Mitochondrial Medicine
Anna Gvozdjáková
Editor

Mitochondrial Medicine

Mitochondrial Metabolism, Diseases, Diagnosis and Therapy

Springer
This Book is Dedicated To The Memory of My Late Husband

Professor Ján Gvozdják, MD, PhD, DSc, FESC Lecturer, WHO Consultant in Cardiomyopathy, Specialist in Cardiology, Internal Medicine, Biochemistry and Mitochondrial Bioenergetics and Expert in the Application of Experimental Research to Clinical Medicine.
Preface

The target groups of this textbook Mitochondrial Medicine are practitioners of medicine, specialists in individual medical branches, pharmacologists, and sports doctors. The updated scientific and clinical information and knowledge provide a broad spectrum for postgraduate education of physicians, pharmacologists, and specialists in other life sciences. Students of relevant branches at universities may find in the book a valuable source of information, which might serve as direction indicator in their future professional career.

I am confident that the usefulness of this monograph is warranted also by the international participation of specialists as contributors. The textbook will hopefully provide relevant information for many scientific branches of clinical and experimental medicine and will assist doctors involved in establishing diagnosis and devising the management of mitochondrial diseases.

Professor Rolf Luft can be considered the father of Mitochondrial Medicine as he was the first to carry out a mitochondrial study in man in the years 1959–1962. 1970 is the year of birth of Mitochondrial Medicine in Comenius University in Bratislava, Slovakia. The Pharmacobiochemical Laboratory of the Third Department of Medicine of the Medical Faculty was the birthplace of Mitochondrial Medicine. In cooperation with the Head of the Department, Professor Ján Gvozdják, MD, PhD., DSc, we devoted 36 years of our married life to the problem area of mitochondria. From 1970 up to the present day, the focus of interest of several coworkers and institutions have been metabolic studies of mitochondria in different experimental models (smoke mitochondrial cardiomyopathy, alcoholic mitochondrial cardiomyopathy, ischemia-reperfusion of the isolated heart, diabetic mitochondrial cardiomyopathy, Huntington’s disease, Alzheimer’s disease, adjuvant arthritis, etc.) and therapeutic intervention in these conditions, particularly the effect of CoQ_{10}. The obtained results elucidated some metabolic processes involved in several diseases and have found their application in clinical medicine.

Mitochondria, small subcellular organelles, are present in all eukaryotic cells. They are considered the generators of energy production in the body and belong to the main sources of reactive oxygen species generation. Coenzyme Q_{10}, the mobile part of the mitochondrial respiratory chain, has a key position in energy production. Evidence on the biological clock of CoQ_{10} and of oxidative phosphorylation of mitochondria has provided insight into the relationship of these processes with the
origin, development and course of many diseases, including cerebral episodes and acute myocardial infarction. CoQ_{10} deficiency, impairment of mitochondrial function and oxidative stress belong to the underlying metabolic causes in the etiopathogenesis of many diseases.

This book presents joint aspects of clinical medicine with metabolic phenomena of mitochondrial function obtained in experimental medicine. Determination of mitochondrial respiration and oxidative phosphorylation does not belong to common diagnostic methods of mitochondrial diseases in patients since several milligrams or even grams of human tissue would be required for the isolation of mitochondria from individual organs or for the preparation of skinned fibers. For this reason we consider metabolic studies of mitochondria in experimental models of mitochondrial derangements to be useful in yielding valuable information also with respect to clinical medicine.

The textbook is focused on four problem areas: mitochondrial physiology, mitochondrial medicine, diagnostic methods in mitochondrial derangements and diseases, and therapeutic interventions aimed at regeneration of impaired mitochondria.

An important supplement of mitochondrial physiology is the information on the biological clock of coenzyme Q_{10} and on the circadian cascade of oxidative phosphorylation, which is presented by Anna Gvozdjáková in Chapter 1. Zdenka Ðuračková presents an overview on oxidants, antioxidants, and oxidative stress in Chapter 2.

The general overview of chronobiology provided by Franz Halberg, considered worldwide the father of chronobiology, is combined in Chapter 3 with the specialized part on coenzyme Q_{10} and mitochondrial medicine.

In the application of methods of chronobiometric analysis of mitochondrial functions, Miroslav Mikulecký, doctor of medicine and outstanding statistician, presents the mode of statistical evaluation of results with 95% statistical significance in Chapter 4. Chapter 5, presented by Anna Gvozdjáková provides basic information on mitochondrial medicine.

The author of Chapter 6 on mitochondrial cardiology is Ivan Pecháň, medical specialist and biochemist.

The original results of studies of the mitochondrial respiratory chain and coenzyme Q_{10} in endomyocardial biopsies from the transplanted human heart and their relationship to the development of transplant rejection highlight the importance of well-functioning mitochondria with intact ATP production. Chapter 7, provided by Anna Gvozdjáková, is on the impairment, reduced function of the mitochondrial respiratory chain and CoQ_{10} deficiency in direct correlation with the origin and development of human transplanted heart rejection.

In Chapter 8, Jozef Čársky gives an overview of metabolic processes in diabetes. Ram B. Singh and Franz Halberg shaped the idea of the involvement of biological rhythms in the possible relationship between ATP production as well as CoQ_{10} concentration in mitochondria of the heart muscle and brain on the one hand and acute cerebral episodes and myocardial infarction on the other. At our institute, we were intrigued by the idea and on using Halberg’s chronobiological method,
scopic and circadian rhythms of CoQ_{10} were established in mitochondria of
the heart muscle and in the brain in healthy and diabetic rats, along with the
mitochondrial circadian cascade of oxidative phosphorylation. The topic of diabetes
was thus supplemented by findings on mitochondrial functions of the cardiac muscle
in experimentally induced diabetes, the CoQ_{10} clock, and the circadian cascade of
oxidative phosphorylation of diabetic mitochondria by Miroslav Mikulecký, Anna
Gvozdjáková, Jarmila Kucharská, and Ram B. Singh.

Mitochondrial nephrology is the topic of Chapter 9, written by Katarína
Gazdíková and František Gazdík. The survey presents both physiological and path-
ologically altered functions of the kidney.

The problem area of Chapter 10, by Janka Lipková is energy production in mito-
chondria of skeletal muscles, oxidative damage, antioxidants, and aspects of these
issues relevant in sports.

Chapter 11 by Jozef Rovenský and Karel Pavelka gives a broad survey of rheu-
matoid arthritis, commenting on diagnostic and therapeutic issues of the disease.
The chapter is supplemented by an experimental study of adjuvant arthritis and
mitochondria by Katarína Bauerova and Jarmila Kucharská.

Updated knowledge on mitochondrial immunology is presented in Chapter 12
by František Gazdík and Katarína Gazdíková.

Chapter 13 presented by Anna Gvozdjáková is concerned with mitochondrial
spermatopathy, providing current information on the role of spermatozoal mito-
chondria in male infertility.

Current diagnostic methods of mitochondrial defects, concerning particularly
metabolic derangements, are presented in Chapter 14 by Anna Gvozdjáková,
Jarmila Kucharská, and Anna Hlavatá.

A detailed theoretical survey of nuclear magnetic resonance and its application
in metabolic studies can be found in Chapter 15 by Tibor Liptaj.

Chapter 16 falls within the therapeutic part of the monograph. The problem area
of coenzyme Q_{10} is brilliantly treated of both from clinical and theoretical aspects.
The author of the chapter is the President of the International Coenzyme Q_{10}
Association, G. Paolo Littarru with his coworkers.

Supplementation with CoQ_{10} in children with metabolic derangements, in
patients with nephropathy, asthma, and diabetes is presented in four individual
studies, including original results, in Chapter 17. The first study is by Anna Hlavatá,
Jarmila Kucharská, and Anna Gvozdjáková, the second by Anna Gvozdjáková
and Jarmila Kucharská, the third by Anna Gvozdjáková, and the fourth by Anna
Gvozdjáková, Patrik Palacka, Jarmila Kucharská, and Ján Murín.

Supplementation with CoQ_{10} in experimental models of Alzheimer’s disease,
Huntington’s disease, and adjuvant arthritis is dealt with in three studies with origi-
nal results, which are included in Chapter 18. The three studies are presented by
Jaromír Horecký, Ol’ga Vančová, Jarmila Kucharská, and Anna Gvozdjáková the
first study, the second is by Anna Gvozdjáková, and the third by Katarína Bauerová,
Jarmila Kucharská, Silvester Poništ, and Anna Gvozdjáková.

A theoretical overview of ω-3 and ω-6 PUFA and their supplementation in clinical
and experimental medicine, including original results, are given in Chapter 19 by
Anna Gvozdjáková, Daniel Pella, Jarmila Kucharská, Kuniaki Otsuka, and Ram B. Singh.

The marked improvement recorded in male infertility on supplementation with hydrosoluble CARNI-Q-GEL (carnitine with CoQ10, vitamin E and vitamin C) is considered a significant contribution. The results of carnitine and CoQ10 supplementation in male infertility under clinical and experimental conditions are presented by Anna Gvozdjáková in the first study, the second by Anna Gvozdjáková, Jarmila Kucharská, and Pavol Lepieš, and the third presented by Anna Gvozdjáková and Jarmila Kucharská in Chapter 20.

In Chapter 21, Jarmila Kucharská presented an overview highlighting the beneficial effect of vitamin supplementation in mitochondrial derangements.

The survey of new prospective therapeutic methods includes the effect of polarized light on mitochondrial function (experimental studies). Ján Pálinkáš and Alfonz Smola prepared a comprehensive overview of the characteristics and effects of polarized light in Chapter 22. Photographic documentation of healing effects of polarized light on wounds of the diabetic foot and on pressure sores is attached to this chapter.

I am confident that this monograph will contribute to the understanding of the role that mitochondria and CoQ10 exert in human mitochondrial medicine. The textbook was prepared with the aim to provide comprehensive information, including new data and aspects, relevant in the field of mitochondrial medicine which may be used to advantage in diagnosis and supplementary therapy (with CoQ10, carnitine, polyunsaturated fatty acids, polarized light) in patients suffering from mitochondrial diseases.

Anna Gvozdjáková
Acknowledgements

My sincere thanks go to all contributors of this book, specialists in medicine and research workers, who readily met my request to write individual chapters of the book.

I wish to thank Professor Rastislav Dzúrik, MD, PhD, DSc, who was my first boss and tutor in the field of research in Comenius University, Medical Faculty, Pharmacobiochemical Laboratory in Bratislava, Slovakia. His enthusiasm for research into clinical and experimental medicine inspired my own research zeal.

I would like to thank many of my coworkers, particularly PharmDr Jarmila Kucharská, PhD, for her cooperation of many years, and Maria Kaplánová, Anna Štetková, Valika Ješková and Emil Benko, MSc. for their excellent technical assistance.

I extend my greatest thanks to Dr R K Chopra, President of Tishcon Corp., USA. Under their auspices we performed several clinical and experimental studies. We acknowledge gratefully their donations of different forms of CoQ10 (hydrosoluble Q-GEL®, liposoluble, reduced, liposomal), ω-3, ω-6 PUFA, Q-GEL® with α-lipoic acid and CARNI-Q-GEL® with L-carnitine allowing us to carry out several experimental and clinical investigations. I wish to thank Dr Hemmi Bhagavan (Tishcon Corp., USA) for the valuable consultations in mitochondrial studies.

My deep thanks go to my three sons, Peter Gvozdják, architect, MSc., Juraj Gvozdják, MSc, and Ján Gvozdják, MSc for having tolerated their parents’ devotion to science, which many times went at the expense of family ease and comfort. Peter (Atelier 2) is to receive my thanks also for his great help in preparing the colour figures in chapters.

I acknowledge with thanks the grant from the Ministry of Education of the Slovak Republic KEGA, No.3/2050/04, which made it possible to materialize this book.

Anna Gvozdjáková
Contents

Preface

Preface vii

Acknowledgements

Acknowledgements xi

List of Figures

List of Figures xxiii

Contributors

Contributors xxxvii

1 Mitochondrial Physiology

1 Mitochondrial Physiology 1
Anna Gvozdjaková

1.1 History of Mitochondria 1

1.2 Mitochondrial Ultrastructure and Function 2
1.2.1 Composition of Mitochondrial Membranes 2
1.2.2 Functions of Mitochondrial Components 3

1.3 Mitochondrial Energy Metabolism 4
1.3.1 Krebs Cycle 4
1.3.2 Fatty Acid Oxidation 5
1.3.3 Shuttle Systems 5
1.3.4 Ketogenesis 9
1.3.5 Gluconeogenesis 10
1.3.6 Urea cycle 10
1.3.7 Respiratory Chain and Oxidative Phosphorylation 10

1.4 Mitochondrial “Q_{10}-CLOCK” 13

1.5 Circadian Cascade of Oxidative Phosphorylation Values 13

1.6 Mitochondria and Molecular Genetics 15

1.7 Mitochondria in Apoptosis 16

2 Oxidants, Antioxidants and Oxidative Stress

2 Oxidants, Antioxidants and Oxidative Stress 19
Zdenka Durackova

2.1 Free Radicals and Reactive Metabolites 20

2.2 Antioxidants 22
2.2.1 Enzyme and Protein Antioxidants 23
2.2.2 Low-Molecular Weight Hydrophilic and Lipophilic Antioxidants 27
2.2.3 Natural Antioxidants, Flavonoids and Polyphenols 35
2.3 Oxidative Stress .. 37
2.4 Conclusion ... 42
2.5 Mitochondrial Free Radicals and Antioxidants 50
 Anna Gvozdjáková
 2.5.1 Mitochondrial Reactive Oxygen Species 50
 2.5.2 Mitochondrial Nitric Oxide 51
 2.5.3 Mitochondrial Utilization of Nitric Oxide 52
 2.5.4 Mitochondrial Antioxidants 52

3 Chronobiology, Chronomics and N-of-1 Tests of Timing Coenzyme Q10 55
 Franz Halberg, Germaine Cornélissen, R.B. Singh, Anna Gvozdjáková,
 Kuniaki Otsuka, Larry Beaty, George Katinas, Ramon Hermida,
 Diana Ayala, and Jerzy Czaplicki
 3.1 Chronobiology .. 55
 3.2 Quantification .. 57
 3.3 Degree of Synchronization in Frequency but not Necessarily in Phase, Intra-Individually Among Different Variables and with the Environment 63
 3.4 Susceptibility Resistance Cycles: A Step Toward Timed Treatment 65
 3.5 Marker-Rhythmmetry .. 67
 3.6 Degree of Generality .. 70
 3.7 Circadian Variation of Ubiquinone or Coenzyme Q10 (CoQ10) in Human Plasma 70
 3.8 Circadian Systems ... 71
 3.9 Chronomics ... 71
 3.10 Immediate Application .. 77
 3.11 Beneficial Effects of CoQ10 Treatment, Notably on Blood Pressure Variability Assessed with a Chronobiological Study Design .. 78
 3.12 Scope of Chronomics Beyond Mitochondrial Medicine 85

4 Methods of Chronobiometric Analysis of Mitochondrial Function 93
 Miroslav Mikulecký
 4.1 General Design .. 93
 4.1.1 Definition of the Population of Experimental Animals 93
 4.2 Realization of the Chronobiometric Analysis 96
 4.3 The Outcome .. 97
 4.3.1 Measured Values Transformed into Mesor Related Values . . . 97
5 Mitochondrial Medicine ... 103
 Anna Gvozdjáková
 5.1 History of Mitochondrial Medicine 103
 5.1.1 Causes of Mitochondrial Diseases 104
 5.1.2 Manifestations of Mitochondrial Diseases 104
 5.2 Spectrum of Mitochondrial Diseases 105
 5.3 Mitochondrial Diseases of the Brain 106
 5.3.1 Mitochondria in Aging. 106
 5.3.2 Parkinson’s Disease 108
 5.3.3 Alzheimer’s Disease 108
 5.3.4 Huntington’s Disease 109
 5.3.5 Multiple Sclerosis 110
 5.3.6 Amyotrophic Lateral Sclerosis 110
 5.3.7 Friedrich’s Ataxia 110

6 Mitochondrial Cardiology 115
 Ivan Pecháň
 6.1 Introduction ... 115
 6.2 Structure of Cardiomyocytes 116
 6.3 Energy Supply for Heart Function 117
 6.4 Mitochondrial Pathology of Cardiac Function 117
 6.5 Mitochondrial Cardiomyopathies 118
 6.5.1 Genetically Dependent Cardiomyopathies 118
 6.5.2 Acquired Mitochondrial Cardiomyopathies 120

7 Mitochondria of the Human Transplanted Heart 125
 Anna Gvozdjáková

8 Mitochondrial Diabetology 129
 Jozef Čársky
 8.1 Diabetes Mellitus .. 129
 8.1.1 General Characteristics 129
 8.1.2 Classification of Diabetes 131
 8.1.3 Chronic Diabetic Complications 136
 8.2 Mitochondrial Function in Diabetes 148
 Anna Gvozdjáková
 8.3 Circa(semi)dian Periodicity of Coenzyme “Q_{10}-CLOCK”
 and Cascade of Oxidative Phosphorylation in Control
 and Diabetic Rat Heart Mitochondria 151
 Miroslav Mikulecký, Anna Gvozdjáková, Jarmila Kucharská,
 and Ram B. Singh
 8.3.1 Mitochondrial Coenzyme Q_{9} and Coenzyme Q_{10}
 in the Myocardium .. 151
Mitochondrial Nephrology

Katarína Gazdíková and František Gazdík

1. **Anatomy and Physiology of the Kidney**
 - 9.1 Anatomy and Physiology of the Kidney .. 161
2. **Physiological Function of the Kidney**
 - 9.2 Physiological Function of the Kidney .. 163
 - 9.2.1 Filtration .. 163
 - 9.2.2 Selective and Passive Reabsorption 164
 - 9.2.3 Actions of Different Parts of the Loop of Henle 164
 - 9.2.4 Excretion of Waste Products ... 168
 - 9.2.5 Hormones and the Kidney ... 169
 - 9.2.6 Other Substances Produced by the Kidney 170
3. **Mitochondria and the Kidney**
 - 9.3 Mitochondria and the Kidney .. 171
4. **Deficiency of Coenzyme Q10 and Kidney Disease**
 - 9.4 Deficiency of Coenzyme Q10 and Kidney Disease 172
5. **Experimental Studies of Mitochondrial Nephrology**
 - 9.5 Experimental Studies of Mitochondrial Nephrology 172
6. **Mitochondrial DNA Damage and Kidney Disease**
 - 9.6 Mitochondrial DNA Damage and Kidney Disease 173
7. **Mitochondrial Disease**
 - 9.7 Mitochondrial Disease ... 174
 - 9.7.1 Mitochondrial Nephropathies ... 174
8. **Diagnosis of Mitochondrial Nephropathies**
 - 9.8 Diagnosis of Mitochondrial Nephropathies 178
9. **Drug Mitochondrial Nephrotoxicity**
 - 9.9 Drug Mitochondrial Nephrotoxicity .. 179
10. **Mitochondria and Renal Carcinomas**
 - 9.10 Mitochondria and Renal Carcinomas 180

Mitochondrial Bioenergetics of Skeletal Muscles

Janka Lipková

1. **Ultrastructure and Function of Skeletal Muscles**
 - 10.1 Ultrastructure and Function of Skeletal Muscles 190
2. **Energy Production of Skeletal Muscles**
 - 10.2 Energy Production of Skeletal Muscles 192
 - 10.2.1 Anaerobic Glycolysis .. 193
 - 10.2.2 Aerobic ATP Resynthesis .. 193
 - 10.2.3 ATP Production .. 194
 - 10.2.4 Proton Gradient Production ... 195
3. **Oxidative Damage and Physical Activity**
 - 10.3 Oxidative Damage and Physical Activity 195
4. **Antioxidants in Sports Training**
 - 10.4 Antioxidants in Sports Training .. 198

Rheumatoid Arthritis

Jozef Rovenský and Karel Pavelka

1. **Clinical Picture of Rheumatoid Arthritis**
 - 11.1 Clinical Picture of Rheumatoid Arthritis 203
2. **Impairment of Individual Joints in Rheumatoid Arthritis**
 - 11.2 Impairment of Individual Joints in Rheumatoid Arthritis 207
 - 11.2.1 Hands ... 207
 - 11.2.2 Wrist ... 208
 - 11.2.3 Elbow .. 208
 - 11.2.4 Shoulder ... 208
 - 11.2.5 Cervical Spine ... 209
 - 11.2.6 Hip Joint .. 209
11.2.7 Knee Joint ... 210
11.2.8 Joints of the Foot 210
11.3 Extra-articular Involvement in Rheumatoid Arthritis 211
11.3.1 Rheumatoid Nodules 212
11.3.2 Eye Involvement 212
11.3.3 Pulmonary Involvement 213
11.3.4 Cardiac Involvement 214
11.3.5 Hematological Abnormalities 215
11.3.6 Felty’s Syndrome 216
11.3.7 Hepatic Involvement 216
11.3.8 Neurologic Involvement 217
11.3.9 Amyloidosis ... 217
11.3.10 Other Conditions Complicating Rheumatoid Arthritis 217
11.4 Classification Criteria for Rheumatoid Arthritis 219
11.5 Laboratory Findings in Rheumatoid Arthritis 220
11.5.1 Biochemical Examination, Urine Examination, Other Specific Examinations .. 220
11.6 Imaging Methods for the Assessment of Rheumatoid Arthritis 221
11.6.1 X-ray Examination 221
11.6.2 Specialized Techniques 222
11.7 Differential Diagnostics in Rheumatoid Arthritis 223
11.8 Assessment of Rheumatoid Arthritis and its Treatment 224
11.8.1 Assessment of the Patient’s Functionality 224
11.8.2 Rheumatoid Arthritis Activity Assessment 225
11.8.3 NonPharmaceutical Treatment of Rheumatoid Arthritis 226
11.8.4 Pharmaceutical Treatment of Rheumatoid Arthritis 226
11.8.5 Biological Treatment of Rheumatoid Arthritis 230
11.9 Adjuvant Arthritis and Mitochondria 237
Katarína Bauerová and Jarmila Kucharská
11.9.1 Pathophysiology of AIA in Comparison to RA 238
11.9.2 Adjuvant Arthritis – History and Current State 240
11.9.3 Rat Models of Erosive Arthritis 241
11.9.4 Antioxidants, Oxidative Status and Mitochondria in RA 242

12 Mitochondrial Immunology ... 247
František Gazdík and Katarína Gazdíková
12.1 Structure and Function of the Immune System 247
12.1.1 Mechanisms of Natural (Nonspecific) Immunity 248
12.1.2 Mechanisms of Acquired (Specific) Immunity 249
12.1.3 Cytokines .. 250
12.2 Mitochondria and Immunity ... 250
 12.2.1 Mitochondria and T-cell Immunity 250
 12.2.2 Immunity and Reactive Oxygen Species (ROS) 251
12.3 Autoimmunity and Mitochondria 252
 12.3.1 Primary Biliary Cirrhosis .. 252
12.4 Oxidative Stress-related Diseases 253
 12.4.1 Chronic Hepatitis C ... 253
 12.4.2 Asthma Bronchiale .. 257

13 Mitochondrial “Spermatopathy” 263
 Anna Gvozdjáková
 13.1 Sperm Mitochondrial Function 263
 13.2 Oxidative Stress and Sperm Function 264
 13.3 Antioxidants and Sperm Function 264

14 Methods for Diagnosis of Mitochondrial Diseases 267
 Anna Gvozdjáková, Jarmila Kucharská, and Anna Hlavatá
 14.1 Metabolic Analysis .. 268
 14.1.1 Differential Diagnosis of Lactic Acidemia 268
 14.1.2 Lactic Acidemia ... 269
 14.2 Muscle Biopsy .. 270
 14.2.1 Biochemistry ... 271
 14.3 Mitochondria .. 271
 14.3.1 Isolation of Mitochondria 271
 14.3.2 Respiratory Chain Analysis and Oxidative
 Phosphorylation .. 271
 14.3.3 Mitochondrial Function Parameters 272
 14.3.4 Determination of Coenzyme Q Homologues 272
 14.4 Skinned Fibers Preparation and Oxidative Phosphorylation .. 273
 14.4.1 Isolation of Saponin-skinned Fibers 273
 14.4.2 Respiration Measurements 274
 14.4.3 Parameters of Oxidative Phosphorylation
 in Skinned Fibers ... 274
 14.5 Measurement of Mitochondrial Enzyme Activity 274
 14.5.1 Citrate Synthase ... 274
 14.5.2 Analysis of Enzymatic Activity of Respiratory
 Chain Complexes .. 274
 14.6 Molecular Tests .. 275
 14.7 Magnetic Resonance Spectroscopy 275
 14.8 Family History .. 276
15 Nuclear Magnetic Resonance .. 279
Tibor Liptaj

15.1 General Characterization .. 279
15.2 Physical Principles .. 280
 15.2.1 Spin .. 280
 15.2.2 Magnetic Moment ... 281
 15.2.3 NMR Sensitivity .. 282
 15.2.4 Magnetization ... 283
 15.2.5 Effect of Electromagnetic Irradiation 285
 15.2.6 Spin Relaxation .. 286
 15.2.7 NMR Experiments .. 287
 15.2.8 NMR Instruments ... 290
15.3 NMR Imaging ... 292
15.4 NMR Spectroscopy ... 294
 15.4.1 Chemical Shift .. 295
 15.4.2 Spin–Spin Interactions 295
15.5 Biological Applications of NMR Spectroscopy 297
 15.5.1 NMR Metabolic Studies 298

16 Clinical Aspects of Coenzyme Q_{10} in Relationship with Its
 Bioenergetic and Antioxidant Properties 303
Gian Paolo Littarru and Luca Tiano

16.1 Introduction ... 303
16.2 CoQ_{10} and Mitochondrial Bioenergetics 304
16.3 Antioxidant Properties of Coenzyme Q_{10} 305
16.4 Structure and Function of Plasma Lipoproteins 306
16.5 Lipoprotein Oxidation .. 307
16.6 CoQ_{10} and Prevention of Atherogenesis 309
16.7 CoQ_{10} and Inhibitors of HMG–CoA Reductase 310
16.8 Protective Effects on DNA Oxidation 312
16.9 CoQ_{10} and Ischemic Heart Disease: Bioenergetic Effect
 or Improvement of Endothelial Function? 313
16.10 CoQ_{10} an Extracellular SOD 315
16.11 Implications of Coenzyme Q_{10} in Male Infertility 316
16.12 Conclusions ... 317

17 Coenzyme Q_{10} Supplementation in Clinical Medicine 323
Anna Gvozdjáková

17.1 Coenzyme Q_{10} Supplementation in Children with
 Metabolic Diseases .. 323
 Anna Hlavátá, Jarmila Kucharská, and Anna Gvozdjáková

17.2 Coenzyme Q_{10} Supplementation in Preclinical Study
 and in Patients with Nephropathies 325
 Anna Gvozdjáková and Jarmila Kucharská
17.2.1 Effect of Hydrosoluble Coenzyme Q_{10} (Q^®-GEL) on Kidney Mitochondrial Function in Aged Rats (Preclinical Study) .. 325
17.2.2 Clinical Study ... 325
17.3 Coenzyme Q_{10} Supplementation in Patients with Bronchial Asthma ... 328
Anna Gvozdjáková
17.4 Coenzyme Q_{10} and α-Lipoic Acid Effect in Patients with Diabetic Cardiomyopathy .. 330
Anna Gvozdjáková, Patrik Palacka, Jarmila Kucharská, and Ján Murin
17.4.1 Alpha-Lipoic Acid (α-Lipoic Acid, ALA) 330
17.4.1.1 α-Lipoic Acid Functions ... 330
17.4.1.2 α-Lipoic Acid Supplementation 331
17.4.2 Simultaneous Effect of CoQ_{10} and ALA in Diabetic Patients ... 331
18 Coenzyme Q_{10} Supplementation in Experimental Medicine 335
Anna Gvozdjáková
18.1 Coenzyme Q_{10} Supplementation in Mitochondrial Alzheimer’s Disease (Experimental Model) .. 335
Jaromír Horecký, Ol’ga Vančová, Jarmila Kucharská, and Anna Gvozdjáková
18.2 Coenzyme Q_{10} Supplementation in Mitochondrial Huntington’s Disease (Experimental Model) .. 338
Anna Gvozdjáková
18.3 Coenzyme Q_{10} Supplementation in Adjuvant Arthritis (Experimental Model) .. 340
Katarína Bauerová, Jarmila Kucharská, Silvester Poništ, and Anna Gvozdjáková
19 Omega-3-PUFA, Omega-6-PUFA and Mitochondria 343
Anna Gvozdjáková, Daniel Pella, Jarmila Kucharská, Kuniaki Otsuka, and Ram B. Singh
19.1 Introduction to ω-3-PUFA and ω-6-PUFA 343
19.1.1 Polynsaturated Fatty Acids (PUFAs) 343
19.1.2 Metabolism n-3- and n-6-PUFA 344
19.1.3 N-3-PUFA Effect ... 345
19.1.4 Fatty Acid Sources .. 347
19.2 Cardioprotective Properties of n-3-PUFA 347
19.2.1 Antiarrhythmic Properties of n-3-PUFA 347
19.2.2 Antithrombotic Properties of n-3-PUFA 348
20 Carnitine .. 357
Anna Gvozdjáková

20.1 The Physiological Role of Carnitine 357
20.2 Deficit of Carnitine 358
20.3 Deficit of Carnitine and Vegetarians 359
20.4 Supplementation of Carnitine 359
20.5 Carnitine and Coenzyme Q10 Supplementation in Male Infertility 360
 Anna Gvozdjáková, Jarmila Kucharská, and Pavol Lepieš

20.5.1 Clinical Medicine 361
20.6 Simultaneous Effect of L-Carnitine and ω-6-PUFA Supplementation in Human Obesity and in Experimental Medicine 363
 Anna Gvozdjáková and Jarmila Kucharská

20.6.1 Pre-Clinical Study 363
20.6.2 Clinical Study .. 364

21 Vitamins in Mitochondrial Function 367
Jarmila Kucharská

21.1 Water-soluble Vitamins 368
 21.1.1 Thiamin (Vitamin B1) 368
 21.1.2 Riboflavin (Vitamin B2) 370
 21.1.3 Niacin (Vitamin B3) 371
 21.1.4 Pantothenic Acid (Vitamin B5) 372
 21.1.5 Pyridoxal, Pyridoxamine, Pyridoxine (Vitamin B6) 372
 21.1.6 Biotin (Vitamin B7, or Vitamin H) 373
 21.1.7 Folic Acid (Vitamin B9) 374
 21.1.8 Cobalamin (Vitamin B12) 375
 21.1.9 Ascorbic Acid (Vitamin C) 376

21.2 Fat-soluble Vitamins 377
 21.2.1 Vitamin A (Retinoids) 377
 21.2.2 Vitamin D .. 379
 21.2.3 Vitamin E .. 380
 21.2.4 Vitamin K .. 381
22 Polarized Light ... 385
 Ján Pálinkáš and Alfonz Smola

 22.1 The History of Healing by Light 385
 22.2 Classification of Light Wave Components 386
 22.3 Biological Effect of Polarized Light on Living Organisms 388
 22.4 Construction of a Polarization Device 389
 22.4.1 Coherent and Incoherent Light 389
 22.4.2 Biolight .. 390
 22.5 The Area of Utilization of Phototherapy 390
 22.5.1 The Meaning of Colors 390
 22.6 Possible Complications During Treatment with Polarized Light .. 393
 22.7 Polarized Light and CoQ₁₀ Effect in Mitochondria
 (Pre-Clinical Study) .. 396
 Anna Gvozdjaková, Jarmila Kucharská, and Ján Pálinkáš

 22.7.1 Mitochondrial Mechanisms of Polarized
 Light Therapy .. 396

Index ... 399
List of Figures

Chapter 1

Fig. 1.1 Schema of mitochondria ... 3
Fig. 1.2 Krebs cycle ... 6
Fig. 1.3 Carnitine shuttle ... 7
Fig. 1.4 Glycerophosphate shuttle ... 8
Fig. 1.5 Malate-aspartate shuttle ... 9
Fig. 1.6 Gluconeogenesis ... 11
Fig. 1.7 Respiratory chain ... 12
Fig. 1.8 “Q10-CLOCK” in heart mitochondria of control rats 14

Chapter 2

Fig. 2.1 Mutual Relations Among RM 21
Fig. 2.2 Putative mechanism of ascorbic acid action in vivo (Adapted from Duarte and Lunek, 2005). AA – ascorbate, DHA – dehydroascorbate, SVCT – sodium-dependent, vitamin C (ascorbate) transporter, GLUT – glucose transporter .. 28
Fig. 2.3 Structure And Chemical Characteristics of α-tocopherol derivatives ... 29
Fig. 2.4 Regeneration of tocopheryl radical by ascorbate E – tocopherol, E’ – tocopheryl radical, C – ascorbate, C’ – ascorbate radical, DHA – dehydroascorbate, LH – lipid, LOOH – lipoperoxide, X – oxidant, LO2’ – lipoperoxy radical ... 29
Fig. 2.5 Scheme of Vitamin E And Coenzyme Q10 Location in Phospholipid Bilayer .. 30
Fig. 2.6 Structures of The Most Important Carotenoids 31
Fig. 2.7 Expected sites of RM formation in mitochondria (modified according to Gabbita et al., 1997 with his kind permission) [38]. 32
Fig. 2.8 Two possible directions of the semiquinone change R (in human mitochondria) = (−CH2−CH=C(CH3)−CH2−)10H. 32
Fig. 2.9 Structure of Bilirubin 33
Fig. 2.10 Cooperation of glutathione with vitamin C and E \(R^+ \) – initiator of a radical reaction, \(LOO^\prime \) – lipoperoxide, \(LOOH \) – hydroperoxide, \(TH \) – tocopherol, \(T^\prime \) – tocopherol radical, \(AA \) – ascorbate, \(DHA \) – dehydroascorbate, \(GSH \) – reduced glutathione, \(GSSG \) – oxidized glutathione, \(GR \) – glutathione reductase. 34
Fig. 2.11 Basic Flavonoid Structures 35
Fig. 2.13 Oxidative Stress And Its Impact on A Cell. 37
Fig. 2.14 Associations Between Oxidative Stress And Damage To The Organism 38
Fig. 2.15 Effect of The Redox Environment on A Cell And Its Survival . 41

Chapter 3

Fig. 3.1 Avoiding blunders: importance of rhythms in assessing intervention effects, illustrated in relation to stress or allergy. (A) Eosinophil counts seem to be lowered by fasting (by the associated stress), when a 50% reduction in dietary carbohydrates and fats (with proteins, vitamins, and minerals similar to control group) was fed in the morning to C3H mice (dark column). (In this model, the naturally high incidence of breast cancer is lowered by a diet reduced in calories; the effect upon cancer is not shown.) The result could have been interpreted as an adrenocortical activation, assessed by eosinophil depression, with applications for treating breast cancer and for prolonging life. Steroids that depress eosinophil cell counts and perhaps mitoses could be a mechanism through which caloric restriction (and ovariectomy in the mice on restricted feeding) act in greatly reducing cancer incidence. (B) In view of the importance of this finding for the etiology of cancer, results were replicated on a larger group of animals 1 week later. This follow-up study with more animals started at an earlier clock-hour, yielded confusing results, showing no statistically significant difference between the two groups of mice. (C) After another week, another study, starting at an even earlier clock-hour, yielded results opposite to those in the first experiment. These findings in (C) in themselves could have been interpreted as an allergic response, certainly contrary to the “stress” response in (A). (D) Additional sampling at intervals of a few hours in the third study, in stages called 4 and 5,
hinted at the reason for the confusion: by sampling at different clock-hours, two groups of mice were found to be characterized by a circadian rhythm with different phases because the experimentals were fed in the morning and the controls fed at night. Opposite effects thus became predictable. (E) Abstract illustration of two circadian rhythms in antiphase. Differences in opposite direction or no effect are then anticipated from sampling at different clock-hours. (Copyright Halberg) 56

Fig. 3.2 Sampling repeatedly with serial independence as to individuals (each animal sampled only once) shows variability (left); new systematic sampling in added studies and averaging blood cell counts reveals pattern to the naked eye. (Copyright Halberg) 57

Fig. 3.3 Repeated casual sampling of data on liver glycogen vs. systematic study with averaging. (Copyright Halberg). 58

Fig. 3.4 Cycle characteristics on top obtained by curve-fitting, the latter at the bottom constituting both a hypothesis test (P-value) and a gauge of prominence (% rhythm). (Copyright Halberg) ... 59

Fig. 3.5 A usually better average than the arithmetic mean is a dividend from curve-fitting, seen on top, which can be done on consecutive intervals of the total time series, as shown at the bottom right, as a chronobiologic serial section, preferably after a period has been estimated, bottom left, with a 95% confidence interval of the period, shown as a box at the right end of the horizontal period line under 1. Statistical Uncertainty, left. One major reason for the use of “circa” in “circarhythms” includes, among several other considerations, the need for providing inferential statistical uncertainties that qualify the estimate of characteristics such as a period. Another major reason is a pertinent endogenicity, revealed by external and/or internal desynchronization, e.g., of systolic blood pressure (SBP) from sleep–wakefulness (activity) in one and the same person living under a 24-h synchronized hospital routine, assessed by 3 shifts of nurses (bottom right). Further support for endogenicity stems from circadian rhythm alteration in mice with clock genes deleted or mutated. (Adapted from Curtis et al. 2007.) (Copyright Halberg) 60

Fig. 3.6 Single cosinor illustrated by a study of time-dependent effects of an ACTH analogue. The approach (Fig. 3.4, bottom) on data from a chronobiologic pilot design on only five subjects demonstrates an effect at some circadian stages (validated by the rejection of the zero-amplitude assumption but not at another circadian time. (Copyright Halberg) 61

Fig. 3.7 The population-mean cosinor method summarizes abolition of circadian rhythm in counts of blood eosinophil cell (bottom) but not in serum iron (top) in adrenocortical insufficiency (ACI) vs. health (H). Error ellipse for blood eosinophils in ACI (bottom right) overlaps center of graph (pole). Amplification of circadian rhythm by exercise (II vs. I) also apparent. (Copyright Halberg) 62
Fig. 3.8 Chronobiologic serial section displaying 95% confidence intervals as thin lines above and below the point estimate of acrophase, missing (in the middle) from a gliding spectral window. (Copyright Halberg). 63

Fig. 3.9 Putative merits of gliding spectral windows. Time courses of the frequency structures of the speed of the solar wind (SWS) (top) and of an elderly man’s (FH) systolic (S) and diastolic (D) blood pressure (BP) and heart rate (HR) (rows 2–4, respectively), examined by gliding spectral windows. Human SBP selectively resonates with solar wind speed (SWS) (top two sections). No obvious resonance, only minor coincidence with DBP or HR (bottom 2 sections) of a man (FH), 70 years (y) of age at start of automatic half-hourly around the clock measurements for ~16 y with interruptions (N = 2418 daily averages, total ~55000). Gliding spectra computed with interval = 8 y, resolution low in time but high in frequency, increment = 1 month, trial periods from 2.5 to 0.4 y, with harmonic increment = 0.05. Darker shading corresponds to larger amplitude. When several of these broad bands disappear in the SWS, at E, parts of the bands in SBP also disappear, with a lag (delay) at E’, while other parts persist. These aeolian rhythms in gliding spectra of SWS and SBP change in frequency (smoothly [A] or abruptly [B, C, D], bifurcating [D, F] and rejoining [G], they also change in amplitude (B) (up to disappearing [C, E] and reappearing). During a nearly 16-year span there are no consistent components with a period averaging precisely 1 year in the three physiologic variables, probably an effect of advancing age. While post hoc ergo propter hoc reasoning can never be ruled out, an abrupt change on top in SWS is followed in the second row in SBP by the disappearance of some components, suggesting that a first demonstration, some of FH’s cis- and transyear components were driven by the SW [since they disappeared with a lag of about a transyear following the disappearance (subtraction) of the same components from the SWS spectrum]. The persistence of other spectral features in turn suggests endogenicity, i.e., an evolutionary acquisition of solar transyear oscillations that may reflect solar dynamics for the past billions of years. Aeolian components are presumably built into organisms over billions of years, as persistence without corresponding components in SWS shows, but can be driven in part by the solar wind, as their disappearance after loss of corresponding components in SWS suggests. “Aeolian”, derived from Aeolus, ruler of the winds in Greek mythology, who packed the winds up and then let them loose and had them change. (Copyright Halberg). ... 64

Fig. 3.10 Chronomics detects nocturnal escape from treatment (I), risk of stroke and nephropathy, greater than hypertension (IIA–B), even
in MESOR-normotension (IIC) and monitors transient and/or success of treatment lasting during monitoring (IIIA–C). Illustrative results supporting the need for continued surveillance and for a chronomic data analysis. Benefits are:

- Detection of abnormality during the night when medication is no longer effective, not seen during office visits in the afternoon (I)
- Detection of abnormal circadian pattern of blood pressure (CHAT, “overswinging”) associated with a risk of cerebral ischemia and nephropathy larger than other risks (including “hypertension”) assessed concomitantly (IIA and B)
- Finding that CHAT carries a very high risk even among MESOR-normotensives who do not need anti-hypertensive medication (IIC)
- Availability of statistical procedures such as a self-starting cumulative sum (CUSUM) applicable to the individual patient to determine whether an intervention such as autogenic training is effective and for how long the intervention remains effective (IIIA)
- N-of-1 designs for the optimization of treatment timing: the same dose of the same medication can further lower the same subject’s blood pressure MESOR and circadian amplitude when the timing of daily administration is changed (IIIB and C), as ascertained by as-one-goes (sequential) testing and parameter tests, procedures applicable to the given individual.

I: Stacked from 11 days of around-the-clock monitoring. Office spot-checks cannot detect nocturnal pathology.
IIA: Among risk factors, an excessive circadian blood pressure (BP) amplitude (A) raises the risk of ischemic stroke most.
IIB: Among risk factors, an excessive circadian blood pressure (BP) amplitude (A) raises the risk of nephropathy most.
IIC: An excessive circadian blood pressure (BP) amplitude (A) is a risk factor for ischemic stroke independent from the 24-h mean (MESOR).
IIIA: Individualized assessment (by CUSUM) of a patient’s initial response and subsequent failure to respond to autogenic training (AT) (EO, F, 59 years).
IIIB: Individualized blood pressure chronotherapy. Lower circadian double amplitude (2A) and MESOR (M) after switching treatment time from 08:30 (left) to 04:30 (right).
IIIC: Control chart assesses individualized anti-MESOR-hypertensive chronotherapy. (Copyright Halberg)
Fig. 3.12 Macroscopic circadian desynchronization in mice after bilateral optic enucleation (dashed line connecting dots) visualizing the need for objective inferential statistical time-microscopic analyses (added in sections IB and IC of Fig. 3.13). While sham-operated controls (solid line connecting open circles) show a daily peak at or close to the vertical 20:30 lines, peak temperatures of blind animals already on day 6 seem to diverge, rising while those of the other group are falling. A graph of the original finding of this separation of the two groups and the decision based thereon to continue measurement every 4 h around-the-clock was interpreted as “paranoia.” (At the time, in the precomputer era, the provision of a periodogram on desk calculators took a week, and its checking another week. Indeed, today the approach in Fig. 3.13 (IB) with a moving fit of a 24-h cosine curve is preferred.)

On the average, on top, peaks in temperature of the blinded group occur earlier and earlier, but there are uncertainties in such eyeballing. A transient antiphase at 22–23 days after blinding is readily seen. If, around that stage after blinding, 2-timepoint checks are carried out on the 2 groups, opposite results can be obtained on mice with and without eyes and later when they are again in phase, 2-timepoint checks show no difference, a puzzle readily resolved by an objective quantification of the rhythm characteristics. The need for this microscopy in time becomes obvious, notably if an inference is desired as soon as possible with an estimate of uncertainty. (Circadian desynchronization also characterizes congenitally blind ZRD mice.) (Copyright Halberg).

Fig. 3.13 Top, section I: Desynchronization of circadian rhythm in core temperature of mice after blinding, seen time-macroscopically in IA (much better in Fig. 3.12), here leads, in IB, to time-microscopy with a chronobiologic serial section showing a different time course of the core temperature acrophases, \(\phi \), with early separation of the two groups by nonoverlapping 95% confidence intervals of \(\phi \); in IC, to a summary of individual periodograms that form two separate distributions, and in ID to time relations among three variables in a 24-h synchronized (top) or free-running (bottom) system (of mice, left, and of a human, right). Section II shows a spontaneous (\(\alpha \)) rhythm in circulating corticosterone of mice in antiphase with the slope of an in vitro response rhythm to ACTH, a reactive (\(\beta \)) rhythm of adrenal corticosterone production. The components of the chronome (time structure) are internally coordinated through feedside-wards in a network of rhythms that are more or less spontaneous (\(\alpha \)), others primarily reactive (\(\beta \)) or modulatory at a single mapped frequency, such as a circadian (\(\gamma \)), IIC and IID, or at multiply mapped (\(\delta \)) frequencies, IIE.
The effect of one entity (the actor) upon a second (the reactor), such as the pituitary acting upon the adrenal cortical corticosterone production may be influenced, predictably insofar as rhythmically, by a third entity such as melatonin (the modulator) at the level of the pituitary; the same melatonin also acts directly upon the adrenal. Reproducible sequences of attenuation, no-effect, and amplification, the time-qualified feedsidewards, replace time-unqualified feedbacks and feedforwards (IIC–E). In sections II and III, feedsidewards include the interaction of a modulator (such as ACTH) upon an actor (such as adrenocortical corticosterone production) acting upon DNA labeling in bone (the reactor). The roles played by endocrines can and do change in various feedsidewards that replace time-unqualified feedbacks and feedforwards. Chronomolecular mapping of circadian acrophases has also begun (Fig. 3.21). (Copyright Halberg).

Fig. 3.14 Circadian physiological variation in murine eosinophil counts of four inbred strains and a hybrid (F_1) stock. (Adapted from Halberg and Visscher 1950.) Note 1. Large genetic differences, gauged by one-way ANOVA across stocks at 08:00 (F = 43.1; P < 0.001) and 00:00 (F = 21.3; P < 0.001) representing differences in genome, and 2. Equally impressive diversity in time, in each stock, gauged by 08:00 vs. 00:00 difference, approximating, by only two time-points, circadian component of time structure, i.e., chronome (t = 11.3; P < 0.001 from paired t-test of relative 08:00 vs. 00:00 differences, expressed as percent of mean). The ever-present within-day difference can differ among stocks of mice but more frequent sampling is indispensable for parameter estimation. (Copyright Halberg)

Fig. 3.15 Emergent heritability of the circadian amplitude of human heart rate, assessed by statistically significant intra-class correlation (r_I) for monozygotic (MZ) but not for dizygotic (DZ) twin pairs reared apart. [30, 32–34] Heart rate was assessed in 24-hour electrocardiograms, amplitude was computed by cosinor; a statistically significant intra-class correlation (r_I) for monozygotic (MZ) but not for dizygotic (DZ) twin pairs reared apart was found. (Copyright Halberg)

Fig. 3.16 Division of labor in time on a population basis (mouse). Extrapolation to individuals is not warranted. (Copyright Halberg)

Fig. 3.17 Division of labor in time on a population basis (rat). Extrapolation to individuals is not warranted. (Copyright Halberg)

Fig. 3.18 Division of labor in time on a population basis (human). Extrapolation to individuals is not warranted. (Copyright Halberg)

Fig. 3.19 Seven among eight variables examined (counting telemetered circadian rhythm in persistent core temperature, not displayed here) show only changes in circadian amplitude (usually decreased) and
phase (usually advanced), with DNA labeling in the stomach showing a numerical increase in circadian amplitude, while the circadian rhythm persists in the presence of histologically validated lesions of the suprachiasmatic nucleus, results pointing to the importance of peripheral mechanisms of circadian systems present in each cell.

(Copyright Halberg)... 76

Fig. 3.20 Early scheme of circadian mechanisms with a sketch of a few of many infradian modulations. (Copyright Halberg)......................... 77

Fig. 3.21 Clock gene expression in suprachiasmatic nuclei leads that in the brain or in osteoblasts. (Copyright Halberg)............................ 78

Fig. 3.22 Note that chronobiologic nomenclature is based on frequency, not on their reciprocals, the periods, so that ultradians are periods shorter than 20 h and infradians longer than 28 h 79

Fig. 3.23 Infradian-to-circasemidian gliding spectral window summarizing half-hourly heart rates of a boy at term monitored during the first 40 days of life: side view of amplitudes. (Copyright Halberg)................ 80

Fig. 3.24 The senior author’s endeavors that led him to chronobiology [9], documented by the bibliography on his Web site (http://www.msi.umn.edu/~halberg/), constitute a figurative microscopy in time. They started with counts of circulating blood eosinophil cells made with the use of a real microscope initiated in 1948, in developing a bioassay for corticosteroids at Harvard University; by 1950, genetic differences in the extent of within-day changes in count were found, Fig. 3.14, as was a rhythm in abnormal discharges detected by electroencephalography in patients with convulsive disorders (15, 19) and subsequently in rodents. These led eventually to maps of cycles in the metabolism of the cell, the adrenal (Fig. 3.7)–hypothalamic–pituitary–pineal network, Figs. 3.19 and 3.20, and to organismic cycles, including the hours of changing resistance to stimuli such as noise, radiation and drugs, and from there to a budding chrono-physiology, -pathology, -pharmacology and toxicology (12). These studies were all carried out in an environment rendered as standardized as possible, yet originally only with respect to the availability of food, lighting, temperature, humidity and other routines shielding as far as possible from stimuli in the proximal habitat niche. (Copyright Halberg).. 81

Fig. 3.25 Chronomics, while it discovered near-transyears literally in telescope-monitored solar magnetism is also a figurative, transdisciplinary telescopy of broader scope, examining variables as they change in and around us, with focus on the dynamics of associations, with methods illustrated by the transition from the time-macroscopic displays to the macro-microscopy enabled by modern computers and satellites, Fig. 3.9. (Copyright Halberg) 82
Fig. 3.26 Transdisciplinary congruence among near-transyears in the environment, in a eukaryotic unicell and in human populations and individuals. (Copyright Halberg) .. 83

Fig. 3.27 Decreased heart rate variability (DHRV), circadian hyper-amplitude-tension (CHAT) and elevated pulse pressure (EPP) are separate cardiovascular disease risks (cf. Fig. 3.10). CHAT is one of several conditions related to the variability in blood pressure (BP) and/or heart rate (HR) that is associated with an increase in vascular disease risk. The circadian (or preferably circaseptan profile) with too large a pulse pressure (the difference between systolic [S] BP and diastolic [D] BP, i.e., between the heart’s contraction or relaxation, or the extent of change in pressure during a cardiac cycle) and a decreased HR variability (gauged by the standard deviation of HR) in relation to a threshold, preferably eventually all in gender- and age-matched peers are two other risk conditions (as is an abnormal circadian timing of BP but not of HR, not shown). Vascular disease risk is elevated in the presence of any one of these risk factors, and is elevated further when more than a single risk factor is present, suggesting that these abnormalities in variability of BP and HR are mostly independent and additive. Abnormalities in the variability of blood pressure and heart rate, impossible to find in a conventional office visit (the latter aiming at the fiction of a “true” blood pressure), can raise cardiovascular disease risk (gauged by the occurrence of a morbid event like a stroke in the next 6 years) from 6% (or even 4% when accounting for EPP, CHAT and DHRV; not shown) to 100%. By comparison to subjects with acceptable blood pressure and heart rate variability, the relative cardiovascular disease risk associated with DHRV, EPP and/or CHAT is greatly and statistically significantly increased. Some of these risks, silent to the person involved and to the care provider, notably the risk of CHAT, can usually be reversed by chronobiologic self-help, also with a non-pharmaco logic approach in the absence of MESOR-hypertension. (Copyright Halberg.) ... 84

Chapter 4

Fig. 4.1 Six measurements (dots), given as the Mesor Related Values (MRV, vertical axis) of the mitochondrial Q_{10} level in control rat myocardium related to the time of day and night. The parts of the 95% confidence corridor (yellow), nonoverlapping the mesor horizontal line (M), are red-shadowed, with the middle times of significant local acme (02:52) or nadir (09:27) marked by the corresponding red straight lines. The broader corridor belongs to the 95% tolerance 99
Fig. 4.2 (a) The data from Fig. 4.1 optimized using only the 24-h rhythm with the extension of time on the span between 0 (the first midnight) and 72 h (the fourth, last midnight). The point estimate of the amplitude (heavy bar, here the mesor value represents zero amplitude) as well as that of the acrophase time (heavy square) are shown with their 95% confidence intervals at the second peak;
(b) Analogy of Fig. 4.2a for the 12-h rhythm used for approximating the data;
(c) Synthetic approximation of the same data, using both the 24- and 12-h rhythm as in Fig. 4.1, yet with extension to the 72-h interval. The time distance from the night peak to that located at day (12.4 h) and that from the day peak to another night peak (11.6 h) are shown.

Fig. 4.3 The sequence of peaks for the Mesor Related Values (MRV) of Q9, Q10 and four parameters (ADP:0, S4, OPR, S3) of the Complex I in controls. Significant peaking shown as shadowed corridor of the 95% confidence located above the mesor line, with full circles showing the point estimate (mean) of the acme. The point estimates of the approximating functions, located above the mesor, for nonsignificant elevations are shown by dashed lines, with the circles denoting peaks.

Fig. 4.4 The differences between the Q_{10} levels in diabetic minus control rats, as transformed to Baseline Mesor Related Differences (BMRD, vertical axis), processed analogically as the Mesor Related Values in Fig. 4.1. The mesor of these differences represents the zero difference (0).

Chapter 5

Fig. 5.1 Mitochondrial diseases of human body

Chapter 7

Fig. 7.1 Relationship between coenzyme Q_{10} concentration in EMB and degree of rejection of human transplanted heart

Fig. 7.2 Basal mitochondrial respiration in EMB of HTx-pts in relation to degree of rejection (V_{i}).

Fig. 7.3 Mitochondrial ATP production in EMB of HTx-pts in relation to degree of rejection (V_{ADP}).

Chapter 8

Fig. 8.1 Etiopathogenesis of diabetes mellitus type 1

Fig. 8.2 Etiopathogenesis of diabetes mellitus type 2

Fig. 8.3 Pathogenesis of chronic diabetic complications

Fig. 8.4 Process of glycation, glycooxidation and AGE formation
Fig. 8.5 Activation of protein kinase C and its relation to the development of diabetic complications 142
Fig. 8.6 Mechanism of Superoxide and hydroxyl radical generation in Mitochondria 143
Fig. 8.7 Comparison of heart mitochondrial “Q₁₀-CLOCK” between Control and diabetic rats. 149
Fig. 8.8 Six measurements (dots), given as the Mesor Related Values (MRV, vertical axis) of the mitochondrial Q₁₀ level in control rat myocardium related to the time of day and night. The parts of the 95% confidence corridor (yellow), nonoverlapping the mesor horizontal line (M), are red-shadowed, with the middle times of significant local acme or nadir marked by the corresponding red straight lines. The broader corridor belongs to the 95% tolerance 152
Fig. 8.9 Analogy of Fig. 8.8 for Q₉ mitochondrial level in the myocardium of Diabetic Rats 153
Fig. 8.10 Analogy of Fig. 8.9 For Q₁₀ 153
Fig. 8.11 Differences between the Q₁₀ levels in diabetic minus control rats, as transformed to baseline mesor related differences (bmrd, vertical axis), processed analogically as the mesor related values (mrv) in Fig. 8.8 .. 154
Fig. 8.12 Analogy of Fig. 8.11 for OPR, Complex I 156
Fig. 8.13 Analogy of Fig. 8.12 for ADP:O, Complex I 156
Fig. 8.14 Analogy of Fig. 8.12 for OPR, Complex II 158
Fig. 8.15 Analogy of Fig. 8.13 for ADP:O, Complex II 158
Fig. 8.16 The sequence of peaks for the mesor related values (MRV) of Q₉, Q₁₀ and four parameters of complex i in diabetic (top) and control (bottom) rats. Significant peaking shown as shadowed corridor of the 95% confidence located above the mesor line, with full circles showing the point estimate (mean) of the acme. The point estimates of the approximating functions, located above the mesor, for nonsignificant elevations are shown by dashed lines, with the circles denoting peaks .. 160

Chapter 9

Fig. 9.1 Anatomy of urinary organs [1] .. 162
Fig. 9.2 Regulation of ammonium production in the kidney 167
Fig. 9.3 Ammoniumgenesis in Proximal Tubule 168
Fig. 9.4 Participation of glutaminase Li in ammoniumgenesis 169
Fig. 9.5 Pathway for lactate production in mitochondrial disease [36] 175
Fig. 9.6 Proposed mechanism of doxorubicin-induced nephropathy Proposed mechanism of doxorubicin-induced nephropathy with early glomerular and self-perpetuating late-onset lesions in rats ... 181