
Handbook of Continued Fractions
for Special Functions



Annie Cuyt · Vigdis Brevik Petersen ·
Brigitte Verdonk · Haakon Waadeland ·
William B. Jones

Handbook of
Continued Fractions for
Special Functions

With contributions by
Franky Backeljauw · Catherine Bonan-Hamada

Verified numerical output
Stefan Becuwe · Annie Cuyt

123



Annie Cuyt
University of Antwerp
Department of Mathematics and Computer Science
BE-2020 Antwerpen
Belgium

Vigdis Brevik Petersen
Sør-Trøndelag University College
Faculty of Teacher and Interpreter Education
NO-7004 Trondheim
Norway

Brigitte Verdonk
University of Antwerp
Department of Mathematics and Computer Science
BE-2020 Antwerpen
Belgium

Haakon Waadeland
Norwegian University of Science and Technology
Department of Mathematical Sciences
NO-7491 Trondheim
Norway

William B. Jones
University of Colorado
Department of Mathematics
Boulder, CO 80309-0395
USA

ISBN: 978-1-4020-6948-2 e-ISBN: 978-1-4020-6949-9

Library of Congress Control Number: 2007941383

c© 2008 Springer Science+Business Media B.V.
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



TABLE OF CONTENTS

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

0 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1 Part one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Part two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3 Part three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Part I: BASIC THEORY

1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Symbols and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Recurrence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Equivalence transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Contractions and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Continued fractions with prescribed approximants . . . . . . . 18
1.7 Connection between continued fractions and series . . . . . . . 19
1.8 Periodic and limit periodic continued fractions . . . . . . . . . . . 21
1.9 Tails of continued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.10 Continued fractions over normed fields . . . . . . . . . . . . . . . . . . 26
1.11 Generalisations of continued fractions . . . . . . . . . . . . . . . . . . . 28

2 Continued fraction representation of functions . . . . . . . . . . 29
2.1 Symbols and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Families of continued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Correspondence of C-fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Correspondence of P-fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Correspondence of J-fractions and T-fractions . . . . . . . . . . . 41
2.7 Correspondence and three-term recurrences . . . . . . . . . . . . . 42

3 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Some classical theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Convergence sets and value sets . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Parabola and oval theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



vi TABLE OF CONTENTS

3.4 Correspondence and uniform convergence . . . . . . . . . . . . . . . . 52
3.5 Periodic and limit periodic continued fractions . . . . . . . . . . . 53
3.6 Convergence and minimal solutions . . . . . . . . . . . . . . . . . . . . . . 56
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PREFACE

The idea to write a Handbook of Continued fractions for Special functions
originated more than 15 years ago, but the project only got started end
of 2001 when a pair of Belgian and a pair of Norwegian authors agreed to
join forces with the initiator W.B. Jones. The book splits naturally into
three parts: Part I discussing the concept, correspondence and conver-
gence of continued fractions as well as the relation to Padé approximants
and orthogonal polynomials, Part II on the numerical computation of the
continued fraction elements and approximants, the truncation and round-
off error bounds and finally Part III on the families of special functions for
which we present continued fraction representations.
Special functions are pervasive in all fields of science and industry. The
most well-known application areas are in physics, engineering, chemistry,
computer science and statistics. Because of their importance, several books
and websites (see for instance functions.wolfram.com) and a large col-
lection of papers have been devoted to these functions. Of the standard
work on the subject, the Handbook of mathematical functions with for-
mulas, graphs and mathematical tables edited by Milton Abramowitz and
Irene Stegun, the American National Institute of Standards and Technol-
ogy claims to have sold over 700 000 copies (over 150 000 directly and more
than fourfold that number through commercial publishers)! But so far no
project has been devoted to the systematic study of continued fraction
representations for these functions. This handbook is the result of such
an endeavour. We emphasise that only 10% of the continued fractions
contained in this book, can also be found in the Abramowitz and Stegun
project or at the Wolfram website!
The fact that the Belgian and Norwegian authors could collaborate in pairs
at their respective home institutes in Antwerp (Belgium) and Trondheim
(Norway) offered clear advantages. Nevertheless, most progress with the
manuscript was booked during the so-called handbook workshops which
were organised at regular intervals, three to four times a year, by the first
four authors A. Cuyt, V. B. Petersen, B. Verdonk and H. Waadeland. They
got together a staggering 16 times, at different host institutes, for a total of
28 weeks to compose, streamline and discuss the contents of the different
chapters.
The Belgian and Norwegian pair were also welcomed for two or more weeks
at the MFO (Oberwolfach, Germany), CWI (Amsterdam, The Nether-
lands), University of La Laguna (Tenerife, Spain), the University of Stel-
lenbosch (South-Africa) and last, but certainly not least, the University of

xi



xii PREFACE

Antwerp and the Norwegian University of Science and Technology. With-
out the inspiring environment and marvellous library facilities offered by
our supportive colleagues G.-M. Greuel, N. Temme, P. Gonzalez-Vera and
J.A.C. Weideman a lot of the work contained in this book would not have
been possible. In addition, three meetings were held at hotels, in 2002 in
Montelupo Fiorentino (Italy) and in 2003 and 2005 in Røros (Norway). At
the occasion of the first two of these meetings W.B. Jones joined his Eu-
ropean colleagues. In addition to his input and encouragement, his former
student Cathy Bonan-Hamada contributed to the handbook as a principal
author of Chapter 5 and to a lesser extent in a few chapters on special
functions.
Several collaborators at the University of Antwerp have also been extremely
helpful. The authors have greatly benefitted from the input of S. Becuwe
with respect to several TEX-issues, the spell checking, the proof reading
and especially, the generation of the tables and numerical verification of
all formulas in the book. For the latter, use was made of a Maple library
for continued fractions developed by F. Backeljauw [BC07]. Thanks are
due to T. Docx for the help with the graphics, for which software was
made available by J. Tupper [BCJ+05]. My daughter A. Van Soom was an
invaluable help with the entering and management of almost 4600 BIBTEX
entries, from which only a selection is printed in the reference list.
Financial support was received from the FWO-Flanders (Fonds voor Weten-
schappelijk Onderzoek, Belgium) and its Scientific Research Network Ad-
vanced numerical methods for mathematical modelling, the Department
of Mathematics of the Norwegian University of Science and Technology
(Trondheim), the Sør Trondelag University College (Trondheim), the Royal
Norwegian Society of Science and Letters, and the National Science Foun-
dation (USA).
Thanks are also due to our patient publisher: after many promises the
team finally met its own requirements and turned in the manuscript. We
apologise to our dear readers: any mistakes found in the book are ours and
we take joint responsibility for them.

Annie Cuyt
February 2007

University of Antwerp
Belgium



NOTATION

AS continued fraction also available in [AS64]
– – –
– – –
– – – relative truncation error is tabulated

error is reliably graphed
◦ composition
≡ equivalent continued fractions
�≡ not identically equal to
≈ asymptotic expansion
�·� floor function
|| · || norm
〈·, ·〉 inner product
{·n} sequence
| · |s signed modulus
An nth numerator
am mth partial numerator
(a)k Pochhammer symbol
(a; q)k generalised Pochhammer symbol
Arg z argument, − π < Arg z ≤ π
arg z Arg z ± 2kπ, k ∈ N0

(a, b) open interval a < x < b
[a, b] closed interval a ≤ x ≤ b
B(a, b) beta function
Bq(a, b) q-beta function
Bx(a, b) incomplete beta function
Bn nth denominator
bm mth partial denominator
C set of complex numbers
Ĉ C ∪ {∞}
C(z) Fresnel cosine integral
Ci(z) cosine integral
C

(α)
n (x) Gegenbauer (or ultraspherical) polynomial

Ĉ
(α)
n (x) monic Gegenbauer polynomial

cdf cumulative distribution function
CMP, CSMP, CHMP classical moment problems
Γ(z) gamma function
Γ(a, z) complementary incomplete gamma function
Γq(z) q-gamma function
γ(a, z) (lower) incomplete gamma function

xiii



xiv NOTATION

Dν(z) parabolic cylinder function
∂ degree
Ei(z) exponential integral
Ein(z) exponential integral
En(z) exponential integral (n ∈ N0)
Eν(z) exponential integral (ν ∈ C)
E[X] expectation value of X
erf(z) error function
erfc(z) complementary error function
F, F(β, t, L, U) set of floating-point numbers
pFq(. . . , ap; . . . , bq; z) hypergeometric series
2F1(a, b; c; z) Gauss hypergeometric series
1F1(a; b; z) confluent hypergeometric function
2F0(a, b; z) confluent hypergeometric series
0F1(; b; z) confluent hypergeometric limit function
Fn(z; wn) computed approximation of fn(z; wn)
fn, fn(z) nth approximant
fn(wn), fn(z; wn) nth modified approximant
f

(M)
n nth approximant of M th tail

f (n), g(n), . . . nth tail
FLS formal Laurent series
FPS, FTS formal power series, formal Taylor series
Φ(t) distribution function
φ(t) weight function
rφs(. . . , ar; . . . , bs; q; z) basic hypergeometric series
2φ1(qα, qβ ; qγ ; q; z) Heine series
ϕ�[z0, . . . , z�] inverse difference
g
(1)
ν (z), g(2)

ν (z) modified spherical Bessel function 3rd kind
Hn(x) Hermite polynomial
Ĥn(x) monic Hermite polynomial
H

(m)
k (c) Hankel determinant for the (bi)sequence c

H
(1)
ν (z),H(2)

ν (z) Hankel function, Bessel function 3rd kind
h

(1)
ν (z), h(2)

ν (z) spherical Bessel function 3rd kind
Ik(x) repeated integral of the probability integral
Ix(a, b) regularised (incomplete) beta function
Iν(z) modified Bessel function 1st kind
Ik erfc(z) repeated integral of erfc(z) for k ≥ −1
iν(z) modified spherical Bessel function 1st kind
i imaginary number

√−1
�z imaginary part of z
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J(z) Binet function
Jν(z) Bessel function 1st kind
jν(z) spherical Bessel function 1st kind
Kν(z) modified Bessel function 2nd kind
K (am/bm) continued fraction
kν(z) modified spherical Bessel function 2nd kind
Ln(z) principal branch of natural logarithm
L

(α)
n (x) generalised Laguerre polynomial

L̂
(α)
n (x) monic generalised Laguerre polynomial

li(x) logarithmic integral
λ(L) order of FPS L(z)
Λ0(f) = f(0)(z) Laurent expansion in deleted neighbourhood of 0
Λ∞(f) = f(∞)(z) Laurent expansion in deleted neighbourhood of ∞
M(a, b, z) Kummer function 1st kind
Mκ,μ(z) Whittaker function
μk kth moment
μ′

k kth central moment
N {1, 2, 3, . . . }
N0 {0, 1, 2, 3, . . . }
N(μ, σ2) normal distribution
[n]q q-analogue of n
[n]q! q-factorial
Pn(x) Legendre polynomial
P̂n(x) monic Legendre polynomial
P

(α,β)
n (x) Jacobi polynomial

P̂
(α,β)
n (x) monic Jacobi polynomial

pdf probability density function
Pn(L) partial sum of degree n of FTS L(z)
ψk(z) polygamma functions (k ≥ 0)
R set of real numbers
R[x] ring of polynomials with coefficients in R

R(x) Mills ratio
�z real part of z
rm,n(z) Padé approximant
r
(2)
k,�(z) two-point Padé approximant

ρ�[z0, . . . , z�] reciprocal difference
S(z) Fresnel sine integral
Si(z) sine integral
Sn(wn), Sn(z; wn) modified approximant
sn(wn), sn(z; wn) linear fractional transformation
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SSMP, SHMP strong moment problems
σ standard deviation
σ2 variance
Tn(x) Chebyshev polynomial 1st kind
T̂n(x) monic Chebyshev polynomial 1st kind
TMP trigonometric moment problem
Un(x) Chebyshev polynomial 2nd kind
Ûn(x) monic Chebyshev polynomial 2nd kind
U(a, b, z) Kummer function 2nd kind
ulp unit in the last place
V set closure
Vn value set
Wκ,μ(z) Whittaker function
wn(z) nth modification for K∞

m=1 (am/1)
w̃n(z) nth modification for K∞

m=1 (am/bm)
w

(1)
n (z) improved nth modification for K∞

m=1 (am/1)
w̃

(1)
n (z) improved nth modification for K∞

m=1 (am/bm)
Yν(z) Bessel function 2nd kind
yν(z) spherical Bessel function 2nd kind
z complex conjugate of z
Z {. . . ,−2,−1, 0, 1, 2, . . . }
Z− {−1,−2,−3, . . . }
Z−

0 {0,−1,−2,−3, . . . }
ζ(z) Riemann zeta function



0
General considerations

The purpose of this chapter is to explain the general organisation of the
book, despite the fact that we hope the handbook is accessible to an unpre-
pared reader. For the customary mathematical notations used throughout
the book we refer to the list of notations following the preface.
To scientists novice in the subject of continued fractions we recommend
the following order of reading in Part I and Part II:

first the Chapters 1 through 3 on the fundamental theory of continued
fractions,
then Chapter 6, with excursions to Chapter 4, on algorithms to con-
struct continued fraction representations,
and finally the Chapters 7 and 8, with Chapter 5 as background ma-
terial, for truncation and round-off error bounds.

0.1 Part one

Part I comprises the necessary theoretic background about continued frac-
tions, when used as a tool to approximate functions. Its concepts and
theorems are heavily used later on in the handbook. We deal with three
term recurrence relations, linear fractional transformations, equivalence
transformations, limit periodicity, continued fraction tails and minimal so-
lutions. The connection between continued fractions and series is worked
out in detail, especially the correspondence with formal power series at 0
and ∞.
The continued fraction representations of functions are grouped into several
families, the main ones being the S-fractions, C-fractions, P-fractions, J-
fractions, T-fractions, M-fractions and Thiele interpolating continued frac-
tions. Most classical convergence results are given, formulated in terms
of element and value regions. The connection between C- and P-fractions
and Padé approximants on the one hand, and between M-fractions and
two-point Padé approximants on the other hand is discussed. To conclude,

1
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several moment problems, their link with Stieltjes integral transform rep-
resentations and the concept of orthogonality are presented.

0.2 Part two

In Part II the reader is offered algorithms to construct different continued
fraction representations of functions, known either by one or more formal
series representations or by a set of function values. The qd-algorithm
constructs C-fractions, the αβ- and FG-algorithms respectively deliver J-
and T-fraction representations, and inverse or reciprocal differences serve
to construct Thiele interpolating fractions. Also Thiele continued fraction
expansions can be obtained as a limiting form.
When evaluating a continued fraction representation, only a finite part
of the fraction can be taken into account. Several algorithms exist to
compute continued fraction approximants. Each of them can make use of
an estimate of the continued fraction tail to improve the convergence. A
priori and a posteriori truncation error bounds are developed and accurate
round-off error bounds are given.

0.3 Part three

The families of special functions discussed in the separate chapters in Part
III are the bulk of the handbook and its main goal. We present series and
continued fraction representations for several mathematical constants, the
elementary functions, functions related to the gamma function, the error
function, the exponential integrals, the Bessel functions and also several
probability functions. All can be formulated in terms of either hyperge-
ometric or confluent hypergeometric functions. We conclude with a brief
discussion of the q-hypergeometric function and its continued fraction rep-
resentations.
Each chapter in Part III is more or less structured in the same way, de-
pending on the availability of the material. We now discuss the general
organisation of such a chapter and the conventions adopted in the presen-
tation of the formulas.
All tables and graphs in Part III are labelled and preceded by an extensive
caption. Detailed information on their use and interpretation is given in
the Sections 9.2 and 9.3, respectively.

Definitions and elementary properties. The nomenclature of the spe-
cial functions is not unique. In the first section of each chapter the reader
is presented with the different names attached to a single function. The
variable z is consistently used to denote a complex argument and x for a
real argument.
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In a function definition the sign := is used to indicate that the left hand
side denotes the function expression at the right hand side, on the domain
given in the equation:

J(z) := Ln(Γ(z))−
(

z − 1
2

)
Ln(z) + z − ln(

√
2π).

Here the principal branch of a multivalued complex function is indicated
with a capital letter, as in Ln, while the real-valued and multivalued func-
tion are indicated with lower case letters, as in ln. The function definition
is complemented with symmetry properties, such as mirror, reflection or
translation formulas:

Ln(z̄) = Ln(z).

Recurrence relations. Continued fractions are closely related to three-
term recurrence relations, also called second order linear difference equa-
tions. Hence these are almost omnipresent, as in:

A−1 := 1, A0 := 0,

An := anAn−1 + bnAn−2, n = 1, 2, 3, . . .

or

2F1(a, b; c + 1; z) = −c(c− 1− (2c− a− b− 1)z)
(c− a)(c− b)z 2F1(a, b; c; z)

− c(c− 1)(z − 1)
(c− a)(c− b)z 2F1(a, b; c− 1; z).

The recurrence relations immediately connected to continued fraction the-
ory are listed. Other recurrences may be found in the literature, but may
not serve our purpose.

Series expansion. Representations as infinite series are given with the
associated domain of convergence. Often these series are power series as
in (2.2.2) or (2.2.6). The series in the right hand side and the function in
the left hand side coincide, denoted by the equality sign =, on the domain
given in the right hand side:

tan(z) =
∞∑

k=1

4k(4k − 1)|B2k|
(2k)!

z2k−1, |z| < π/2.
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Asymptotic series expansion. Asymptotic expansions of the form
(2.2.4) or (2.2.8) are given, if available, with the set of arguments where
they are valid. Now the equation sign is replaced by the sign ≈:

J(z) ≈ z−1
∞∑

k=0

B2k+2

(2k + 1)(2k + 2)
z−2k, z →∞, | arg z| < π

2
.

Stieltjes transform. For functions that can be represented as Stieltjes
integral transforms, or equivalently as convergent S-fractions, positive T-
fractions or real J-fractions, specific sharp truncation error estimates exist
and the relative round-off error exhibits a slow growth rate when evaluat-
ing the continued fraction representation of the function by means of the
backward algorithm.
Hence, if possible, the function under consideration or a closely related
function is written as a Stieltjes integral transform:

Γ(a, z)
zae−z

=
1

Γ(1− a)

∫ ∞

0

e−tt−a

z + t
dt, | arg z| < π, −∞ < a < 1.

The conditions on the right hand side of the integral representation, here
| arg z| < π,−∞ < a < 1, are inherited from the function definition.

S-fraction, regular C-fraction and Padé approximants. S-fraction
representations are usually found from the solution of the classical Stieltjes
moment problem:

ezEn(z) =
1/z

1 +

∞

K
m=2

(
am/z

1

)
, a2k = n + k − 1, a2k+1 = k,

| arg z| < π, n ∈ N.

The equality sign = between the left and right hand sides here has to
be interpreted in the following way. The convergence of the continued
fraction in the right hand side is uniform on compact subsets of the given
convergence domain, here | arg z| < π, excluding the poles of the function in
the left hand side. When the convergence domain of the continued fraction
in the right hand side is larger than the domain of the function in the left
hand side, it may be regarded as an analytic continuation of that function.
C-fractions can be obtained for instance, by dropping some conditions that
ensure the positivity of the coefficients am:

ezEν(z) =
∞

K
m=1

(
am(ν)z−1

1

)
, | arg z| < π, ν ∈ C,

a1(ν) = 1, a2j(ν) = j + ν − 1, a2j+1(ν) = j, j ∈ N.
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A C-fraction is intimately connected with Padé approximants, since its
successive approximants equal Padé approximants on a staircase in the
Padé table. When available, explicit formulas for the Padé approximants
in part or all of the table are given. With the operator Pk defined as in
(15.4.1),

rm+1,n(z) =
z−1Pm+n

(
2F0(ν, 1;−z−1) 2F0(−ν −m,−n; z−1)

)
2F0(−ν −m,−n; z−1)

,

m + 1 ≥ n.

T-fraction, M-fraction and two-point Padé approximants. M-
fractions correspond simultaneously to series expansions at 0 and at ∞.
For instance, the fraction in the right hand side of

1F1(a + 1; b + 1; z)
1F1(a; b; z)

=
b

b− z +

∞

K
m=1

(
(a + m)z
b + m− z

)
, z ∈ C,

a ∈ C, b ∈ C \ Z−
0

corresponds at 0 to the series representation of the function in the left hand
side and corresponds at z = ∞ to the series representation of

− b

z
2F0(a + 1, a− b + 1;−1/z)

2F0(a, a− b + 1;−1/z)
.

The two-point Padé approximants r
(2)
n+k,n−k(z) corresponding to the same

series at z = 0 and at z = ∞, are given by

r
(2)
n+k,n−k(z) =

Pn−1,k(∞, a + 1, b, z)
Pn,k(∞, a, b, z)

, 0 ≤ k ≤ n,

where

Pn,k(∞, b, c, z) := lim
a→∞Pn,k(a, b, c, z/a), 0 ≤ k ≤ n,

= Pn(1F1(b; c; z) 1F1(−b− n; 1− c− k − n;−z)),

for Pn,k(a, b, c, z) given by (15.4.9) and the operator Pn defined in (15.4.1).

Real J-fraction and other continued fractions. Contractions of some
continued fractions may result in J-fraction representations. Or minimal
solutions of some recurrence relation may lead to yet another continued
fraction representation. If closed formulas exist for the partial numerators
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and denominators of these fractions, these are listed after the usual fam-
ilies of S-, C- and T- or M-fractions. In general, we do not list different
equivalent forms of a continued fraction.

Significant digits. Traditionally, the goal in designing mathematical
approximations for use in function evaluations or implementations is to
minimise the computation time. Our emphasis is on accuracy instead of
speed. Therefore our numerical and graphical illustrations essentially focus
on the presentation of the number of significant digits achieved by the series
and continued fraction approximants. All output is reliable and correctly
rounded.
By the presentation of tables and graphs for different approximants, also
the speed of convergence in different regions of the complex plane is illus-
trated. More information on the tables and graphs in this handbook can
be found in Chapter 9.

Reliability. All series and continued fraction representations in the hand-
book were verified numerically. So when encountering a slightly different
formula from the one given in the original reference, it was corrected be-
cause the original work most probably contained a typo.

Further reading

Similar formula books for different families of functions are [AS64; Ext78;
SO87; GR00].
Books discussing some of the special functions treated in this work are
[Luk75; Luk69; AAR99].



Part I

BASIC THEORY



1
Basics

We develop some basic tools to handle continued fractions with com-
plex numbers as elements. These include recurrence relations, equivalence
transformations, the Euler connection with series, and a study of the tail
behaviour of continued fractions which is quite different from that of series.
Starting Section 1.10 we also deal with continued fractions in which the
elements depend on a complex variable z. The representation of functions
is further developed from Chapter 2 on.

1.1 Symbols and notation
The expression

b0 +
a1

b1 +
a2

b2 +
a3

b3 + .. .

(1.1.1a)

is called a continued fraction, where am and bm are complex numbers and
am �= 0 for all m. More recently, for convenience, other symbols are used
to denote the same continued fraction. These include the following:

b0 +
a1

b1
+

a2

b2
+

a3

b3
+ . . . , (1.1.1b)

b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .
(1.1.1c)

and

b0 +
∞

K
m=1

(
am

bm

)
, (1.1.1d)

or for short

b0 +K
(

am

bm

)
. (1.1.1e)

9
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The symbol K in (1.1.1d) and (1.1.1e) for (infinite) fraction, from the
German word Kettenbruch, is the analogue of Σ for (infinite) sum.
Correspondingly the nth approximant fn of the continued fraction is ex-
pressed by

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + .. .
+

an

bn

, (1.1.2a)

fn = b0 +
a1

b1
+

a2

b2
+

a3

b3
+ · · ·+ an

bn
, (1.1.2b)

fn = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · · +
an

bn
(1.1.2c)

and

fn = b0 +
n

K
m=1

(
am

bm

)
. (1.1.2d)

Only the symbols (1.1.1c), (1.1.1d), (1.1.1e) and (1.1.2c), (1.1.2d) are used
in the present book.
The continued fraction (1.1.1) is more than just the sequence of approxi-
mants {fn} or the limit of this sequence, if it exists. In fact, the continued
fraction is the mapping of the ordered pair of sequences ({am}, {bm}) onto
the sequence {fn}. This concept is made more precise in the definition of
continued fraction in the following section.

1.2 Definitions
The complex plane is denoted by C and the extended complex plane by

Ĉ := C ∪ {∞} .

The symbols N and N0 denote the sets

N := {1, 2, 3, . . . }, N0 := {0, 1, 2, 3, . . . }.

Continued fraction. An ordered pair of sequences ({am}m∈N, {bm}m∈N0)
of complex numbers, with am �= 0 for m ≥ 1, gives rise to sequences
{sn(w)}n∈N0 and {Sn(w)}n∈N0 of linear fractional transformations

s0(w) := b0 + w, sn(w) :=
an

bn + w
, n = 1, 2, 3, . . . , (1.2.1a)
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S0(w) := s0(w), Sn(w) := Sn−1(sn(w)), n = 1, 2, 3, . . . (1.2.1b)

and to a sequence {fn}, given by

fn = Sn(0) ∈ Ĉ, n = 0, 1, 2, . . . . (1.2.2)

The ordered pair [Hen77, p. 474]

(({am}, {bm}), {fn}) (1.2.3)

is the continued fraction denoted by the five symbols in (1.1.1). The num-
bers am and bm are called mth partial numerator and partial denominator,
respectively, of the continued fraction. The value fn is called the nth ap-
proximant and is denoted by the four symbols (1.1.2). Some authors use the
term convergent where we use approximant. A common name for partial
numerator and denominator is element.
The linear fractional transformation Sn(w) can be expressed as

Sn(w) = b0 +
a1

b1 +
a2

b2 +
a3

b3 + .. .
+

an

bn + w

, (1.2.4a)

or more conveniently as

Sn(w) = b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · · +
an−1

bn−1 +
an

bn + w
. (1.2.4b)

Equivalently,
Sn(w) = s0 ◦ s1 ◦ s2 ◦ · · · ◦ sn(w), (1.2.5)

where ◦ denotes composition such as in

s0 ◦ s1(w) := s0(s1(w)) .

In particular,
sn(w) := s ◦ · · · ◦ s︸ ︷︷ ︸

n times

(w) .

For a given sequence {wn}n∈N0 , the number

Sn(wn) ∈ Ĉ (1.2.6)
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is called an nth modified approximant.

Convergence. A continued fraction b0 + K (am/bm) is said to converge if
and only if the sequence of approximants {fn} = {Sn(0)} converges to a
limit f ∈ Ĉ. In this case f is called the value of the continued fraction. Note
that convergence to ∞ is accepted. If the continued fraction is convergent
to f , then the symbols (1.1.1) are used to represent both the ordered pair
(1.2.3) and the value f . That is, we may write

f = lim
n→∞Sn(0) = b0 +

∞

K
m=1

(
am

bm

)
. (1.2.7)

Sometimes (1.2.7) is called classical convergence.

General convergence. A continued fraction converges generally [Jac86;
LW92, p. 43] to an extended complex number f if and only if there exist
two sequences {vn} and {wn} in Ĉ such that

lim inf
n→∞ d(vn, wn) > 0

and
lim

n→∞Sn(vn) = lim
n→∞Sn(wn) = f.

Here d(z, w) denotes the chordal metric defined by

d(z, w) :=
|z − w|√

1 + |z|2√1 + |w|2 , z, w ∈ C

and
d(∞, w) :=

1√
1 + |w|2 , w ∈ C .

The value f is unique. Convergence to f implies general convergence to f
since

Sn(∞) = Sn−1(0)

but general convergence does not imply convergence.

Example 1.2.1: The continued fraction

2
1 +

1
1 +

−1
1 +

2
1 +

1
1 +

−1
1 + . . .
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diverges. By using the recurrence relations (1.3.1), we find for n ≥ 1 that

A3n−2 = 2n,

B3n−2 = 2n+1 − 3,

A3n−1 = 2n,

B3n−1 = 2n+1 − 2,

A3n = 0,

B3n = 1.

For the modified approximants Sn(wn) we find from (1.3.2) that

S3n−2(w3n−2) =
2n + w3n−2 · 0

(2n+1 − 3) + w3n−2 · 1 ,

which converges to 1/2 if the sequence {w3n−2} is bounded. Similarly, we
find that the sequence

S3n−1(w3n−1) =
2n + w3n−1 · 2n

(2n+1 − 2) + w3n−1(2n+1 − 3)

converges to 1/2 if the sequence {w3n−1} is bounded away from −1 and
the sequence

S3n(w3n) =
0 + w3n · 2n

1 + w3n(2n+1 − 2)

converges to 1/2 if the sequence {w3n} is bounded away from 0. Hence we
have that the continued fraction converges generally.

1.3 Recurrence relations

The nth numerator An and the nth denominator Bn of a continued fraction
b0 +K (am/bm) are defined by the recurrence relations (second order linear
difference equations)[

An

Bn

]
:= bn

[
An−1

Bn−1

]
+ an

[
An−2

Bn−2

]
, n = 1, 2, 3, . . . (1.3.1a)

with initial conditions

A−1 := 1, B−1 := 0, A0 := b0, B0 := 1 . (1.3.1b)

The modified approximant Sn(wn) in (1.2.6) can then be written as

Sn(wn) =
An + An−1wn

Bn + Bn−1wn
, n = 0, 1, 2, . . . (1.3.2)
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and hence for the nth approximant fn we have

fn = Sn(0) =
An

Bn
, fn−1 = Sn(∞) =

An−1

Bn−1
. (1.3.3)

Determinant formula. The nth numerator and denominator satisfy the
determinant formula∣∣∣∣An An−1

Bn Bn−1

∣∣∣∣ = AnBn−1 −An−1Bn

= (−1)n−1
n∏

m=1

am, n = 1, 2, 3, . . . .

(1.3.4)

Matrix connection with continued fractions. Let K (am/bm) be a
given continued fraction with nth numerator An and nth denominator Bn.
Let

sm(w) :=
am

bm + w
, xm :=

(
0 am

1 bm

)
, m = 1, 2, 3, . . . .

Then the linear fractional transformation Sn(w) given by (1.2.5) and (1.3.2)
leads to

Xn := x1x2x3 · · ·xn =
(

An−1 An

Bn−1 Bn

)
, n = 1, 2, 3, . . . .

Therefore multiplication of 2 × 2 matrices can be used to construct the
sequences {An}, {Bn} and {fn}, where fn is given by (1.2.2) and (1.3.3).
More generally, if

tm(w) :=
am + cmw

bm + dmw
, ym :=

(
cm am

dm bm

)
, m = 1, 2, 3, . . .

then

Tn(w) := t1 ◦ t2 ◦ t3 ◦ · · · ◦ tn(w) =
An + Cnw

Bn + Dnw
, n = 1, 2, 3, . . .

and

Yn := y1y2y3 · · · yn =
(

Cn An

Dn Bn

)
, n = 1, 2, 3, . . . .
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1.4 Equivalence transformations

Two continued fractions b0 + K (am/bm) and d0 + K (cm/dm) are said to
be equivalent if and only if they have the same sequence of approximants.
This is written

b0 +
∞

K
m=1

(am/bm) ≡ d0 +
∞

K
m=1

(cm/dm). (1.4.1)

The equivalence (1.4.1) holds if and only if there exists a sequence of com-
plex numbers {rm}, with r0 = 1 and rm �= 0 for m ≥ 1, such that

d0 = b0, cm = rmrm−1am, dm = rmbm, m = 1, 2, 3, . . . . (1.4.2)

Equations (1.4.2) define an equivalence transformation. Since am �= 0 for
m ≥ 1, one can always choose

rm =
m∏

k=1

a
(−1)m+1−k

k =

⎛⎜⎜⎜⎝
�m/2�∏
k=1

a2k

�(m+1)/2�∏
k=1

a2k−1

⎞⎟⎟⎟⎠
(−1)m−1

, m = 1, 2, 3, . . . ,

which yields the equivalence transformation

b0 +
∞

K
m=1

(
am

bm

)
≡ b0 +

∞

K
m=1

(
1

dm

)
= b0 +

1
b1/a1 +

1
b2a1/a2 +

1
b3a2/(a1a3) + . . .

,

where in general

d1 =
b1

a1
,

d2m = b2m
a1a3 · · · a2m−1

a2a4 · · · a2m
, m = 1, 2, 3, . . . ,

d2m+1 = b2m+1
a2a4 · · · a2m

a1a3 · · · a2m+1
, m = 1, 2, 3, . . . .

Hence, in studying continued fractions there is no loss of generality in the
restriction to continued fractions K (1/dm). On the other hand, if

bm �= 0, m = 1, 2, 3, . . . ,
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then one can obtain an equivalence transformation of the form

b0 +
∞

K
m=1

(
am

bm

)
≡ b0 +

∞

K
m=1

(cm

1

)
= b0 +

a1/b1

1 +
a2/(b1b2)

1 +
a3/(b2b3)

1 + . . .
,

where in general

rm =
1

bm
, m = 1, 2, 3, . . . ,

c1 =
a1

b1
, cm =

am

bm−1bm
, m = 2, 3, 4, . . . .

Hence, in studying continued fractions there is only little loss of generality
in the restriction to continued fractions K (cm/1).

1.5 Contractions and extensions
In this section we let An, Bn and fn denote the nth numerator, denomina-
tor and approximant, respectively of a continued fraction b0 + K (am/bm)
and we let Cn, Dn and gn denote the nth numerator, denominator and
approximant, respectively, of a continued fraction d0 + K (cm/dm). Then
d0 + K (cm/dm) is called a contraction of b0 + K (am/bm) if and only if
there exists a sequence {nk} such that

gk = fnk
, k = 0, 1, 2, . . . . (1.5.1)

The continued fraction b0 + K (am/bm) is then called an extension of d0 +
K (cm/dm).

Canonical contraction. If in addition to (1.5.1) there exists a sequence
{nk} such that

Ck = Ank
, Dk = Bnk

, k = 0, 1, 2, . . . , (1.5.2)

then d0 + K (cm/dm) is called a canonical contraction of b0 + K (am/bm).

Even contraction. A continued fraction d0+K (cm/dm) is called an even
contraction or even part of b0 + K (am/bm) if and only if

gn = f2n, n = 0, 1, 2, . . .

and it is called the even canonical contraction of b0 + K (am/bm) if and
only if

Cn = A2n, Dn = B2n, n = 0, 1, 2, . . . .
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An even canonical contraction of b0 + K (am/bm) exists if and only if

b2k �= 0, k = 1, 2, 3, . . . .

When it exists, the even canonical contraction of b0 + K (am/bm) is given
by

d0 +
∞

K
m=1

(
cm

dm

)
= b0 +

a1b2

a2 + b1b2 −
a2a3b4/b2

a4 + b3b4 + a3b4/b2

−
a4a5b6/b4

a6 + b5b6 + a5b6/b4 − . . .
(1.5.3a)

where

d0 = b0, c1 = a1b2, d1 = a2 + b1b2,

cm = −a2m−2a2m−1b2m

b2m−2
, m = 2, 3, 4, . . . ,

dm = a2m + b2m−1b2m +
a2m−1b2m

b2m−2
, m = 2, 3, 4, . . . .

(1.5.3b)

Odd contraction. A continued fraction d0 + K (cm/dm) is called an odd
contraction or odd part of b0 + K (am/bm) if and only if

gn = f2n+1, n = 0, 1, 2, . . .

and it is called an odd canonical contraction if and only if

C0 =
A1

B1
, D0 = 1,

Cn = A2n+1, Dn = B2n+1, n = 1, 2, 3, . . . .

An odd canonical contraction of b0 + K (am/bm) exists if and only if

b2k+1 �= 0, k = 0, 1, 2, . . . .

If it exists, an odd canonical contraction of b0 + K (am/bm) is given by

d0 +
∞

K
m=1

(
cm

dm

)
=

a1 + b0b1

b1
− a1a2b3/b1

b1(a3 + b2b3) + a2b3

−
a3a4b1b5/b3

a5 + b4b5 + a4b5/b3 −
a5a6b7/b5

a7 + b6b7 + a6b7/b5 − . . .
(1.5.4a)


