
MATHEMATICAL METHODS IN ENGINEERING



Mathematical Methods 
in Engineering

Edited by

Çankaya University,
Balgat-Ankara, Turkey

J.A. TENREIRO MACHADO
Institute of Engineering of Porto
Porto, Portugal

and

D. BALEANU
Çankaya University,
Balgat-Ankara, Turkey

K. TA



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-13  978-1-4020-5677-2 (HB)
ISBN-10  1-4020-5678-8 (e-book)
ISBN-13  978-1-4020-5678-9 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved
© 2007 Springer 
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

ISBN-10  1-4020-5677-X (HB)



Contents

Preface ix

Fractional mathematics

Fractional calculus and regularized residue of infinite dimensional space 3
Asada Akira

Fractional spaces generated by the positive differential and difference
operators in a Banach space 13
Allaberen Ashyralyev

Sub-diffusion equations of fractional order and their fundamental
solutions 23
Francesco Mainardi, Antonio Mura, Gianni Pagnini and
Rudolf Gorenflo

Neutrices and generalized functions

The composition and neutrix composition of distributions 59
Brian Fisher

A review on the products of distributions 71
C.K. Li

Some remarks on the incomplete gamma function 97
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Ozan Tuğluk and Hakan I. Tarman

Applications of wavelets

Wavelet transform for the simultaneous prediction of the colorants in
food product 257
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Antanas Čenys and A.N. Anagnostopoulos

Dissipative solitons and nonlinear resonance dynamics in 2+1
dimensions 435
Oktay Pashaev

Implementation of floating point arithmetics using an FPGA 445
Suhap Sahin, Adnan Kavak, Yasar Becerikli and H. Engin Demiray

A method for the recovery of the electric field vibration inside
vertical inhomogeneous anisotropic dielectrics 455
Valery Yakhno and Ali Sevimlican

Author index 467



Preface

This book contains some of the contributions under five main titles that are
carefully selected according to the reports of referees, presented at the Inter-
national Symposium, MME06 Mathematical Methods in Engineering, held in
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Fractional calculus and regularized residue of

infinite dimensional space

Asada Akira

Faculty of Science, Sinsyu University, Matumoto, Japan asada-a@poporo.ne.jp

We have proposed regularization of infinite dimensional integral via fractional
calculus. It is done on a Hilbert space H equipped with a Schatten class
operator G. The ζ-function ζ(G, s) of G is assumed to be holomorphic at s=0.
Regularization is done by using ζ(G, s). After reviewing this regularization, it
is shown regularized Cauchy kernel of a Hilbert space with the determinant
bundle exists if and only if ν = ζ(G, 0) is an integer. Regularized residue on an
infinite dimensional space is obtained as an application of regularized Cauchy
kernel.

1 Fractional calculus and regularized infinite product

Let {H,G} be a pair of a Hilbert space and a positive Schatten class operator
G such that ζ(G, s) = trGs is holomorphic at s = 0. ζ(G, s) is assumed to
have its first pole at s = d. We also set

ν = ζ(G, 0), detG = eζ′(G,0), c = Ress=dζ(G, s).

We often need integrity of ν. If H is the Hilbert space of square integrable
sections of a bundle E over a compact Riemannian manifold X and G is the
Green operator of a positive elliptic operator D acting on the sections of E,
choosing suitable mass term m and replace D by D + mI, ν becomes an
integer. Hence integrity of ν is not restrictive for practical use (cf.[Asa04a]).

The complete ortho-normal basis e1, e2, . . ., are taken from eigenvectors of
G: Gen = µnen, µ1 ≥ µ2 ≥ . . . > 0. By using G, we introduce Sobolev metric
‖x‖k by ‖G−kx‖. The Sobolev space constructed by H and ‖ · ‖k is denoted
by W k. The complete ortho-normal basis of W k is given by e1,k, e2,k, . . .,
en,k = µk

nen. We set e∞,k =
∑∞

n=1 µ
d/2
n en,k. e∞,k does not belong to W k, but

belongs to W l, l < k. If k = 0, we denote e∞, instead of e∞,0.

Definition 1. The Hilbert space W k,� is W k ⊕Ke∞,k with the inner product

〈en,k, em,k〉 = δn.m, 〈e∞,k, en〉 = 0, 〈e∞,k, e∞,k〉 = c. (1)
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Asada Akira

Here K is R if H is a real Hilbert space, and C if H is a complex Hilbert space.
If k = 0, we denote H�, instead of W 0,�. We identify W k and W k ⊕ 0e∞,k ⊂
W k,�. Then the above inner product on W k,� coincides with the inner product
of W k. While the inner products 〈e∞,k, en,k〉 and 〈e∞,k, e∞,k〉 come from

〈e∞,k, en,k〉 = lim
s↓0

(
√

sGs/2−ke∞,k,
√

sGs/2−ken,k),

where ( , ) is the inner product of H.
By definition, x ∈ W k,� is uniquely written as xf + te∞,k. Hence we can

write

x = xf + te∞,k =
∞∑

n=1

xf,nen,k + te∞,k =
∞∑

n=1

xnen,k, xn = xf,n + µd/2
n t.(2)

Let Ia
nf be the fractional integral Ia

nf(xn) =
1

Γ (a)

∫ xn

0

f(t)
(x− t)1−a

dt. Then

we have

lim
n→∞

I
µs

1
1 · · · Iµs

n
n 1 =

∞∏
n=1

Γ (1 + µs
n)

∞∏
n=1

x
µs

n
n .

Since

log
∞∏

n=1

Γ (1 + µs
n) = −γζ(G, s) +

∞∑
m=2

(−1)m ζ(m)
m

ζ(G, ms),

taking a path C = C(s); 0 ≤ s ≤ 1 in the right half plane such that C(0) = 1
and does not tangent to real and imaginary axes, the analytic continuation of∏∞

n=1 Γ (1 + µs
n) to s = 0 along C takes the value 1.

Definition 2. Let x =
∑∞

n=1 xnen be an element of W k,�. Then we define
regularized infinite product :

∏∞
n=1 xn : of x1, x2, . . . by

:
∞∏

n=1

xn :=
∞∏

n=1

x
µs

n
n |s=0. (3)

Here |s=0 means analytic continuation to s = 0.

It is known :
∏

n xn : is linear in each variable xn and

| :
∞∏

n=1

xn : | =:
∞∏

n=1

|xn| :, (:
∞∏

n=1

xn)m =:
∞∏

n=1

xm
n : . (4)

If x = xf + te∞,k ∈ W k,� and t 
= 0, we have

:
∞∏

n=1

xn := tν(detG)k+d/2
∞∏

n−1

(1 +
µ
−(k+d/2)
n xf,n

t
)µs

n |s=0.

Then regarding W l,l > k to be a subset of W k ⊂ W k,�, and W 1,l, etc., to be
�1-type subset {

∑
n xnen,l|

∑
|xn| < ∞}, etc., of W l, etc., we have

4
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Proposition 1. :
∏

n xn : is a single valued function if and only if ν is an
integer, and the followings hold;

1. If t 
= 0 and xf ∈ W 1,k+d/2, then :
∏

n xn : exists. If x ∈ W k+d/2, it exists

if and only if
∞∑

n=1

µs−(k+d/2)
n xf,n is holomorphic at s = 0.

2. :
∏

n xn : is analytic on W k+d/2 ⊕ Ce∞,k.

2 Regularized determinant

Let T be a densely defined linear operator on H. Then its regularized trace
(renormalized trace) with respect to G is defined by

trGT = tr(GsT )|s=0,

[CDP02, Payc01]. For example, trGI = ν. By using regularized trace, we
define

Definition 3. If T has the logarithm S = log T ; T = eS, then we define
regularized determinant detGT of T with respect to G by

detGT = etrGT = etr(GsT )|s=0. (5)

Note 1. Since log T is not unique, detGT is not unique in general.

Example 1. If I = Ix; x = (x1, x2, . . .), is a scaling operator Ixen = xnen, then
log Ix is Ilog x; log x = (log x1, log x2, . . .). Hence we have

detGIx = e
∑∞

n=1
µs

n log xn |s=0 =
∞∏

n=1

x
µs

n
n |s=0 =:

∞∏
n=1

xn : .

Especially, we have

detGG = detG, detGD = detD, G = D−1, (6)

where detD is the Ray-Singer determinant of D.

Note 2. We have detG(Ix + N) = detGIx, if N is a generalized nilpotent.

On the other hand, we have only detGPTP−1 = detP−1GP T in general. It
may different from detGT . For example, if G and T are

Ge2n−1 =
1
n

e2n−1, Ge2n =
1

n + 1
e2n, T e2n−1 = 2e2n−1, T e2n = 3e2n,

and Pe2n−1 = e2n, Pe2n = e2n−1, then

detGT = 2−1/23−3/2 
= detGPTP−1 = 2−3/23−1/2.

We have detGT = detGPTP−1 if P ∈ GL(∞), where GL(∞) is the closure
of the group of invertible linear operators of the form I + K, K is a compact
operator.

5
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3 Regularized integral

Let W k be a real Hilbert space, f a function on W k which is extended to W k,�

and expressed as f = limn→∞ f(x1, . . . , xn). Then the regularized integral∫
W k,�

f : d∞x : is defined by

∫
W k,�

f : d∞x := lim
n→∞

∫
Rn

f(x1, . . . , xn)d(xµs
1

1 ) · · · d(xµs
n

n )|s=0, (7)

[Asa04b], cf.[Asa04a, Asa04c]. Regularized integral on

W k,�
+ = {

∑
n

xf,nen,k + te∞,k ∈ W k,�|xf,n ≥ 0, n = 1, 2, . . . , t ≥ 0},

is similarly defined.
Regularized integral simplifies the fractional calculus lim

n→∞
I

µs
1

1 · · · Iµs
n

n f |s=0.
It is also interpreted as an application of the weak limit

lim
N→∞

∂N

∂x1 · · · ∂xN
:

∞∏
n=1

xn := 1,

which is hold on suitable function space [Asa04b].

Theorem 1. Let Ia, a = (a1, a2, . . .); Ia : W k → W l be a scaling operator,
and let Ia

astf(x) = f(Iax), f a function on W l. Then we have∫
W l,�

f : d∞x :=
∫

W k,�

|detGIa|−1I∗af : d∞x : . (8)

If Ia maps W k,�
+ to W l,�

+ , then we also have∫
W l,�

+

f : d∞x :=
∫

W k,�
+

|detGIa|−1f : d∞x : .

Example 2. To set e−π‖x‖2
= 0, if ‖x‖ = ∞, we extend e−π‖x‖2

to H�. If G is
the Green operator of an elliptic operator D, we have

e−π(x,Dx) = I∗√
D

e−π‖x‖2
, I√Den =

√
λnen, λn = µ−1

n .

Hence we get∫
W 1/2,�

e−π(x,Dx) : d∞x :=
∫

H�

|det
√

D|−1e−‖x‖2
: d∞x :=

1√
detD

.

This justifies physicist’s calculation
∫

e−π(x,Dx)Dx =
1√

detD
.

6
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4 Regularized Cauchy kernel

In the rest, we assume H is a complex Hilbert space. In W k,�, we set

T ∞,k
r = {

∞∑
n=1

znen,k ∈ W k,�||zn| = µd/2
n r}. (9)

If r = 1, we denote T ∞,k instead of T ∞,k
1 . Considering Cn to be {

∑n
j=1 zjej},

we have

T ∞,k
r ∩ Cn = {

n∑
j=1

zjej ||zj | = µ
k+d/2
j r}.

We denote this set by T n,k
r and set Dn,k

r = {
∑n

j=1 zjej ||zj | ≤ rµk
j }. Here k is

omitted if k = −d/2 and r is omitted if r = 1.
By the map w = za, the circle {z = eiθ|0 ≤ θ < 2π} is mapped to

{w = eiφ|0 ≤ φ < 2aπ}. That is we have

(2πi)a−1

a

∫
|z|=1

d(za)
za

= (2πi)a,

∫
|z|=1

dz =
∫ 2π

0

ieiθdθ.

Hence we have

lim
n→∞

∫
T n

( (2πi)µs
1−1

µs
1

d(zµs
1

1 )

z
µs

1
1

· · · (2πi)µs
n−1

µs
1

d(zµs
n

n )

z
µs

n
n

)
|s=0 = (2πi)ν . (10)

Here, T n is considered to be {eθ1i|0 ≤ θ1 < 2π} × · · · × {eθni|0 ≤ θn < 2π}.

We set : d∞z : |T n =
∞∏

n=1

( (2πi)µs
n−1

µs
n

d(zµs
n

n )
)
|s=0. Then by (10), we have

∫
T ∞

: d∞z : |T n

:
∏∞

n=1 zn :
= (2πi)ν . (11)

This formula is valid if we regard T ∞ = {eθ1i|0 ≤ θ1 < 2π} × {eθ2i|0 ≤ θ2 <
2π} × · · ·, because :

∏
n zn : is not single valued unless ν is an integer. But if

ν is an integer, we can regard T ∞ to be an ∞-dimensional torus.
On the other hand, since d(za)/za = adz/z, we have

lim
a→1

∫
γ

f(z)
d(za)
za

=
∫

γ

f(z)
dz

z
= 2πif(0),

if γ is a closed curve in D1 surrounding 0 and f is holomorphic on D1. Hence
we have

Theorem 2. If ν is an integer, f is a holomorphic function on D∞ and
γ = γ1 × γ2 × · · ·, γn is a closed curve in {zn||zn| < 1} surrounding 0. Then
we have

f(0) =
1

(2πi)ν

∫
γ

f(z)
: dz∞ : |T ∞

:
∏∞

n=1 zn :
. (12)

7
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Here, we say a function f on D∞ to be holomorphic, if
∂f

∂z̄n
= 0, n =

1, 2, . . .. In other words, f is holomorphic if it allows Taylor expansion f(z) =∑
i1,...,im

ci1,...,im
zi1
1 · · · zim

m .

Since dzn,k/zn,k = dzn/zn, zn,k = µ−k
n zn, (12) is valid if f is holo-

morphic on D∞,k and γ ⊂ D∞,k. By (12), if γn = ∂Γn, Γ = Γ1 ×
Γ2 × · · · and ζ = (ζ1, ζ2, . . .), ζn ∈ Γn , then we have the following
Cauchy’s integral expression of a holomorphic function f on D∞,k

f(ζ) =
1

(2πi)ν

∫
γ

f(z)
: d∞zn : |T ∞

:
∏∞

n=1(zn − ζn) :
. (13)

Note 3. If ν is an integer, :
∏

n zn : is an analytic function, but not holomor-
phic. For this function, we have

1
(2πi)ν

∫
T ∞

:
∞∏

n=1

zn :
: dz∞ : |T ∞

:
∏∞

n=1(zn − cn)
= 0, |cn| < 1, (14)

1
(2πi)ν

∫
T ∞

:
∞∏

n=1

zn :
: dz∞ : |T ∞

:
∏∞

n=1(zn − cn)
=

∞∏
n=1

cn, |cn| > 1. (15)

Therefore :
∏

n zn : behaves as if the principal part of a meromorphic function.

5 De Rham type cohomology with ∞-degree elements

In the rest of this paper, we assume ν to be an integer.
Existence of regularized Cauchy kernel implies existence regularized vol-

ume form : dv(T ∞) : on T ∞,k
r . To set zn = rneiθn , we may set

: dv(T ∞) :=
∞∏

n=1

i(2πi)µs
n−1dθn|s=0. (16)

We also set

: dv(T ∞−{i1,...,ip}) :=
∏

n/∈{i1,...,ip}
i(2πi)µs

n−1dθn|s=0, (17)

and define

dθj1 ∧ · · · ∧ dθjq∧ : dv(T ∞−{i1,...,ip}) :=

=
{
± : dv(T ∞−{k1,...,kr}) : if{j1, . . . , jq} ∪ {k1, . . . , kr} = {i1, . . . , ip},

0 : otherwise.

The cohomology algebra H∗(T ∞, C) of T ∞ is the Grassmann algebra gen-
erated by dθ1, dθ2, . . .. To define Hodge ∗-operator (Poincaré duality) by

8
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∗(dθi1 ∧ · · · ∧ dθip
) = (−1)i1+···+ip−p(p−1)/2 : dv(T ∞−{i1,...,ip}) :, (18)

we obtain a de Rham type cohomology algebra

H∗,∗(T ∞, C) = H∗(T ∞, C)⊕ ∗
(
H∗(T ∞, C)

)
. (19)

Note 4. Since multiplicative structure of H∗,∗(T ∞, C) depends on ν, it is not
a topological invariant.

Let W k,�
∗ be {

∑
n znen ∈ W k,�|zn 
= 0, n = 1, 2, . . .}, and W k,�

+ is same as
in §3. Then we have

W k,�
∗ = T ∞,k × (W k,�

∗ ∩W k,�
+ ). (20)

Hence we can define de Rham type cohomology with infinite degree elements
H∗,∗(W k,�

∗ , C) of W k,�
∗ by the same way. In this case, we denote

∗dzi1 ∧ . . . ∧ dzip
=: dz∞−{i1,...,ip} : |T ∞ . (21)

Let W k,�
i1,...,ip

be the subspace of W k,� defined by zi1 = 0, . . . , zip
= 0. Then

the Cauchy kernel of W k,�
i1,...,ip

is
: dz∞−{i1,...,ip} : |T ∞

:
∏

n/∈{i1,...,ip} zn :
, and we have

H∗,∗(W k,�
∗ , C) ∼= H∗,∗(T ∞, C). (22)

H∗,∗(W k,�
∗ , C) = H∗(W k,�

∗ , C)⊕ ∗(H∗(W k,�
∗ , C)).

H∗(W k,�
∗ , C) is isomorphic to H∗(T ∞, C). Hence it is an ∞-dimensional Grass-

mann algebra.

Note 5. Since there is the regularized volume form : dω : of the sphere Ŝ∞ of
Ĥ, Hilbert space added the longitude, we can define the real coefficients de
Rham type cohomology H∗,∗(Ŝ∞,R) of Ŝ∞ by

H∗,∗(Ŝ∞,R) = H0(Ŝ∞,R)⊕H∞(Ŝ∞,R), (23)
H∞(Ŝ∞,R) = ∗H0(Ŝ∞, C) ∼= R : dω : .

We conclude this section asking are there any relation between de Rham
type cohomology with ∞-degree elements and entire cyclic cohomology, or
stochastic de Rham complexes (cf. [Con98, Cun02, Léan03]).

6 Regularized residue

We set W k,�
n,∗ = {

∑
m>n zmem ∈ W k,�|zm 
= 0,m = n + 1, . . .} and Cn

∗ =
{
∑

m zmem ∈ Cn|zm 
= 0}. We also denote W k,�
n the subspace of W k,� defined

by z1 = 0, . . . , zn = 0. If m ≤ n, we regard

9
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Cm
∗ ×W k,�

n ⊂ W k,�
n−m, Cm ×W k,�

n,∗ ⊂ W k,�
n−m.

Then composing the residue maps

res : Hp(Cm
∗ ×W k,�

n , C) → Hp−1(Cm−1 ×W k,�
n , C),

the composed residue map [Ler59], cf.[Asa68]

resm : Hm(Cm
∗ ×W k,�

n , C) → H0(W k,�
n , C) ∼= C,

is obtained,and we have∫
|z1|=ε1,...,|zm|=εm

φ = (2πi)mresm(φ).

Definition 4. If p ≥ n, we define the map res∞−p by

res∞−p ∗
( : dz∞−{i1,...,ip} : |T ∞

:
∏

n/∈{i1,...,ip} zn :
)

=
dzin+1

zin+1

∧ . . . ∧
dzip

zip

. (24)

Since H∞−n(W k,�
∗ , C) = ∗Hn(W k,�

∗ , C), res∞−p induces the map

res∞−p : H∞−n(W k,�
∗ , C) → Hp−n(Cp−n

∗ , C) ∼= C,

and we have the following regularized residue formula∫
T ∞−n,k

r

∗φn = (2πi)ν−n+p

∫
T p−n

res∞−p(∗φn). (25)

Here, T ∞−n,k
r is the torus in W k,�

n defined by |zm| = r, m ≥ n and T p−n is the
torus in Cp−n defined by |zj | = cj , j = 1, . . . , p− n. The integral in the right
hand side is done in usual sense, but the the integral in the left hand side is
the regularized integral. Cauchy’s integral formula on W k,� is a consequence
of this formula.

By using the map res∞−p, we have the following exact sequence

H∞−p(Cp−n ×W k,�
p−n,∗, C) −→ι H∞−p(W k,�

∗ , C) −→

−→res∞−p

Hp−n(Cp−n
∗ , C) −→δ H∞−p+1(Cp−n ×W k,�

p−n,∗, C).

This sequence is not embedded in long exact sequence of de Rham type co-
homology groups. Because res∞−p is a kind of composed residue. But we can
not get res∞−p composing ordinary residue maps.

Note 6. If X is an orientable ∞-dimensional smooth manifold modeled by Ĥ
and Y is an orientable smooth r-dimensional submanifold of X (r < ∞), then
if H∗,∗(X,R) and H∗,∗(X − Y,R) are defined, the regularized residue map
res : H∞−p(X − Y,R) → Hr−p+1(Y,R) may defined and we may have the
following regualrized residue exact sequence (cf.[1])

· · · −→ H∞−p(X,R) −→ι H∞−p(X − Y,R) −→res

−→ Hr−p+1(Y,R) −→δ H∞−p+1(X,R) −→ · · · .
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Fractional spaces generated by the positive

differential and difference operators in a

Banach space

Allaberen Ashyralyev

Department of Mathematics, Fatih University, Istanbul, Turkey
aashyr@fatih.edu.tr

The structure of the fractional spaces Eα,q(Lq[0, 1], Ax) generated by the pos-
itive differential operator Ax defined by the formula Axu = −a(x)d2u

dx2 + δu,

with domain D(Ax) = {u ∈ C(2)[0, 1] : u(0) = u(1), u′(0) = u′(1)} is in-
vestigated. It is established that for any 0 < α < 1

2 the norms in the spaces
Eα,q(Lq[0, 1], Ax) and W 2α

q [0, 1] are equivalent. The positivity of the differen-
tial operator Ax in W 2α

q [0, 1](0 ≤ α < 1
2 ) is established. The discrete analogy

of these results for the positive difference operator Ax
h a second order of ap-

proximation of the differential operator Ax, defined by the formula

Ax
huh =

{
−a(xk)

uk+1 − 2uk + uk−1

h2
+ δuk

}M−1

1

, uh = {uk}M
0 ,Mh = 1

with u0 = uM and −u2 + 4u1 − 3u0 = uM−2 − 4uM−1 + 3uM is estab-
lished. In applications, the coercive inequalities for the solutions of the nonlo-
cal boundary-value problem for two-dimensional elliptic equation and of the
second order of accuracy difference schemes for the numerical solution of this
problem are obtained.

1 Introduction

It is a well-known (see, e.g., [Kre66, Gri84, Fat85]) that the study of the various
properties of partial differential equations is based on a positivity property of
the differential operator in a Banach space. The positivity of the wider class of
differential operators has been studied by many researchers (see [Sol59, Sol60,
KZPS76, Ste80]). To prove stability, in a number of works (see [AS94]-[AS84]
and the references given therein) difference schemes were treated as operator
equations in a Banach space, and the investigation was based on the positivity
property of the operator coefficient. Important progress has been made in the
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study of positive operators from the viewpoint of the stability analysis of
high order of accuracy difference schemes for partial differential equations.
Application of theory of fractional spaces generated by the positive operators
in a Banach space permits us to establish the stability and coercive stability
of the difference schemes in various norms for partial differential equations
specially when we cannot use approaches of a maximum principle and energy
method. We introduce the Banach spaces E

α,q
= E

α,q
(E,A)(0 < α < 1),

consisting of all v ∈ E for which the following norms are finite:

‖ v ‖Eα,q
= (

∞∫
0

‖ zαA(z + A)−1v ‖q
E

dz

z
)

1
q , 1 ≤ q < ∞,

‖ v ‖Eα,∞ = sup
z>0

||zαA(z + A)−1v ‖E , q = ∞.

The positive operator A commutes with its resolvent (λ + A)−1 for all
λ, λ ∈ (0,∞). Therefore, using the definition of the fractional spaces Eα,q =
Eα,q (E,A), we obtain

‖ (λ + A)−1 ‖Eα,q→Eα,q
≤‖ (λ + A)−1 ‖E→E (1)

for all α, α ∈ (0, 1) and q, q ∈ [1,∞].This means that from the positivity of
operator A in E it follows the positivity of this operator A in E

α,q
for all

α, α ∈ (0, 1) and q, q ∈ [1,∞].
The investigation of the well-posedness of the various types of boundary

value problems for parabolic and elliptic differential and difference equations is
based on the positivity of elliptic differential and difference operators A in var-
ious Banach spaces E and on the structure of the fractional spaces E

α,q
gener-

ated by these positive operators. Note that an excellent survey of works in the
theory of fractional spaces generated by the positive multidimensional differ-
ence operators in the space and its applications to partial differential equations
parabolic and elliptic types was given in the books [AS94, AS04, Ash92]. The-
ory and applications of positive operators in Banach spaces have been studied
extensively by many researchers (see [Sob71, AS77, AS79], and [SS81]-[AY06]
and the references therein). We consider the differential operator Ax defined
by the formula

Axu = −a(x)
d2u

dx2
+ δu, (2)

with domain D(Ax) = {u ∈ C(2)[0, 1] : u(0) = u(1), u′(0) = u′(1)}. Here a(x)
is a smooth function defined on the segment [0, 1] and a(x) ≥ a > 0, δ > 0.

We introduce the Banach space Cβ [0, 1](0 < β < 1) of all continuous
functions ϕ(x) defined on [0, 1] and satisfying a Holder condition and ϕ(0) =
ϕ(1) for which the following norm is finite:

14
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||ϕ||Cβ [0,1] = ||ϕ||C[0,1] + sup
0≤x<x+τ≤1

|ϕ(x + τ)− ϕ(x)|
τβ

,

where C[0, 1] is the space of all continuous functions ϕ(x) defined on [0, 1]
and ϕ(0) = ϕ(1) with the usual norm

||ϕ||C[0,1] = max
0≤x≤1

|ϕ(x)|.

In the paper [AK95] the following two theorems on a structure of fractional
spaces Eα(C[0, 1], Ax) and on the positivity of Ax in C2α[0, 1](0 < α < 1

2 )
were established.

Theorem 1. For 0 < α < 1/2 the norms of the spaces Eα(C[0, 1], Ax) and
C2α [0, 1] are equivalent.

Theorem 2. For all λ ∈ Rϕ, |λ| ≥ K0 > 0 and 0 < α < 1/2 the resolvent
(λ + Ax)−1 is subject to the bound∥∥∥(λ + Ax)−1

∥∥∥
C2α[0,1]→C2α[0,1]

≤ M(ϕ, δ)
α(1− 2α)

(1 + |λ|)−1,

where M(ϕ, δ) does not depend on λ and α.

In the papers [AK01] and [AYA05] the positive difference operators Ax
h

of a first order of approximation of the differential operator Ax, defined by
the formula

Ax
huh =

{
−a(xk)

uk+1 − 2uk + uk−1

h2
+ δuk

}M−1

1

, uh = {uk}M
0 (3)

with u0 = uM and u1 − u0 = uM − uM−1 and of a second order of approxi-

mation of the differential operator Ax, defined by the formula

Ax
huh =

{
−a(xk)

uk+1 − 2uk + uk−1

h2
+ δuk

}M−1

1

, uh = {uk}M
0 (4)

with u0 = uM and −u2 +4u1−3u0 = uM−2−4uM−1 +3uM was presented. It
was proved that the spaces Eα(Ch, Ax

h) and C2α
h coincide for any 0 < α < 1

2 ,
and their norms are equivalent uniformly in h, 0 < h ≤ h0. The positivity of
the difference operators Ax

h in C2α
h (0 ≤ α < 1

2 ) was obtained.
In the present paper we study the structure of the fractional spaces

Eα,q(Lq[0, 1], Ax) generated by the positive differential operator Ax defined
by the formula(2). It is established that for any 0 < α < 1

2 the norms in the
spaces Eα,q(Lq[0, 1], Ax) and W 2α

q [0, 1] are equivalent. The positivity of the
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differential operator Ax in W 2α
q [0, 1](0 ≤ α < 1

2 ) is established. Here the Ba-
nach space W β

q [0, 1] is the space of the all integrable functions f(x) defined
on [0, 1], equipped with the norm

‖ f ‖W β
q [0,1]= {

1∫
0

1∫
0

|f(x)− f(x + y)|q
|y|1+βq

dxdy+ ‖ f ‖Lq [0,1]}
1
q ,

0 < β < 1, 1 ≤ q ≤ ∞,

where Lq[0, 1] is the space of the all integrable functions defined on [0, 1],
equipped with the norm

‖ f ‖Lq [0,1]= {
1∫

0

|f(x)|qdx} 1
q .

Moreover, the discrete analogy of these results for the positive difference op-
erator Ax

h defined by the formula (4) is investigated. It is established that the
spaces Eα,q(Lq,h, Ax

h) and W 2α
q,h coincide for any 0 < α < 1

2 , and their norms
are equivalent uniformly in h, 0 < h ≤ h0.The positivity of the difference
operator Ax

h in W 2α
q [0, 1]h(0 ≤ α < 1

2 ) is established. In applications, the
coercive inequalities for the solutions of the nonlocal boundary-value prob-
lem for two-dimensional elliptic equation and of the second order of accuracy
difference schemes for the numerical solution of this problem are obtained.

2 The positivity of differential operator Ax.The

structure of fractional spaces Eα,q(Lq[0, 1], Ax)

Theorem 3. For any 0 < α < 1
2 the norms of the spaces Eα,q(Lq[0, 1], Ax)

and W 2α
q [0, 1] are equivalent.

The proof of this theorem follows the scheme of the proof of the theorem
in [AK95] and it is based on the formulas

Ax (λ + Ax)−1
f(x) =

δ

λ + δ
f(x) +

1∫
0

J(x, s;λ + δ)(f(x)− f(s))ds,

f(x) =

1∫
0

∞∫
0

J(x, s;λ + t + δ)Ax (λ + t + Ax)−1
f(s)dtds

for the positive differential operator Ax and on the pointwise estimates of the
Green’s function of the resolvent equation
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Axu + λu = f

or

−a(x)
d2u(x)

dx2
+ δu(x) + λu(x) = f(x), 0 < x < 1, (5)

u(0) = u(1), u′(0) = u′(1)

and its derivative.

Theorem 4. For all λ, λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2} , α ∈ (0, 1
2 ) and

|λ| ≥ K0 > 0 the resolvent (λI + Ax)−1 is subject to the bound

∥∥∥(λI + Ax)−1
∥∥∥

W 2α
p [0,1]→W 2α

p [0,1]
≤ M(ϕ, δ)

α(1− 2α)
(1 + |λ|)−1,

where M(ϕ, δ) does not depend on λ.

The proof of this theorem follows the scheme of the proof of the theorem in
[AK95] and it is based on the estimate (1) and on the positivity of differential
operator Ax in Lp[0, 1]. The proof of the positivity of differential operator Ax

in Lp[0, 1] is based on the formula

(λ + Ax)−1
f(x) =

1∫
0

J(x, s;λ + δ)f(s)ds

and on the pointwise estimates for the Green’s function of the resolvent equa-
tion (5) and its derivative.

Now, we consider the nonlocal boundary-value problem for two-dimensional
elliptic equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∂2u
∂t2 − a(x)∂2u

∂x2 + δu = f(t, x), 0 < t < T, 0 < x < 1,

u(0, x) = ϕ(x), u(T, x) = ψ(x), 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1), 0 ≤ t ≤ T,

(6)

where a(x), ϕ(x), ψ(x) and f(t, x) are given sufficiently smooth functions and
a(x) ≥ a > 0, δ > 0 is a sufficiently large number.

Theorem 5. For the solution of the boundary value problem (1) the following
coercive inequalities are valid:

‖ ∂2u

∂t2
‖Lp([0,T ],W 2α

q [0,1]) + ‖ ∂2u

∂x2
‖Lp([0,T ],W 2α

q [0,1])

17
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≤ M(q, p, α) ‖ f ‖Lp([0,T ],W 2α
q [0,1]) +M(α)(||ϕ||W 2α

q [0,1] + ||ψ||W 2α
q [0,1]),

1 < p, q < ∞, 0 < α <
1
2
.

Here M(q, p, α) and M(α) are independent of f(t, x), ϕ(x) and ψ(x).

The proof of Theorem 5 is based on the Theorem 3 on the structure of the
fractional spaces Eα,q(Lq[0, 1], Ax) and the Theorem 4 on the positivity of
the operator Ax in W 2α

q [0, 1] and on the following theorems on the structure
of the fractional spaces Eα,q(Lq[0, 1], (Ax)

1
2 )[Ash92, Tri78] and on coercivity

inequalities in Lp(Eα,q)[AS04] for the solution of the abstract boundary-value
problem for differential equation

−v′′(t) + Av(t) = f(t) (0 ≤ t ≤ T ), v(0) = v0, v(T ) = vT (7)

in an arbitrary Banach space E with the linear positive operator A .

Theorem 6. The spaces Eα,q(Lq, A
x) and E∗

2α,q(Lq, (Ax)
1
2 ) coincide for any

0 < α < 1
2 , and their norms are equivalent.

Theorem 7. Let 1 < p, q < ∞ and 0 < α < 1.Suppose that A is the positive
operator in a Banach space E. Then problem (7) is well posed in Lp(E∗

α,q)
and the coercivity inequality holds:

||v′′‖Lp(E∗
α,q) + ‖Av‖Lp(E∗

α,q) ≤
M(q)p2

α(1− α)(p− 1)
‖f‖Lp(E∗

α,q)

+M(||Aϕ||E∗
α,q

+ ||Aψ||E∗
α,q

),

where M,M(q) do not depend on α, p, ϕ, ψ and f(t). Here, the Banach space
E∗

α,q = E∗
α,q(E,A

1
2 )(0 < α < 1, 1 < q < ∞) consists of those v ∈ E for which

the norm

‖ v ‖E∗
α,q

= (
∫ ∞

0

λ1−α ‖ A
1
2 exp{−λA

1
2 }v ‖q

E

dλ

λ
)
1/q

is finite.

3 The positivity of difference operator Ax
h.The structure

of fractional spaces Eα,q(Lq[0, 1]h, Ax
h)

We denote Lq,h = Lq,h[0, 1]h and Wα
q,h = Wα

q [0, 1]h, 1 ≤ q < ∞ the Banach
spaces of all grid functions vh = {vk}M−1

1 defined on [0, 1]h = {xk = kh, 0 ≤
k ≤ M, Mh = 1} equipped with the norms

‖ ϕ
h‖Lq,h

= (
M−1∑
k=1

|ϕk|qh)
1
q ,
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‖ ϕ
h‖W β

q,h
= (

M−1∑
k=1

M−1∑
m=1

|ϕk − ϕk+m|q
|mh|1+βq

h2 + ‖ ϕ
h‖Lq,h

)
1
q ,

0 < β < 1, 1 ≤ q < ∞.

Note that the Banach space E′
α,q = E′

α,q(E,B)(0 < α < 1) consists of those
v ∈ E for which the norm

‖ v ‖E′
α,q

= (

∞∫
0

[zα ‖ B(z + B)−1v ‖E ]q
dz

z
)

1
q , 1 ≤ q < ∞,

‖ v ‖E′
α
=‖ v ‖E′

α,∞= sup
λ>0

λα ‖ B(λ + B)−1v ‖E

is finite.

Theorem 8. The the spaces Eα,q(Lq,h, Ax
h) and W 2α

q,h coincide for any 0 <

α < 1
2 , and their norms are equivalent uniformly in h, 0 < h ≤ h0.

The proof of this theorem follows the scheme of the proof of the theorem
in [AK01] and it is based on the formulas

Ax
h (λ + Ax

h)−1
fk = λ

M−1∑
j=1

J(k, j; λ + δ) [fk − fj ] h +
δ

λ + δ
fk, 0 ≤ k ≤ M,

fk =

∞∫
0

M−1∑
j=1

J (k, j; t + λ + δ) Ax
h (t + λ + Ax

h)−1
fjhdt, 0 ≤ k ≤ M

for the positive difference operator Ax
h and on the pointwise estimates for the

Green’s function of the resolvent equation

Ax
huh + λuh = fh

or
−ak

uk+1 − 2uk + uk−1

h2
+ δuk + λuk = fk, (8)

ak = a(xk), fk = f(xk), xk = kh, 1 ≤ k ≤ M − 1,

u0 = uM ,−u2 + 4u1 − 3u0 = uM−2 − 4uM−1 + 3uM

and its difference derivative.

Theorem 9. For all λ, λ ∈ Rϕ = {λ : |arg λ| ≤ ϕ, ϕ < π/2} , α ∈ (0, 1
2 ) and

|λ| ≥ K0 > 0 the resolvent (λI + Ax
h)−1 is subject to the bound∥∥∥(λI + Ax

h)
−1
∥∥∥

W 2α
p,h

→W 2α
p,h

≤ M(ϕ, δ)

α(1− 2α)
(1 + |λ|)−1,

where M(ϕ, δ) does not depend on λ and h.
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The proof of this theorem follows the scheme of the proof of the theorem in
[AK01] and it is based on the estimate (1) and on the positivity of difference
operator Ax

h in Lp,h.The proof of the positivity of difference operator Ax
h in

Lp,h is based on the formula

(λ + Ax
h)−1

fk =
M−1∑
j=1

J(k, j; λ + δ)fjh, 0 ≤ k ≤ M,

(λ + Ax)−1
f(x) =

1∫
0

J(x, s;λ + δ)f(s)ds

and on the pointwise estimates for the Green’s function of the resolvent equa-
tion (8) and its difference derivative.

In applications, we consider the difference scheme of the second order of
accuracy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
τ2 (un

k+1 − 2un
k + un

k−1)− an 1
h2 (un+1

k − 2un
k + un−1

k ) + δun
k = ϕn

k ,

ϕn
k = f(tk, xn), an = a(xn), tk = kτ, xn = nh,

1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1, Nτ = 1,Mh = 1,

un
0 = ϕn, un

N = ψn, ϕn = ϕ(xn), ψn = ψ(xn), xn = nh, 0 ≤ n ≤ M,

u0
k = uM

k ,−u2
k + 4u1

k − 3u0
k = uM−2

k − 4uM−1
k + 3uM

k , 0 ≤ k ≤ N

(9)

for the approximate solution of the nonlocal boundary-value problem (6).

Theorem 10. Let τ and h be a sufficiently small numbers. For the solution
of the difference problem (9) the following inequalities are valid:

‖ {τ−2(uh
k+1 − 2uh

k + uh
k−1)}N−1

1 ‖Lp,τ(W 2α
q,h)

+ ‖ {{h−2(un+1
k − 2un

k + un−1
k )}M−1

1
}N−1
1 ‖Lp,τ(W 2α

q,h)

≤ M(p, q, α) ‖ {ϕh
k}N−1

1 ‖Lp,τ(W 2α
q,h)

+M(p, α)(‖ {h−2(ϕn+1 − 2ϕn + ϕn−1)}M−1

1 ‖W 2α
q,h

+ ‖ {h−2(ψn+1 − 2ψn + ψn−1)}M−1

1 ‖W 2α
q,h

), 1 < p, q < ∞, 0 < α <
1
2
,

where M(p, q, α) and M(p, α) do not depend on {ϕh
k}N−1

1 ,ϕh, ψh, h and τ.
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The proof of Theorem 10 is based on the Theorem 8 on the structure of
the fractional spaces Eα,q(Lq,h, Ax

h) and the Theorem 9 on the positivity of
the operator Ax

h in W 2α
q,h and on the following theorems on the structure of the

fractional spaces Eα,q(Lq,h, (Ax
h)

1
2 ) [Ash92] and on coercivity inequalities in

Lp,τ (Eα,q) [AS04] for the solution of the second order of accuracy difference
scheme ⎧⎨⎩

− 1
τ2 (uk+1 − 2uk + uk−1) + Auk = fk, fk = f(tk), tk = kτ,

1 ≤ k ≤ N − 1, Nτ = 1, u0 = ϕ, uN = ψ
(10)

for the approximate solution of the boundary-value problem (7).

Theorem 11. The spaces Eα,q(Lq,h, Ax
h) and E2α,q(Lq,h, (Ax

h)
1
2 ) coincide for

any 0 < α < 1
2 , and their norms are equivalent uniformly in h, 0 < h ≤ h0.

Theorem 12. Let 1 < p, q < ∞ and 0 < α < 1.Suppose that A is the positive
operator in a Banach space E. Then problem (10) is well posed in Lp,τ (Eα,q)
and the coercivity inequality holds:

||{ 1
τ2

(uk+1 − 2uk + uk−1)}N−1
1 ‖Lp,τ (Eα,q) + ‖{Auk}N−1

1 ‖Lp(Eα,q)

≤ M(q)p2

α(1− α)(p− 1)
‖{fk}N−1

1 ‖Lp(Eα,q) + M(||Aϕ||Eα,q
+ ||Aψ||Eα,q

),

where M,M(q) do not depend on α, p, ϕ, ψ, {fk}N−1
1 and τ.
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The time-fractional diffusion equation is obtained by generalizing the standard
diffusion equation by using a proper time-fractional derivative of order 1− β
in the Riemann-Liouville (R-L) sense or of order β in the Caputo (C) sense,
with β ∈ (0, 1) . The two forms are equivalent and the fundamental solution
of the associated Cauchy problem is interpreted as a probability density of a
self-similar non-Markovian stochastic process, related to a phenomenon of sub-
diffusion (the variance grows in time sub-linearly). A further generalization
is obtained by considering a continuous or discrete distribution of fractional
time-derivatives of order less than one. Then the two forms are no longer
equivalent. However, the fundamental solution still is a probability density of a
non-Markovian process but one exhibiting a distribution of time-scales instead
of being self-similar: it is expressed in terms of an integral of Laplace type
suitable for numerical computation. We consider with some detail two cases of
diffusion of distributed order: the double order and the uniformly distributed
order discussing the differences between the R-L and C approaches. For
these cases we analyze in detail the behaviour of the fundamental solutions
(numerically computed) and of the corresponding variance (analytically
computed) through the exhibition of several plots. While for the R-L and
for the C cases the fundamental solutions seem not to differ too much for
moderate times, the behaviour of the corresponding variance for small and
large times differs in a remarkable way.
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1 Introduction

The main physical purpose for adopting and investigating diffusion equations
of fractional order to describe phenomena of anomalous diffusion usually met
in transport processes through complex and/or disordered systems including
fractal media. In this respect, in recent years interesting reviews, see e.g.
[MK00, MK04, PSW05, Zas02], have appeared, to which (and references
therein) we refer the interested reader.

All the related models of random walk turn out to be beyond the classical
Brownian motion, which is known to provide the microscopic foundation of
the standard diffusion, see e.g. [KS05, SK05]. The diffusion-like equations
containing fractional derivatives in time and/or in space are usually adopted
to model phenomena of anomalous transport in physics, so a detailed study
of their solutions is required.

Our attention in this paper will be focused on the time-fractional diffusion
equations of a single or distributed order less than 1, which are known to be
models for sub-diffusive processes.

Since in the literature we find two different forms for the time-fractional
derivative, namely the one in the Riemann-Liouville (R-L) sense, the other in
the Caputo (C) sense, we will study the corresponding time-fractional diffusion
equations separately. Specifically, we have worked out how to express their
fundamental solutions in terms of an integral of Laplace type suitable for a
numerical evaluation. Furthermore we have considered the time evolution of
the variance for the R-L and C cases. It is known that for large times the
variance characterizes the type of anomalous diffusion.

The plan of the paper is as follows.
In Section 2, after having shown the equivalence of the two forms for the

time-fractional diffusion equation of a single order, namely the R-L form and
the C form, we recall the main results for the common fundamental solution,
which are obtained by applying two different strategies in inverting its Fourier-
Laplace transform. Both techniques yield the fundamental solution in terms
of special function of the Wright type that turns out to be self-similar through
a definite space-time scaling relationship.

In Section 3 we apply the second strategy for obtaining the fundamental
solutions of the time-fractional diffusion equation of distributed order in the
R-L and C forms, assuming a general order density. We provide for these
solutions a representation in terms of a Laplace-type integral of a Fox-Wright
function that appears suitable for a numerical evaluation in finite space-time
domains. We also provide the general expressions for the Laplace transforms
of the corresponding variance.

Then, in Section 4, we consider two case-studies for the fractional diffusion
of distributed order: as a discrete distribution we take two distinct orders
β1, β2 with 0 < β1 < β2 ≤ 1; as continuous distribution we take the
uniform density with 0 < β < 1. For these cases we provide the graphical
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