Φ = {ϕa | a ∈ N , a �≡m 0} is a regular group of automorphisms of
(N, +) with the property that −1 + ϕa is surjective if ϕa �= 1. We call��
(N, Φ) a Ferrero pair.

In general, if Φ is a group acting on another group N as an automor-
phism group, and for ϕ ∈ Φ \ {1}, −1 + ϕ is bijective, then (N, Φ) is
called a Ferrero pair.

3.2 From Ferrero pairs to planar nearrings
Given a Ferrero pair (N, Φ), where N is an additive group. Let C be

a complete set of orbit representatives of Φ in N . Let E ⊆ C such that
0 �∈ E and |E| ≥ 2. Then

N =
(
∪e∈E Φ(e)

)⋃(
∪e′∈C\E Φ(e′)

)
,

here for an a ∈ N , Φ(a) = {φ(a) | φ ∈ Φ} is the orbit of Φ in N
determined by a. Now, define a binary operation ∗E on N by

ϕ(e) ∗E y =

{
ϕ(y) e ∈ E, ϕ ∈ Φ, y ∈ N ,
0 otherwise.

Then (N, +, ∗E) is a planar nearring. Notice that

(1) the elements in E are exactly the left identities of N , and

(2) N is an integral planar nearring if and only if E = C \ {0}.
Remark 3.1. (1) Since Φ is a regular group of automorphisms of N ,

Φ(a) and Φ have the same cardinality for all nonzero a ∈ N .

(2) The set E given above is exactly the set of left identities of the
planar nearring (N, +, ∗E).

(3) For each e ∈ E, NeNN = Φ(e) is a subgroup of the multiplica-
tive semigroup (N, ∗E) have e as the identity element. Actually,
(NeNN , ∗E) is isomorphic to Φ. (Cf. [10, (4.9)].)

Thus, once we have a Ferrero pair, we can easily obtain many planar
nearrings.
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3.3 Some examples
First, let us look at the three planar nearrings (C, +, ∗i), i = 1, 2, 3.

Here we find that

(1) the corresponding Ferrero pair of (C, +, ∗1) is (C, R̂∗), where R̂∗
is the group {ϕr | r ∈ R \ {0}};

(2) the corresponding Ferrero pair of (C, +, ∗2) is (C, R̂+), where R̂+

is the group {ϕr | r > 0}; and

(3) the corresponding Ferrero pair of (C, +, ∗3) is (C, Ĉ), where Ĉ is
the group {ϕc | |c| = 1}.

From the above examples, one immediately obtain the following gen-
eralization. Let F be a field. Take U ≤ F ∗ = F \ {0} and put
Û = {ϕa | a ∈ U} ≤ Aut (F, +) where each ϕa : F → F is the left
multiplication by a. Then (F, Û) is a Ferrero pair. Any planar nearring
constructed from (F, Û) is referred to as field generated.

Yet, one can generalize this ideal to certain rings. So, if R is a ring
with unity, and let U be the group of (multiplicative) invertible elements.
If A is a subgroup of U with |A| ≥ 2 and −1 + a ∈ U for all a ∈ A \ {1},
then the group Â = {ϕa | a ∈ A}, where each ϕa : R → R is the
left multiplication by a, is a regular group of automorphisms of (R, +).
Moreover, (R, Â) is a Ferrero pair. Any planar nearring defined using
(R, Â) will be said to be ring generated.

4. Isomorphism problem
For a given Ferrero pair (N, Φ), there are many ways to choose the

set E of orbit representatives of Φ. Each choice of E give rise to a
planar nearring. Naturally, one wonders that whether all of these planar
nearrings are isomorphic or not? The answer is “no” even if the planar
nearrings are integral. Then, the second question would be that “is there
a way to distinguish the planar nearrings constructed from (N, Φ)?” The
answer to this question is “yes!”

Theorem 4.1 ([4]). Let (M, Ψ) and (N, Φ) be Ferrero pairs and let
E1 and E2 be sets of orbit representatives of Ψ and Φ in M and N ,
respectively, with |E1| ≥ 2. Let (M, +, ·) and (N, +, �) be the planar
nearrings defined on M and N using E1 and E2, respectively. Then an
additive isomorphism σ from (M, +) to (N, +) is an isomorphism of the
planar nearrings (M, +, ·) and (N, +, �) if and only if σ(E1) = E2 and
σΨσ−1 = Φ.
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In particular, if (M, Ψ) = (N, Φ), then σ ∈ Aut (N, +) is an isomor-
phism of (N, +, ∗E1) and (N, +, ∗E2) if and only if σ(E1) = E2 and σ
normalizes Φ.

As an illustration, we consider the Ferrero pair (C, Ĉ) of the planar
nearring (C, +, ∗3). Let E1 and E2 be two complete sets of orbit repre-
sentatives of Ĉ in C \ {0}. Let σ ∈ Aut (C, +). If σ is an isomorphism
of the two planar nearrings, then σ(C) = C. It can be shown that, in
this case, σ is either a rotation of the complex plane about the origin
or the reflection of the complex plane about a line through the origin.
Therefore, (C, +, ∗E1) and (C, +, ∗E2) are isomorphic as integral planar
nearrings if and only if E2 = eiθE1 or E2 = eiθE1 for some θ ∈ R, where
E1 denotes the complex conjugate of E1.
Remark 4.2. Theorem 4.1 is valid for a more general class of nearring
constructions called Ferrero nearrings. To describe what a Ferrero near-
ring is, we start with a group G and Φ ≤ AutG. Let A be a complete
set of orbit representatives of Φ in G. Suppose that E ⊆ A. If E = ∅,
then we have trivial multiplication on G. If E �=�� ∅, we want E to satisfy

ϕ(e) �=�� e for all ϕ ∈ Φ \ {1} and e ∈ E.

Put A◦ = A \ E and G◦ = Φ(A◦). For x, y ∈ G, define

x ∗ y =

{
0 if x ∈ G◦,
ϕ(y) if x = ϕ(e) ∈ Φ(E).

Then (G, +, ∗) is called a Ferrero nearring. Note that (G, +, ∗) is a
planar nearring if and only if (G, Φ) is a Ferrero pair.
Problem 4.3. Study the structure of the planar nearrings constructed
from the Ferrero pair (C, Ĉ).
Problem 4.4. Note that if E is a complete set of orbit representatives of
Ĉ in C\{0}, then the planar nearring (C, +, ∗E) is a topological nearring
if and only if E is the graph of a continuous curve in C. Is there a way
to characterize them?

5. Characterizations of Planar Nearrings
There have been some results on the characterizations of planar near-

rings other than the Ferrero pair construction.

Theorem 5.1 ([3]). Let N be a zero-symmetric 3-prime nearring. Let L
be an N -subgroup of N . Then there is an e = e2 ∈ N such that L = eN .
Let Φ = eNe \ {0}, then (L,Φ) is a Ferrero pair, and L is a planar
nearring.



8 Wen-Fong Ke

Theorem 5.2 ([27]). Let N be a nearring. Then the following are equiv-
alent:

(1) N is planar.

(2) There exists a zero-symmetric nearring M and a left invariant sub-
nearring P of M such that M acts 2-primitively on P via nearring
multiplication, (P, Aut M (P )) is a Ferrero pair, and N ∼= P .

In [28] it is shown that a planar nearring is a centralizer nearring in
the usual sense, but multiplication is not the usual function composition
but rather composition of functions with a suitable sandwich function
in between.

6. Algebraic structure of planar nearrings
The structure of radicals of planar nearrings was completely deter-

mined in [14], also lots of facts about ideals in planar nearrings can be
found there. For example,

Theorem 6.1 ([14, Teorema 1]). Let N be a planar nearring. Then
there exists a greatest proper ideal D, which is the sum of all proper left
ideals.

Using this result, Wendt determines the ideal structure of planar near-
rings completely.

Theorem 6.2 ([29]). Let N be a planar nearring and D its greatest
proper ideal. Then the proper left ideals of N are precisely the additive
normal subgroups of N contained in D.

Denote by P (N) and N(N), respectively, the prime and the nil radi-
cals of a nearring N . Also, let J1JJ (N) and J2JJ (N), respectively, be the J1JJ
and J2JJ radicals of N .

Theorem 6.3 ([14]). Let N be a planar nearring. Then P (N) =
N(N) = J1JJ (N) = D, D the greatest ideal properly contained in N . In
case that J2JJ (N) �=�� N , we have that P (N) = N(N) = J1JJ (N) = J2JJ (N).

Planar nearrings are very often 2-primitive (without identity).

Theorem 6.4 ([29] and also [14]). A planar nearring N is 2-primitive
if and only if A does not contain nontrivial subgroups of N .

It is shown in [15] that the (nontrivial) homomorphic images of a
finite planar nearring N is again planar. Also, if a planar nearring has
a distributive element, it has a very special structure.

Theorem 6.5 ([29]). If a planar nearring N has a distributive element
d �≡m 0, then A is an ideal of N and N/A is a nearfield.
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7. Combinatorial designs from planar nearrings
Finite planar nearrings have a natural connection with combinato-

rial objects called tactical configurations. The three planar nearrings
(C,+, ∗i), i = 1, 2, 3, provide raw models for such connection. One
particular group of tactical configurations receives most attentions from
researchers because they are both structural for studies and practical
for real life applications. These tactical configurations are referred to as
BIBDs in short.

Definition 7.1. A finite set X with v elements together with a family S
of k-subsets of X is called a balanced incomplete block design (BIBD) if

(i) each element belongs to exactly r subsets, and

(ii) each pair of distinct elements belongs to exactly λ subsets.

The k-subsets in S are called blocks, and the integers v, b = |S|, r, k, λ
are referred to as the parameters of the BIBD.

7.1 B, B− and B∗

Let (N, +, ·) be a finite planar nearring with corresponding Ferrero
pair (N, Φ). Denote Φ0 = Φ ∪ {0} and Φ− = Φ ∪ (−Φ) ∪ {0}. Let

B = {N · a + b | a, b ∈ N, a �= 0�� } = {Φ0(a) + b | a, b ∈ N, a �= 0�� },
B− = {(N · a + b) ∪ (N · (−a)) + b | a, b ∈ N, a �= 0�� }

= {Φ−(a) + b | a, b ∈ N, a �= 0�� },
B∗ = {N∗ · a + b | a, b ∈ N, a �= 0�� } = {Φ(a) + b | a, b ∈ N, a �= 0�� }.

We usually denote the set B∗ as BΦ to emphasize the role of Φ.
Remark 7.2. These sets get their grounds from the geometrical con-
siderations of the three examples (C, +, ∗i), i = 1, 2, 3: B and B− are
the set of straight lines of the complex plane obtained in (C, +, ∗1) and
(C,+, ∗2), respectively, while B∗ is the set of circles of the complex plane
obtained in (C, +, ∗3).

Now, it is known that (N,B) and (N,B−) are sometimes BIBDs, and
(N,B∗) is always a BIBD (cf. [9, Theorems 5.5, 7.14, and 7.99]).

Since (N,BΦ) is always a BIBD, it seems natural to investigate the
automorphism group of it. Obviously, every normalizer of Φ in the group
Aut (N, +) serves as an automorphism of the design. It is conjectured
that the converse is also true.
Conjecture 7.3 (Modisett). The automorphism group of (N,BΦ) is N �
NAutN (N,+)(Φ), where NAutN (N,+)(Φ) is the normalizer of Φ in Aut (N, +).
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Since N has an additive group structure and BΦ is obtained from
additive translations, it is natural to consider (N, +,BΦ) as a design
group. Namely, N has a group structure, and each of the translations
ρa : N → N ; x → x + a, a ∈ N , is an automorphisms of the design. In
this case, a mapping N → N is called an automorphism of the design
group if it is at the same time an automorphism of the group as well
as of the design. With this condition added for abelian N and Φ, or in
case that either N or Φ is not abelian, N is large enough, we see that
Modisett’s conjecture has affirmative answer.

Theorem 7.4 ([17]). Let (N, Φ) be a finite Ferrero pair such that N and
Φ are abelian with |Φ| < |N |−1. Then Aut (N, +,BΦ) is the normalizer
of Φ in Aut (N, +).

Theorem 7.5 ([6]). Let (M, Ψ) and (N, Φ) be finite Ferrero pair and let
σ be an isomorphism from (M,BΨ, +) to (N,BΦ, +). Let |Φ| = k and
set s = 2k2− 6k +7. If |N/[N, N ]| > s, then σΨσ−1 = Φ. In particular,
if (M, Ψ) = (N, Φ), then σ is a normalizer of Φ.

The requirement that N is large enough in case when Φ is not abelian
is necessary as the next example shows (cf. [6]).

Example 7.6. Let F = GF(73) and κ : F → Aut (F ) a coupling on F
such that F κ := (F, +, ◦) is a proper nearfield with a ◦ b := a · κa(b).
Let Φ ≤ F ∗ of index 2. Since Φ is characteristic, Φκ := (Φ, ◦) is a
subgroup of (F κ)∗. Then Φκ is nonabelian, and so Φ and Φκ are not
isomorphic; therefore Φ and Φκ cannot be conjugate to each other. But
(F,BΦ) = (F,BΦκ).

7.2 Segments
The planar nearring (C, +, ∗2) inspires yet another possible construc-

tion of interesting geometric objects: the segments. For those who won-
der how the segments can be interesting, the paper of Clay [11] offers a
surprising construction of “triangles” with measurement of “angles” of
the triangles within fields, and an analog result of the classical Euclidean
geometry that the sum of the three angles of a triangle is π.

Let (N, Φ) be a Ferrero pair. For distinct a, b ∈ N , define

a, b =
(
Φ0(b− a) + a

)
∩
(
Φ0(a− b) + b

)
,

and call it a segment with endpoints a and b. Let

S = {a, b | a, b ∈ N, a �=�� b}.
Note that if one puts S = Φ0 ∩ (1 − Φ0), then 1 − S = S and a, b =

(b− a)S + a.
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Theorem 7.7 ([25]). If N is a nearfield or a ring, then a, b = c, d if
and only if (a, b) = (c, d).

The use of the set S in a finite field generated Ferrero pair suggests
us to look at a more general construction from finite fields. Let F be a
finite field and S a subset of F with |S| ≥ 2. Consider

S = {Sa + b | a, b ∈ F, a �= 0�� }.
Then (F,S) is always a BIBD. When |S| = 3, we are able to compute
that full automorphism group of the design without the assumption of
the design group structure. Our data also suggests that even for larger
S, the full automorphism group of (F,S) should obey this theorem.

Theorem 7.8 ([7]). If |S| = 3, then the (F,S) is a 2-(q, 3, λ) design
with λ ∈ {1, 2, 3, 6}. Let U =

{
r | {0, 1, r} ∈ S

}
, and let K = 〈U,+, ·〉 be

the subfield of F generated by U . Then under some mild condition, we
have that f ∈ Aut (F,S) if and only if f(x) = T (α(x)) + b (x ∈ F ) for
some b ∈ F , α ∈ Aut K(F ), and T ∈ L(F, K) (= linear transformations
of the vector space F over K).

The last along this line of applications of planar nearrings and Ferrero
pairs is to construct partial balanced incomplete block designs, PBIBD
in short. We record the definition of a PBIBD from Clay’s book [10,
Defition 7.107].

Definition 7.9. Start with a finite tactical configuration (N,T,∈) and
let P = {A | A ⊆ N, |A| = 2}. Suppose A = {A1, A2, . . . , Am} is a
partition of P. Then A is an association scheme on N if, given {x, y} ∈
Ah, the number of z ∈ N such that {x, z} ∈ Ai and {y, z} ∈ Aj depends
only upon h, i, and j, and not upon x and/or y. That is, there is a
number ph

ij such that for {x, y} ∈ Ah, there are exactly ph
ij distinct

elements z ∈ N such that {x, z} ∈ Ai and {y, z} ∈ Aj . Association
schemes with m = 1 or m = v(v − 1)/2, where v = |N |, are declared
‘uninteresting’.

Suppose (N,T,∈,A) is a finite tactical configuration with association
scheme A. This structure is a partially balanced incomplete block design
(PBIBD) if:

(a) to each Ai ∈ A, there is a number ni such that for each x ∈ N ,
there are exactly ni distinct elements y ∈ N such that {x, y} ∈ Ai;

(b) to each Ai ∈ A, there is a number �i such that {x, y} ∈ Ai implies
x and y belong to exactly �i blocks of T.

Following the above definition, Clay invited his readers to take out
pens and paper to construct examples of PBIBDs using Hall’s method
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(in eight steps). But here, without the mysterious eight steps, one can
have many examples using ring generated planar nearrings.

Let (R,+, ·) be a finite ring with unity and denote by U the group
of units of R. Suppose that Φ is a subgroup of U with −1 ∈ Φ. Let
{s1, . . . , sm} be a complete set of orbit representatives of Φ in R\{0}. For
each i, let Ai = {{x, y} | x− y ∈ Φ(si)}, and set A = {Ai | 1 ≤ i ≤ m}.

Theorem 7.10 ([26]). (1) (R,A) is an associative scheme. (2) For any
proper subset S of R with |S| ≥ 2, denote S = {aS + b | a ∈ Φ, b ∈ R}.
Then (R,S,A) is a PBIBD.

8. Circularity and graphs
Clay came up with the concept of circular planar nearrings in [9] when

he studied the planar nearring (C, +, ∗3). We first give the definition of
circular planar nearrings and Ferrero pairs. (Note that this definition is
slightly different from the one given in [10, (5.1)].)

Definition 8.1. Let (N, +, ·) be a planar nearring. If for a, c, b, d ∈ N ,
a �≡m 0 and c �≡m 0, it holds that N∗a + b �=�� N∗c + d implies that
|(N∗a + b) ∩ (N∗c + d)| ≤ 2, then we say that N is circular. If (N, Φ)
is the corresponding Ferrero pair, then N∗a = Φ(a) = {ϕ(a) | ϕ ∈ Φ}.
So N is circular if |(Φ(a) + b)∩ (Φ(c) + d)| ≤ 2 for all a, b, c, d ∈ N with
a �= 0,�� c = 0 and Φ(�� a) + b = Φ(�� c) + d. We also say that the Ferrero pair
(N, Φ) is circular in this manner.

For example, the planar nearring (C, +, ∗3) is a circular planar near-
ring since for nonzero a, b ∈ C, C∗a + b is simply the circle which passes
through the point a+ b and centers at b. Actually, this example was the
source for the definition of circularity of planar nearrings, and also was
the inspiration for the connection between circular planar nearrings and
graphs.

Surprisingly enough, the combinatorial condition of circularity im-
posed on planar nearrings selects a well-behaved class of nearrings.

8.1 Characterization of finite circular Ferrero
pairs

First we consider Ferrero pairs (N, Φ) with Φ abelian. There are
abundant circular Ferrero pairs to be found from finite fields.

Example 8.2. Let F = GF(p2), p a prime, and let Φp+1 be the sub-
group of F ∗ order p + 1. Then the Ferrero pair (F, Φp+1) is circular.
Consequently, if k ≥ 3 and p is a prime with k | (p+1), then the Ferrero
(F, Φk) is circular.



On Recent Developments of Planar Nearrings 13

The above examples pave the path to the following characterization
of circular Ferrero pairs (F, Φ) with F a finite field. It turns the testing
for circularity from “combinational” to “numerical.” An algorithm for
computing the finite sets Pk in the theorem was also provided in the
cited paper. An improved method for computing Pk can be derived
from [2], and we shall state it after the theorem.

Theorem 8.3 ([22]). For each k ≥ 3, there is a nonempty finite subset
Pk of prime numbers with the following property: Let q = ps, a power of
some prime p, be such that k | (q−1). Then there is a subgroup Φk of the
multiplicative group GF(q)∗ of order k, and the Ferrero pair (GF(q), Φk)
is circular if and only if p �∈ P�� k.

Here, we give our algorithm for computing the sets Pk. Let ζ =
e2πi/k ∈ C. For u, v, s, t with 1 ≤ u < v ≤ s ≤ k − 1, 1 ≤ t ≤ k − 1, and
v �=�� t and s �=�� t, define ϕu,v,s,t = (ζu−1)(ζt−1)−(ζv−1)(ζs−1) ∈ Z[ζ].
Then ϕu,v,s,t is nonzero and has integer norm Nu,v,s,tNN = NQNN (ζ):Q(ϕu,v,s,t).
It can be seen that if F is a finite field of characteristic p and (F, Φ) is
a field generated Ferrero pair, then (F, Φ) is circular if and only if the
norms Nu,v,s,tNN are nonzero when considered as elements of F . Thus, the
set Pk consists of the prime factors of all such norms Nu,v,s,tNN .

For practical applications (e.g. to construct codes or cryptosystems),
a sharp upper bound of Pk (k ≥ 3) in terms of k may be useful. The
above method provides us a trivial bound, namely the maximum of all
possible Nu,v,s,tNN . Since ϕu,v,s,t expands to 6 summands of powers of
ζ, we see that the norm is less than or equal 6ϕ(k), where ϕ(k) is the
Euler totient function giving the number of automorphisms of the kth
cyclotomic field.

Conjecture 8.4. For k ≥ 3, NQNN (ζ):Q(ϕu,v,s,t) ≤ (8
√

3/3)ϕ(k).

Problem 8.5. Find a better bound for Pk, k ≥ 3.

Yet another question one can ask is

Problem 8.6. For k ≥ 3, what is the size of Pk?

Next, we consider circular Ferrero pairs (N, Φ) with finite nonabelian
Φ. Since Φ is a regular group of automorphisms of N , the Sylow
p-subgroups of Φ are either cyclic or generalized quaternion (cf. [24,
(12.6.15) and (12.6.17))]. The circularity of (N, Φ) excludes the second
possibility. Namely, if (N, Φ) is circular, then Φ is metacyclic [2, (3.2)].

We note that the converse of the above assertion is not true. One can
find Ferrero pairs (N, Φ) with metacyclic Φ while (N, Φ) is not circular.

Similar to that of Pk, there is a finite set PΦ of primes which can be
used to determine the circularity of (N, Φ) numerically.
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Theorem 8.7 ([2]). Let (N, Φ) be a circular Ferrero pair with finite Φ.
Then there is a nonempty finite subset PΦ of prime numbers with the
following property: Let M be a finite group such that (M, Φ) is a Ferrero
pair. Then (M, Φ) is circular if and only if p �∈ P�� Φ for all prime divisors
p of |M |.

Remark 8.8. The assumption that (N, Φ) is circular Ferrero pair is used
to guarantee the finiteness of PΦ (see [2] for details). Thus, we said that
a given group Φ

is a group without fixed points if there is a group N such that
(N, Φ) is a Ferrero pair, and

is a circular group without fixed points if there is a group M such
that (M, Φ) is a circular Ferrero pair.

We have just seen that if Φ is a finite group without fixed points and Φ
is circular, then Φ is metacyclic. Conversely, all finite metacyclic groups
are groups without fixed points, but not all of them are circular.

Problem 8.9. Let Φ be finite metacyclic group. (Thus Φ is a group
without fixed points.) Under what conditions is Φ circular?

Metacyclic groups have very nice presentations as generators and re-
lations. The following is one of the presentations.

Theorem 8.10 (Zassenhaus 1936). Let Φ be a metacyclic group. Then

Φ ∼= 〈A, B | Am = Bn = 1, B−1AB = Ar〉,

where m > 0, gcd(m, (r − 1)n) = 1, and rn ≡ 1 (mod m). If d is the
order of r modulo m, then all irreducible complex representation of Φ
are of degree d.

Using an extra assumption on Φ so that it can be more easily handled,
there is a partial answer to Problem 8.9.

Theorem 8.11 ([5]). Let Φ be a metacyclic group with a presentation
as in Theorem 8.10 and d = 2. If Φ is embeddable as a subgroup of the
multiplicative group of some skew field, then Φ is circular.

The data we have at hand suggests that this theorem should hold in
general.

Conjecture 8.12. If Φ is a metacyclic group embeddable as a subgroup
of the multiplicative group of some skew field, then Φ is circular.
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8.2 Graphs of circular Ferrero pairs
Another idea of Clay on studying the structure of circular planar

nearrings is to connect them to graphs. Let (N, Φ) be a Ferrero pair.
We will assume that Φ is finite. For r, c ∈ N \ {0}, define

Er
c = {Φ(r) + b | b ∈ Φ(c)}.

Then the set Er
c is a partition of N \ {0}. In fact, it was from an

equivalence relation defined on the set {Φ(a) + b | a, b ∈ N , a �= 0�� }, that
Clay came up with this partition.

Example 8.13. We consider the Ferrero pair (C, Ĉ). For an integer
k ≥ 3, the subgroup of Ĉ of order k is denoted by Φk.

(1) Here are two Er
c ’s in (C, Φ5) (each × indicates the center of the

circle that the five points (vertices of a pentagon) of a Φ5r inscribed):
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(2) Here is an Er
c in (C, Φ6):
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To see the structure of an Er
c , a graph G(Er

c ) = (V, E) is assigned to
it: the vertex set V = Φ(c) and the edge set E is

{c1c2 | c1, c2 ∈ Φ(c), c1 �=�� c2, and (Φ(r) + c1) ∩ (Φ(r) + c2) �=�� ∅}.

An edge c1c2 is even if |(Φ(r) + c1) ∩ (Φ(r) + c2)| = 2, and is odd if
|(Φ(r) + c1) ∩ (Φ(r) + c2)| = 1. The following pictures show the two Er

c
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we have seen above and the graphs they defined.
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Some properties of the graphs G(Er
c ) can be observed immediately.

The most obvious one is that every G(Er
c ) is a regular graph, i.e. all the

vertices have the same number of edges connected to them.
On the other hand, some properties require some detailed analysis of

the graphs. If G(Er
c ) has nonnull edges, then it is a union of even and/or

odd basic graphs. Here we illustrate this by two examples.

•• •• •• •• •• ••
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•••••••
•••••

••••• =

•••
•••

•••
•••

••• +

•••
•••

•••
•••

•••

So the leftmost graph on the first line is the “disjoint union” of two
odd graphs while the leftmost graph on the second line is the “disjoint
union” of two even graphs and an odd graph.

Some special arrangements of the graphs produce pictures like David’s
stars and Prisms (see [10]). After investigation on many examples, we
found that there are numbers about the basic graphs that depends on k
alone.
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So, let (N, Φ) be a ring generated Ferrero pair with |Φ| = k. Fix an
r ∈ N \ {0} and consider all G(Er

c ), where c ∈ N , such that G(Er
c ) has

some edges. Then each of such graphs is either a basic graph or a “union”
of basic graphs. Let γjγγ denote the total number of the appearances the
odd jth basic graphs in these nonnull graphs, and πjπ the total number
of the appearances of the even jth basic graphs.

Theorem 8.14 ([19]). If 2 | k, then γjγγ = 1 and πjπ = k/2 − 1 for any
j ∈ {1, 2, . . . , k/2}.

The reason for j to stop at k/2 in the statement of the above theorem
is that the jth basic graph and the (k − j)th basic graph are identical.

Here is a somewhat surprising application of the above counting of
basic graphs to find solutions of certain equations over finite fields.

Let F = GF(q) be the Galois field of order q. Let k | (q − 1) be such
that (F, Φk) is a circular Ferrero pair. Put m = (q − 1)/k. Denote by n
the number of solutions of the equation

xm + ym − zm = 1

in F , and by n′ the number of solutions with xyz �= 0.��
Theorem 8.15 ([18]). (1) If k is even, then

n =

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
3(k − 1)m3 + 6m2 + 3m if 6 | k;
3(k − 1)m3 + 3m2 + 3m if p = 3;
3(k − 1)m3 + 3m otherwise;

and n′ = 3(k − 1)m3.

(2) If k is odd, and if (GF(q), Φ2k) is also circular, then
n = (2k − 1)m3 + 2m and n′ = (2k − 1)m3.

Actually, one can explicitly write down the solutions. This was done
by Kiechle in [21].

Next, we observed that when (N, Φ) is a ring generated Ferrero pair
with cyclic Φ, some of the basic graphs always appear together in some
G(Er

c ) (referred as overlapped graphs). A complete understanding of
such behavior is the key to count the total number of graphs G(Er

c ).
Using a theorem of vanishing sums [12, Theorem 6], we have a complete
description of this phenomenon in the case of (C, Φk), Φk ≤ Ĉ and
|Φk| = k ≥ 3. (See [20].)

Finally, we have also noticed that the graphs of Er
c ’s occur in the finite

field generated case and the complex plane case are the same when the
field has large enough characteristic. For small characteristic, there are
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more overlapped basic graphs. To explain partly this phenomenon, we
note that the overlaps of the basic graphs are in one-one correspondence
with the solutions (u, v, s, t) of the equations

ζu − 1
ζv − 1

= ζw ζs − 1
ζt − 1

where ζ is a primitive kth root of unity, 1 ≤ u < v ≤ s ≤ k − 1,
1 ≤ t ≤ k − 1, v �=�� t, s �=�� t, and 1 ≤ w ≤ k − 1.

Now, consider ζ = e2πi/k ∈ C as before, and put the set OPk the
prime factors of the norms of

(ζu − 1)(ζt − 1)− ζw(ζs − 1)(ζv − 1)

for all suitable u, v, s, t, w. Then each OPk is a finite set. When p is a
prime larger than any of that in OPk and k | (p� − 1) for some positive
integer �, the overlaps of the graphs of the Er

c ’s from (GF(ps), Φk) and
that from (C, Φk) are the same.

Problem 8.16. As we have mentioned, an Er
c is simply an equivalence

class of a block Φ(r) + b. Are there any other equivalence on the set
{Φ(a)+b | a, b ∈ N , a �= 0�� } which will give use interesting (and hopefully
manageable) equivalence classes?

9. List of ongoing research problems on planar
nearrings

We would like to invite more people to join us on exploring the fas-
cinating world of planar nearrings, circular or not. In the following, a
list of problems concerning planar nearrings are given. This list came
from “Group Discussions” when the author visited Linz in the summers
of 2002 and 2003. One realizes easily by scanning through the list that
there are much more of planar nearrings to be uncovered!

(1) The complex number field C.

What to study in each individual planar nearring?

Characterize all fixed point free automorphism groups Φ on
(C,+): Φ ≤ (C∗, ·), or C as a R2, or C as a vector space over
Q. Note that the descriptions of finite Φ’s can be found in [30].

Is being algebraically closed important for the study? How
continuity may come into play?

Are there other constructions similar to Jim Clay’s hyperbolas?

(2) The real number field R and the rational field Q.


