
CONTINUOUS-TIME SIGNALS



Continuous-Time Signals

by

YURIY SHMALIY

Guanajuato University, Mexico



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10  1-4020-4817-3 (HB)

ISBN-13  978-1-4020-4817-3 (HB)

ISBN-10  1-4020-4818-1 (e-book)

ISBN-13  978-1-4020-4818-0 (e-book)

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved

© 2006 Springer 

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.



To my family



Preface

As far back as the 1870s, when two American inventors Elisha Gray and
Graham Bell independently designed devices to transmit speech electrically
(the telephone), and the 1890s, when the Russian scientist Aleksandr Popov
and the Italian engineer Guglielmo Marconi independently demonstrated the
equipment to transmit and receive messages wirelessly (the radio), the theory
of electrical signal was born. However, the idea of signals has been employed
by mankind all through history, whenever any message was transmitted from
a far point. Circles on water indicating that some disturbance is present in the
area give a vivid example of such messages. The prehistory of electrical signals
takes us back to the 1860s, when the British scientist James Clerk Maxwell
predicted the possibility of generating electromagnetic waves that would travel
at the speed of light, and to the 1880s, when the German physicist Heinrich
Hertz demonstrated this radiation (hence the word “radio”).

As a time-varying process of any physical state of an object that serves for
representation, detection, and transmission of messages, a modern electrical
signal, in applications, possesses many specific properties including:

• A flow of information, in information theory;
• Disturbance used to convey information and information to be conveyed

over a communication system;
• An asynchronous event transmitted between one process and another;
• An electrical transmittance (either input or output) that conveys informa-

tion;
• Form of a radio wave in relation to the frequency, serving to convey intel-

ligence in communication;
• A mechanism by which a process may be notified by the kernel of an event

occurring in the system;
• A detectable impulse by which information is communicated through elec-

tronic or optical means, or over wire, cable, microwave, laser beams, etc;
• A data stream that comes from electrical impulses or electromagnetic

waves;
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• Any electronic visual, audible, or other indication used to convey informa-
tion;

• The physical activity of the labeled tracer material that is measured by a
detector instrument; the signal is the response that is measured for each
sample;

• A varying electrical voltage that represents sound.

How to pass through this jungle and understand the properties of signals
in an optimum way? Fundamental knowledge may be acquired by learning
the continuous-time signals, for which this book offers five major steps:

1. Observe applications of signals in electronic systems, elementary signals,
and basic canons of signals description (Chapter 1).

2. Consider the representation of signals in the frequency domain (by
Fourier transform) and realize how the spectral density of a single wave-
form becomes that of its burst and then the spectrum of its train
(Chapter 2).

3. Analyze different kinds of amplitude and angular modulations and note
a consistency between the spectra of modulating and modulated signals
(Chapter 3).

4. Understand the energy and power presentations of signals and their cor-
relation properties (Chapter 4).

5. Observe the bandlimited and analytic signals, methods of their descrip-
tion, transformation (by Hilbert transform), and sampling (Chapter 5).

This book is essentially an extensive revision of my Lectures on Radio Sig-
nals given during a couple of decades in Kharkiv Military University, Ukraine,
and several relevant courses on Signals and Systems as well as Signal Process-
ing in the Guanajuato University, Mexico, in recent years. Although, it is
intended for undergraduate and graduate students, it may also be useful in
postgraduate studies.

Salamanca, Mexico Yuriy S. Shmaliy
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1

Introduction

Signals and processes in electronic systems play a fundamental role to transfer
information from one point or space to any other point or space. Their de-
scription, transformation, and conversion are basic in electrical engineering.
Therefore, it becomes possible to optimize systems with highest efficiency
both in the time and frequency domains. This is why the theory of signals is
fundamental for almost all electrical engineering fields; Mechanical, chemical,
physical, biological, and other systems exploit fundamentals of this theory
whenever waves and waveforms appear. Our purpose in this chapter is to in-
troduce a concept and necessary fundamental canons of signals, thereby giving
readers food for learning the following chapters.

1.1 Signals Application in Systems

The word “signal” has appeared from the Latin term signum meaning “sign”
and occupied a wide semantic scope in various ranges of science and engineer-
ing. It is defined as follows:

Signal : A signal is a time-varying process of any physical state of any
object, which serves for representation, detection, and transmission of
messages.

��
In electrical engineering, time variations of electric currents and voltages in

electronic systems, radio waves radiated by a transmitter in space, and noise
processes in electronic units are examples of signals. Application of signals in
several most critical electronic systems are illustrated below.

1.1.1 Radars

The radar is usually called a device for determining the presence and location
of an object by measuring the time for the echo of a radio wave to return from
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it and the direction from which it returns. In other words, it is a measuring
instrument in which the echo of a pulse of microwave radiation is used to
detect and locate distant objects. A radar pulse-train is a type of amplitude
modulation of the radar frequency carrier wave, similar to how carrier waves
are modulated in communication systems. In this case, the information signal
is quite simple: a single pulse repeated at regular intervals.

Basic operation principle of radars is illustrated in Fig. 1.1. Here trans-
mitter generates radio frequency (RF) impulse signal that is reflected from
the target (moving or stationary object) and is returned to receiver. Conven-
tional (“monostatic”) radar, in which the illuminator and receiver are on the
same platform, is vulnerable to a variety of countermeasures. Bistatic radar,
in which the illuminator and receiver are widely separated, can greatly re-
duce the vulnerability to countermeasures such as jamming and antiradiation
weapons, and can increase slow moving target detection and identification
capability by “clutter tuning” (receiver maneuvers so that its motion com-
pensates for the motion of the illuminator; creates zero Doppler shift for the

(a)

Target

θ

(b)

Fig. 1.1 Operation principle of radars: (a) pulse radar and (b) long-range radar
antenna.
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area being searched). The transmitter can remain far from battle area, in a
“sanctuary.” The receiver can remain “quiet.”

At the early stage, radars employed simple single pulses to fulfill require-
ments. With time, for the sake of measuring accuracy, the pulses with fre-
quency modulation and pulse-coded bursts were exploited. The timing and
phase coherent problems can be orders of magnitude more severe in bista-
tic than in monostatic radar, especially when the platforms are moving. The
two reference oscillators must remain synchronized and synchronized during a
mission so that the receiver knows when the transmitter emits each pulse, so
that the phase variations will be small enough to allow a satisfactory image to
be formed. Low noise crystal oscillators are required for short-term stability.
Atomic frequency standards are often required for long-term stability.

1.1.2 Sonar

Sonar (acronym for SOund NAvigation and Ranging) is called a measuring
instrument that sends out an acoustic pulse in water and measures distances
in terms of the time for the echo of the pulse to return. This device is used pri-
marily for detection and location of underwater objects by reflecting acoustic
waves from them, or by interception of acoustic waves from an underwa-
ter, surface, or above-surface acoustic source. Note that sonar operates with
acoustic waves in the same way that radar and radio direction-finding equip-
ment operate with electromagnetic waves, including use of the Doppler effect,
radial component of velocity measurement, and triangulation.

1.1.3 Remote Sensing

Remote sensing is the science — and to some extent, art — of acquiring
information about the Earth’s surface without actually being in contact with
it. This is done by sensing and recording reflected or emitted energy and
processing, analyzing, and applying that information. Two kinds of remote
sensing are employed. In active remote sensing, the object is illuminated by
radiation produced by the sensors, such as radar or microwaves (Fig. 1.2a). In
passive remote sensing, the sensor records energy that is reflected or emitted
from the source, such as light from the sun (Fig. 1.2b). This is also the most
common type of system.

1.1.4 Communications

Analog and digital communications are likely the most impressive examples
of efficient use of signals. In analog communications, an analog method of
modulating radio signals is employed so that they can carry information such
as voice or data. In digital communications, the carrier signal is modulated
digitally by encoding information using a binary code of “0” and “1”. Most
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(a)

Fig. 1.2 Remote sensing operation principle: (a) active and (b) passive.

newer wireless phones and networks use digital technology and one of the
most striking developments of the past decade has been the decline of public
service broadcasting systems everywhere in the world. Figure 1.3 illustrates
the basic principle of two-way satellite communications.

To transfer a maximum of information for the shortest possible time dura-
tion, different kinds of modulation had been examined for decades at different
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Fig. 1.3 Two-way satellite communications.

carrier frequencies. In digital transmission, either a binary or M -ary keying is
used in amplitude, phase, and frequency providing the commercially available
resources with a minimum error.

Historically, as the number of users of commercial two-way radios have
grown, channel spacing have been narrowed, and higher-frequency spectra
have had to be allocated to accommodate the demand. Narrower channel spac-
ings and higher operating frequencies necessitate tighter frequency tolerances
for both the transmitters and the receivers. In 1949, when only a few thousand
commercial broadcast transmitters were in use, a 500 ppm (ppm = 10−6) tol-
erance was adequate. Today, the millions of cellular telephones (which operate
at frequency bands above 800 MHz) must maintain a frequency tolerance of
2.5 ppm. The 896–901 MHz and 935–940 MHz mobile radio bands require fre-
quency tolerances of 0.1 ppm at the base station and 1.5 ppm at the mobile
station. The need to accommodate more users will continue to require higher
and higher frequency accuracies. For example, NASA concept for a personal
satellite communication system would use walkie-talkie-like hand-held termi-
nals, a 30 GHz uplink, a 20 GHz downlink, and a 10 kHz channel spacing.
The terminals’ frequency accuracy requirement is few parts in 10−8.

1.1.5 Global Positioning System

Navigation systems are used to provide moving objects with information about
their positioning. An example is the satellite-based global positioning system
(GPS) that consists of (a) a constellation of 24 satellites in orbit 11,000
nmi above the Earth, (b) several on-station (i.e., in-orbit) spares, and (c) a
ground-based control segment. Figure 1.4 gives an example of the GPS use in
ship navigation. Each space vehicular (SV) transmits two microwave carrier
signals (Fig. 1.5). The L1 frequency (1575.42 MHz) carries the navigation
message and the standard positioning service (SPS) code signals. The L2
frequency (1227.60 MHz) is used to measure the ionospheric delay by precise
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(b)

Fig. 1.4 GPS system: (a) ship navigation and (b) GPS constellation.

positioning service (PPS) equipped receivers. Three binary codes shift the L1
and/or L2 carrier phase:

• The coarse acquisition (C/A) code modulates the L1 carrier phase. The
C/A code is a repeating 1 MHz pseudorandom noise (PRN) code. This
noise-like code modulates the L1 carrier signal, “spreading” the spectrum
over a 1 MHz bandwidth. The C/A code repeats every 1023 bits (one mil-
lisecond). There is a different C/A code PRN for each SV. GPS satellites
are often identified by their PRN number, the unique identifier for each
PRN code. The C/A code that modulates the L1 carrier is the basis for
the civil SPS.

• The precision (P) code modulates both the L1 and the L2 carrier phases.
The P code is a very long (7 days) 10 MHz PRN code. In the antispoofing
(AS) mode of operation, the P code is encrypted into the Y code. The



1.2 Signals Classification 7

L1 career 1575.42 MHz

C/A code 1.023MHz

NAV/SYSTEMdata 50 MHz

P - code 10.23 MHz

L2 carrier 1227.6 MHz

L2 signal

L1 signal

Fig. 1.5 GPS satellite signals.

encrypted Y code requires a classified AS module for each receiver channel
and is for use only by authorized users with cryptographic keys. The P(Y)
code is the basis for the PPS.

• The navigation message also modulates the L1-C/A code signal. The nav-
igation message is a 50 Hz signal consisting of data bits that describe the
GPS satellite orbits, clock corrections, and other system parameters.

Any navigation system operates in time. Therefore, to obtain extremely
accurate 3-D (latitude, longitude, and elevation) global navigation (position
determination), precise time (time signals) must also be disseminated. These
signals are used in what is called timekeeping.

Historically, navigation has been a principal motivator in man’s search for
better clocks. Even in ancient times, one could measure latitude by observing
the stars’ position. However, to determine longitude, the problem became one
of timing. This is why GPS-derived position determination is based on the
arrival times, at an appropriate receiver, of precisely timed signals from the
satellites that are above the user’s radio horizon. On the whole, in the GPS,
atomic clocks in the satellites and quartz oscillators in the receivers provide
nanosecond-level accuracies. The resulting (worldwide) navigational accura-
cies are about 10 m and some nanoseconds. Accordingly, GPS has emerged as
the leading methodology for synchronization not only for communication but
also for transport, navigation, commercial two-way radio, space exploration,
military requirements, Doppler radar systems, science, etc.

1.2 Signals Classification

Classification of signals may be done for a large number of factors that mostly
depend on their applications in systems.
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(a)

(b)

Fig. 1.6 Example of signals: (a) deterministic and (b) random.

1.2.1 Regularity

Most commonly, the signals are separated into two big classes: deterministic
(Fig. 1.6a) (regular or systematic in which a random amount is insignificant)
and random (noisy) (Fig. 1.6b).

• Deterministic signals are precisely determined at an arbitrary time instant;
their simulation implies searching for proper analytic functions to describe
them explicitly or with highest accuracy.

• Random signal cannot be described analytically at an arbitrary time in-
stant owing to its stochastic nature; such signals cannot be described in
deterministic functions or by their assemblage and are subject to the prob-
ability theory and mathematical statistics.

It is important to remember that a recognition of signals as deterministic
and random is conditional in a sense. Indeed, in our life there are no determin-
istic physical processes at all, at least because of noise that exists everywhere.
The question is, however, how large is this noise? If it is negligible, as com-
pared to the signal value, then the signal is assumed to be deterministic. If
not, the signal is random, and stochastic methods would be in order for its
description.

1.2.2 Causality

The signals produced by physical devices or systems are called causal. It is
assumed that such a signal exists only at or after the time the signal generator
is turned on. Therefore, the casual signal y(t) satisfies y(t) = x(t), if t � 0 and
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y(t) = 0, if t < 0. Signals that are not causal are called noncausal. Noncausal
signals representation is very often used as a mathematical idealization of real
signals, supposing that x(t) exists with −∞ ≤ t ≤ ∞.

1.2.3 Periodicity

Both deterministic and random signals may be either periodic (Fig. 1.7a) or
single (nonperiodic) (Fig. 1.7b).

• Periodic signals (Fig. 1.7a) reiterate their values through the equal time
duration T called a period of repetition. For such signals the following
equality holds true:

x(t) = x(t ± nT ) (1.1)

where x(t) is a signal and n = 0, 1, 2, .... It seems obvious that simulation
of (1.1) implies that a signal may be described only on the time interval
T and then repeated n times with period T .

• Single signals or nonperiodic signals (Fig. 1.7b) do not exhibit repetitions
on the unlimited time interval and therefore an equality (1.1) cannot be
applied.

• Impulse signals. A special class of signals unites the impulse signals.
A single impulse signal is the one that exists only during a short time.
Impulse signals may also be periodic. Two types of impulse signals are
usually distinguished:

– Video pulse signal, also called waveform, is an impulse signal x(t) with-
out a carrier (Fig. 1.8a).

– Radio frequency (RF) pulse signal y(t) is a video pulse signal x(t) filled
with the carrier signal z(t) (Fig. 1.8b).

(a)

(b)

Fig. 1.7 Example of signals: (a) x(t) is periodic and (b) y(t) is nonperiodic.



10 1 Introduction

(a)

(b)

Fig. 1.8 Impulse signals: (a) video pulse and (b) radio pulse.

1.2.4 Dimensionality

Both periodic and single signals may depend on different factors and exist in
the same timescale. Accordingly, they may be one-dimensional and multidi-
mensional :

• One-dimensional (scalar) signal is a function of one or more variables
whose range is 1-D. A scalar signal is represented in the time domain by
means of only one function. Examples are shown in Figs. 1.6 and 1.7.
A physical example is an electric current in an electronic unit.

• Multidimensional (vector) signal is a vector function, whose range is
3-D or, in general, N -dimensional (N -d). A vector signal is combined with
an assemblage of 1-D signals. An N -d signal is modelled as a vector of
dimensions N × 1

x ≡ x(t) = [x1(t), x2(t), . . . , xN (t)]T (1.2)
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where an integer N is said to be its order or dimensionality. An example of
a multidimensional signal is several voltages on the output of a multipole.
An example of 2-D signals is an electronic image of the USA and Mexico
obtained by NASA with a satellite remote sensing at some instant t1 (Fig.
1.9a). An example of 3-D signals is fixed at some instant t2, a cosine
wave attenuated with a Gaussian1 envelope in the orthogonal directions
(Fig. 1.9b).

1.2.5 Presentation Form

Regarding the form of presentation, all signals may be distinguished to fall
within three classes:

• An analog signal or continuous-time signal is a signal x(t), which value
may be determined (measured) at an arbitrary time instant (Fig. 1.10a).

• Discrete-time signal is a signal x(tn), where n is an integer that represents
an analog signal by discrete values at some time instants tn, usually with
a constant sample time ∆ = tn+1 − tn (Fig. 1.10b).

• Digital signal is a signal x[n], which is represented by discrete values
at discrete points n with a digital code (binary, as a role) (Fig. 1.10c).
Therefore, basically, x[n] �= x(tn) and the quantization error depends on
the resolution of the analog-to-digital converter.

1.2.6 Characteristics

Every signal may be explicitly described either in the time domain (by time
functions) or in the frequency domain (by spectral characteristics). Signals
presentations in the time and frequency domains are interchangeable to mean
that any signal described in the time domain may be translated to the
frequency domain and come back to the time domain without errors. The
following characteristics are usually used to describe signals:

• In the time domain: effective duration, covariance function, peak amplitude,
period of repetition, speed of change, correlation time, time duration, etc.

• In the frequency domain:

– Spectrum of periodic signals is represented by the Fourier2 series with
the magnitude spectrum and phase spectrum.

1 Johann Carl Friedrich Gauss, German mathematician, 30 April 1777–23 February
1855.

2 Jean Baptiste Joseph Fourier, French mathematician, 21 March 1768–16 May
1830.
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(b)

Fig. 1.9 Multidimensional signals: (a) 2-D satellite electronic image and (b) 3-D
Gaussian radio pulse.

• Spectral density of nonperiodic signals is represented by the Fourier trans-
form with the magnitude spectral density and phase spectral
density.

• Both the spectrum and spectral density are characterized with the signal
energy, signal power, spectral width, spectral shape, etc.
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(a)

(b)

(c)

Fig. 1.10 Types of signals: (a) continuous-time, (b) discrete-time, and (c) digital.

(a)

(b)

(c)(d)

Fig. 1.11 Types of signals: (a) broadband, (b) bandlimited, (c) narrowband, and
(d) baseband.

1.2.7 Spectral Width

In the frequency domain, all signals may be classified as follows:

• A broadband signal is the one, which spectrum is distributed over a wide
range of frequencies as it is shown in Fig. 1.11a.

• A bandlimited signal is limited in the frequency domain with some maxi-
mum frequency as it is shown in Fig. 1.11b.

• A narrowband signal has a spectrum that is localized about a frequency
f0 that is illustrated in Fig. 1.11c.
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• A baseband signal has a spectral contents in a narrow range close to
zero (Fig. 1.11d). Accordingly, a spectrum beginning at 0 Hz and extend-
ing contiguously over an increasing frequency range is called a baseband
spectrum.

1.2.8 Power and Energy

Every signal bears some energy and has some power. However, not each signal
may be described in both terms. An example is a constant noncausal signal
that has infinite energy.

An instantaneous power of a real signal x(t) is defined by

Px(t) = x2(t). (1.3)

In applications, however, it is much more important to know the signal energy
or average power over some time bounds ±T . Accordingly, two types of signals
are recognized:

• Energy signal or finite energy signal is a signal, which energy

Ex = ‖x‖2
2 = lim

T→∞

T∫

−T

Px(t)dt = lim
T→∞

T∫

−T

x2(t)dt < ∞ (1.4)

is finite. The quantity ‖x‖2 used in (1.4) is known as the L2-norm of x(t).

• Power signal or finite power signal is a signal which average power

Px =
〈
x2(t)

〉
= lim

T→∞

1
2T

T∫

−T

x2(t)dt < ∞ (1.5)

is finite. If x(t) is a periodic signal with period T then the limit in (1.5) is
omitted.

Example 1.1. Given a harmonic noncausal signal x(t) = A0 cos ω0t, which
energy is infinite, Ex = A2

0

∫∞
−∞ cos2 ω0tdt = A2

0∞. Thus, it is not an energy

signal. However, its average power is finite, Px(t) = A2
0

2T

∫ T

−T
cos2 ω0tdt =

1
2A2

0 < ∞. Hence, it is a power signal.
��

1.2.9 Orthogonality

In the correlation analysis and transforms of signals, orthogonal signals play
an important role.
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• Two real signals x(t) and y(t) are said to be orthogonal, x(t)⊥y(t), on the
interval [a, b] if their inner (scalar) product (and so the joint energy) is
zero:

〈x, y〉 =

b∫

a

x(t)y(t)dt = 0 . (1.6)

• Two same signals are called orthonormal if

〈x, y〉 =

{
1, x(t) = y(t)
0, otherwise

.

In other words, if a function (signal) x(t) has a zero projection on some other
function (signal) y(t), then their joint area is zero and they are orthogonal.
Such an important property allows avoiding large computational burden in
the multidimensional analysis.

Example 1.2. Given three signals:

x(t) = A0 cos ω0t ,

y(t) = A0 sinω0t ,

z(t) = A0 cos(ω0t + π/4) .

It follows, by (1.6), that two first signals are orthogonal and that no other
pair of these signals satisfies (1.6).

��

We have already classified the signals with many characteristics. Even so,
this list is not exhaustive and may be extended respecting some new methods
of signals generation, transmitting, formation, and receiving. Notwithstand-
ing this fact, the above given classification is sufficient for an overwhelming
majority of applied problems.

1.3 Basic Signals

Mathematical modeling of signals very often requires its presentation by sim-
ple elementary signals, which properties in the time and frequency domains
are well studied. Indeed, if we want to describe, for example, a rectangular
pulse-train, then a linear combination of gained and shifted elementary unit-
step functions will certainly be the best choice. We may also want to describe
some continuous function that may be combined with elementary harmonic
functions in what is known as the Fourier series. So, basic elementary functions
play an important role in the signals theory.



16 1 Introduction

(a)

(b)

Fig. 1.12 Unit step: (a) Unit-step function and (b) Heaviside unit-step function.

1.3.1 Unit Step

A unit-step function (Fig. 1.12a) is defined by

u(t) =
{

1, t � 0
0, t < 0

(1.7)

and is usually used in signals to model rectangular waveforms and in systems
to define the step response.

The other presentation of a unit step was given by Heaviside3 in a con-
ventionally continuous form. The Heaviside unit-step function (Fig. 1.12b) is
performed as

H(t) =

⎧⎪⎨
⎪⎩

1, t > 0
0.5, t = 0
0, t < 0

(1.8)

and may be modeled by the function

v(t, ξ) =

⎧⎪⎨
⎪⎩

1, t > ξ

0.5( t
ξ + 1), −ξ � t � ξ

0, t < −ξ

, (1.9)

3 Oliver Heaviside, English physicist, 18 May 1850–3 February 1925.
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once H(t) = limξ→0 v(t, ξ). This is not the only way to model the unit step.
The following function may also be useful:

v(t, n) =
1

1 + e−nt
. (1.10)

It follows from (1.10) that tending n toward infinity makes the function to be
more and more close to the Heaviside step function, so that one may suppose
that H(t) = limn→∞ v(t, n).

Example 1.3. Given a rectangular impulse signal (Fig. 1.13a). By (1.7), it is
described to be x(t) = 8.5[u(t − 1) − u(t − 3)].

��

Example 1.4. Given a truncated ramp impulse signal (Fig. 1.13b). By (1.7)
and (1.9), we go to the model x(t) = 8.5[v(t − 2, 1) − u(t − 3)].

��

Example 1.5. Given an arbitrary continuous signal (Fig. 1.13c). By (1.7),
this signal is described as

x(t) =
∞∑

i=−∞
x(iT )[u(t − iT ) − u(t − iT − T )] ,

where a sample time T should be chosen to be small enough to make the
approximation error negligible.

��

(a) (b)

(c)

Fig. 1.13 Signals: (a) rectangular pulse, (b) ramp pulse, and (c) arbitrary signal.
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1.3.2 Dirac Delta Function

The Dirac4 delta function, often referred to as the unit impulse, impulse sym-
bol, Dirac impulse, or delta function, is the function that defines the idea of
a unit impulse, having the fundamental properties

δ(x) =
{
∞, x = 0
0, x �= 0 , (1.11)

∞∫

−∞

δ(x)dx = 1 . (1.12)

Mathematically, δ(t) may be defined by the derivative of the unit-step
function,

δ(t) =
du(t)

dt
. (1.13)

In an equivalent sense, one may also specify the unit step by integrating the
delta function,

u(t) =

t∫

−∞

δ(t)dt . (1.14)

The fundamental properties of the delta function, (1.11) and (1.12), are also
satisfied if to use the following definition:

δ(t) = lim
ξ→0

dH(t, ξ)
dt

. (1.15)

Therefore, the unit impulse is very often considered as a rectangular pulse
of the amplitude 1/2ξ (Fig. 1.14). Following (1.11), it needs to set ξ = 0 in
(1.15) and Fig. 1.14a, and thus the delta function is not physically realizable.

The Kronecker5 impulse (or symbol) is a discrete-time counterpart of the
delta function; however, it is physically realizable, as ξ �= 0 in the discrete
scale. Both the delta function (Fig. 1.14b) in the continuous time and the
Kronecker impulse in the discrete time are used as test functions to specify
the system’s impulse response.

The following properties of δ(t) are of importance.

1.3.2.1 Sifting

This property is also called sampling property or filtering property . Since the
delta function is zero everywhere except zero, the following relations hold true:

x(t)δ(t) = x(0)δ(t) and x(t)δ(t − θ) = x(θ)δ(t − θ) ,

4 Paul Adrien Maurice Dirac, English mathematician, 8 August 1902–20 October
1984.

5 Leopold Kronecker, German mathematician, 7 December 1823–29 December
1891.
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Fig. 1.14 Unit impulse: (a) rectangular model and (b) positions, by a time-shift ±θ.

allowing us to write

∞∫

−∞

x(t)δ(t − θ)dt =

∞∫

−∞

x(θ)δ(t − θ)dt

= x(θ)

∞∫

−∞

δ(t − θ)dt = x(θ) . (1.16)

So, if to multiply any continuous-time function with the delta function and
integrate this product in time, then the result will be the value of the function
exactly at the point where the delta function exists. In a case of θ = 0, (1.16)
thus degenerates to

∞∫

−∞

x(t)δ(t)dt = x(0) . (1.17)

Alternatively, the sifting property also claims that

b∫

a

x(t)δ(t)dt =

⎧⎪⎨
⎪⎩

x(0), a < 0 < b

0, a < b < 0 or 0 < a < b

x(0)δ(0), a = 0 or b = 0
. (1.18)

It is important to remember that both (1.17) and (1.18) are symbolic
expressions and should not be considered as an ordinary Riemann6 integral.
Therefore, δ(t) is often called a generalized function and x(t) is then said to
be a testing function.

6 Georg Friedrich Bernhard Riemann, German mathematician, 17 September 1826–
20 July 1866.


