Pro J2ME Polish

Open Source Wireless
Java Tools Suite

ROBERT VIRKUS

Apress*

Pro J2ME Polish: Open Source Wireless Java Tools Suite
Copyright © 2005 by Robert Virkus

Lead Editor: Steve Anglin

Technical Reviewer: Thomas Kraft

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editors: Marilyn Smith, Kim Wimpsett, Nicole LeClerc

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Dina Quan

Proofreader: Linda Seifert

Indexer: John Collin

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Library of Congress Cataloging-in-Publication Data

Virkus, Robert, 1949-
Pro J2ME Polish : open source wireless Java tools suite / Robert Virkus.
p. cm.
Includes index.

ISBN 1-59059-503-3 (hardcover : alk. paper)
1. Java (Computer program language) 2. Wireless communication systems--Programming. I. Title.

QA76.73.J38V57 2005
005.13'3--dc22
2005016571

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

This book is dedicated to the people who fight against
software patents and for a better world.

I
m_izmgpalan‘_a.r"g

Contents at a Glance

FOrEWOrd ... e Xvi
Aboutthe AUThOr o Xviii
About the Technical Reviewer e Xix
ACKNOWIBAGMENES XX
IMtrOdUCHION ... o XXi
PART 1 Getting Ready
CHAPTER 1 Quick Setup Guide, 3
CHAPTER 2 Installing the Prerequisites 7
CHAPTER 3 InstallingJ2ME Polish ... 1
CHAPTER 4 Integrating J2ME PolishintoIDES 19
PART 2 Using J2ME Polish
CHAPTER 5 Getting to Know J2ME Polish 29
CHAPTER 6 The DeviceDatabaseo.... 39
CHAPTER 7 Building Applications .. 55
CHAPTER 8 Preprocessingccooiiiiiiiiiiiiiiiiinan. 101
CHAPTER 9 The Logging Framework 123
CHAPTER 10 Using the Utilities 133
CHAPTER 11 Game Programming with J2ME Polish 145
CHAPTER 12 Working withthe GUI ... 159
CHAPTER 13 Extending J2ME Polish 231

CONTENTS AT A GLANCE

PART 3 Programming in the Real World

CHAPTER 14 Overview of the Wireless Market 273
CHAPTER 15 Dancing Around Device Limitations 283
CHAPTER 16 Optimizing Applications 325

PART 4 Appendix

v

Contents

FOrEWOrd ... e Xvi
Aboutthe AUThOr o Xviii
About the Technical ReVIBWET i e e e Xix
ACKNOWIBAgMENES XX
IMtrOdUCHION ... o XXi

PART 1 Getting Ready

CHAPTER 1 Quick Setup Guide ... 3
Installing J2ME Polish 4

Launching the Sample Applications 4

Exploring the Sample Applications 5

SUMMANY ... 6

CHAPTER 2 Installing the Prerequisites 7
ThedJava2 SDK 7

The Wireless Toolkit ... 8

WTKVErSioNS 8

WTKforMac OS X 8

DE .. 8

ANt 9

Vendor-Specific Emulators 9

SUMMANY ... 10

CHAPTER 3 Installing J2ME Polish 11
J2ME Polish Installation Guide 11

License Selection 11

WTK Directory Selectiont 12

Component Selection i 13

Thelnstallation 14

vii

viii

CONTENTS

CHAPTER 4

PART 2

CHAPTER 5

CHAPTER 6

External Tools i 15
J2ME Polish Sample Applications 15
Testing the Sample Applications 16
Troubleshooting Sample Application Errors 17
SUMMArY ... 17
Integrating J2ME Polish intoIDEs 19
Recognizing Common Integration Issues 19
Using Eclipse ... 20
Integrating Eclipse withAnt 20
Troubleshooting IntegrationIssues 22
Installing the J2ME Polish Plug-Ins 22
UsingNetBeanso i, 23
Using JBuilder 24
UsingIntellid o 24
SUMMArY ... 26

Using J2ME Polish

Getting to Know J2ME Polish 29
J2ME Polish from 500 MilesAbove 29
Managing the Application Life Cycle with J2ME Polish 30
Designing the Architecture L 31
Implementing the Application 32
Building Your Applicationl 32
Testing the Application 32
Optimizing Your Application.................................. 33
Deploying Your Application 33
Updating Your Application 36
SUMMANY ... 38
The Device Database 39
Understanding the XML Format 39
Defining DeviCes 40
DefiningVendors 44
Defining Groups 44

Defining Librariesc o 45

CHAPTER 7

CONTENTS
Describing Known Issues ...t 47
Defining Complementing Capabilities and Features 48
Using the Device Databaseol 49
Selecting Your Target Devicest 50
Selecting Resources for Your Target Devices 50
Optimizing for Your Target Devices 51
Changing and Extending the Device Database 52
SUMMArY ... 53
Building Applications 55
Takingan Ant Crash Course ..., 55
Creating a “Hello, J2ME Polish World” Application 58
Introducing the Build Phases, 64
Selecting the Target Devicescoiiiiiin... 65
Preprocessing ... 66
Compilation 66
Obfuscation i 67
Preverification 68
Packaging 68
Invoking Emulators 68
Packaging Your Applicationl 68
Resource Assemblingo i 68
Managing JAD and Manifest Attributes 74
SigningMIDIets ... 77
Using Third-Party Packagers 78
Building for Multiple Devices ..., 80
Selecting DeviCesS 80
Minimizing the Number of Target Devices 83
Building Localized Applications 84
The <localization> Element and Localized
Resource Assembling 84
Managing Translations 85
Coping with Dates and Currencies 88
Avoiding Common Mistakes 89
Localizing the J2ME Polish GUI 90
Integrating Third-Party APIs 92
Integrating Source Code Third-Party APIs 92
Integrating Binary Third-Party APIs 93

Integrating Device APIs i 94

ix

X

CONTENTS

CHAPTER 8

CHAPTER 9

Obfuscating Applications 94
Using the Default Package 95
Combining Several Obfuscators 95

Debugging Applications 96
Using Conditionsc i 96
Using J2ME Polish Asa Compiler 98

SUMMANY ... 100

Preprocessing 101

Why Preprocessing?o i 101

Preprocessing Directivesl 104
BranchingYour Codeci ittt 105
Defining Temporary Symbols and Variables 109
Including Values of Variables inYour Code 110
Using Several Variable Values Individually 111
Including External Code, 112
Analyzing the PreprocessingPhase 112
Hiding Statementsl 112
LOgging . ..o 113
Setting CSSStyles ... 113
Nesting Directives i 114

Managing Variables and Symbols, 114
Using Standard Preprocessing Symbols and Variables 114
Setting Symbols and Variables 115
Transforming Variables with Property Functions 117

Preprocessing to the Rescue! 118
Using Optional and Device-Specific Libraries 118
Changing the Class Inheritance 119
Configuring Applications, 119
Using Hard-Coded Valuescoiiiiit. 120
Circumventing Known Issues 121

SUMMANY ... 121

The Logging Framework 123

Logging Messages ...t 123

Adding Debug Code for Specific Log Levels 125

Controllingthe Logging ... 125

Viewing the Logon Real Devices 128

Forwarding Log MesSagesccvviiiiiiiiiiian, 130

SUMMANY ... 131

CONTENTS
CHAPTER 10 Using the Utilities ... 133
Utility CIasSeSot 133
The ArrayList Class ...t 134
TheTextUtilClassco i 135
The BitMapFont Class 136
Other Utility Classes ...t 138
Stand-Alone Utilities L 138
The Binary Editor 139
The FontEditor i 142
The SysinfoMIDlet 143
SUMMArY ... 143
CHAPTER 11 Game Programming with J2ME Polish 145
Usingthe GameEngine il 145
Optimizing the Game Enginet 146
Running Your Game in Full-Screen Mode 147
Using a Back Buffer in the TiledLayer 148
Splitting an Image into Single Tiles 149
Defining the Grid Type of a TiledLayer 149
Using the Game Engine for MIDP 2.0 Devices 150
Working Around the Limitations of the Game Engine 150
Porting an MIDP 2.0 Game to the MIDP 1.0 Platform 152
Porting Low-Level Graphics Operations 152
Porting Sound Playbackl 155
Controlling Vibration and the Display Light 156
SUMMANY ... 157
CHAPTER 12 Working withthe GUI 159
Introducing Interface Concepts 160
Controllingthe GUI it 161
Activatingthe GUI 161
Configuring the J2ME Polish GUI 162
Programmingthe GUI 170
Using Correct import Statements 170
Setting Styles ... 171
Using Dynamic and Predefined Styles 173
Porting MIDP 2.0 Applications to MIDP 1.0 Platforms 173

Programming Specific ltems and Screens 174

Xi

Xii CONTENTS

CHAPTER 13

PART 3

CHAPTER 14

Designingthe GUI 181
Designing for Specific Devices and Device Groups 182
Using Dynamic, Static, and Predefined Styles 183
Extending Styles 187
Reviewing CSSSyntaxl 187
Common Design Attributes 189
Designing SCreens ...t 199
Designingltems 215
Using Animations L. 228

SUMMANY ... 229

Extending J2ME Polish 231

Extendingthe Build Tools it 231
Understanding the Extension Mechanism 231
Creating Your Own Preprocessorcc.oov.... 239
Setting the Commpiler i 243
Using a Postcompilerl 244
Integrating Your Own Obfuscator 244
Integrating a Preverifierl 245
Copying and Transforming Resources 245
Using Different Packagers 246
Integrating Finalizers 247
Integrating Emulatorsl 247
Adding Property Functions 248

Extending the J2ME Polish GUI 248
Writing Your Own Custom items 248
Loading Images Dynamically 261
Creating Your Own Background 265
Adding a Custom Borderoiiiil... 269

Extending the Logging Framework 269

SUMMANY 270

Programming in the Real World

Overview of the Wireless Market 273
Introducing Device Differences 273
Hardware ... 273

Profiles and Configurations 274

CHAPTER 15

CONTENTS
Optional Packages ... 276
The JTWI Specification and Mobile Service Architecture 278
Supported Formats 279
Device Modificationso 279
Device ISSUES 280
TheEmulatorTrap i 280
Examining the CurrentMarket 280
TelecomMarket 280
J2MEMarket 282
SUMMANY ... 282
Dancing Around Device Limitations 283
Identifying Vendor Characteristics 283
NOKIa . ..o 283
Motorolao o 287
SAMSUNG ... 288
SIBMENS ... 289
LGElectronics o i 290
Sony Ericsson ... 290
RIMBlackBerry o 291
OtherVendors ..., 292
Identifying Carriers ... 292
Identifying Platforms 292
MIDP Platforms 293
DodaPlatforms 294
WIPIPlatformsc 294
Writing Portable Codeoi i 294
Using the Lowest Common Denominator 295
Using Dynamic Codeciiiiiiiiiiiiiannn 295
Using Preprocessingccooiiiiiiiiiiiiiinn 298
Using Different Source Files 300
Solving Common Problems i 303
Using the Appropriate Resources 303
Circumventing Known Issues 304
Implementing the User Interface 308
Networkingo i 310
PlayingSounds 313
Using Floating-Point Arithmetic 314
Using Trusted MIDletsco it 317

Identifying Devicescoo i 318

Xiii

Xiv CONTENTS

CHAPTER 16

PART 4

APPENDIX ...

GettingHelp 321
Honoring Netiquette 321
Exploring J2ME Polish Forums 322
ExploringVendor Forums, 322
Exploring General J2ME Forums and Mailing Lists 322

SUMMArY ... 323

Optimizing Applications 325

Optimization OVerviewc.o it 325

Improving Performance i 326
Measuring Performanceol 326
Performance Tuning i 329
Improving Perceived Performance 338

Reducing Memory Consumption 341
Measuring Memory Consumption 341
Improving the Memory Footprint 342

Decreasing the Size of JARFiles 344
Improving the ClassModel 344
Handling Resources ..., 349
Obfuscating and Packaging Your Application 350

SUMMANY ... 350

Appendix

... 353
JAD and Manifest Attributesl 353
MIDP 1.0 Attributes 353
MIDP 2.0 Attributesc 354
Vendor-Specific Attributes 355
Runtime Properties 356
System Propertiesl 356
Bluetooth Properties 358
BDProperties ... 359

Permissions for Signed MIDlets 360

CONTENTS

The J2ME Polish Ant Settings i, 363
<info>Sectionl 363
Device Requirements Section 365
BuildSectionc 366
Emulator Section........... 388

Standard Preprocessing Variables and Symbols 389
Device-Specific Symbols 389
Device-Specific Variables 390
Configuration Variablesl 392
Symbols and Variables for Reading the Settings 397

Preprocessing Directives, 398

Property Functions 399

The J2ME Polish GUI 400
Backgrounds 400
Borders ... 412

J2ME Polish License ...t M7

Abbreviations Glossary i 417

XV

XVi

Foreword

So, you are a developer, you write applications for mobile devices, and you've been asked by
a network operator to get your application working on their list of preferred devices, otherwise
they won’t deal with you. That all sounds familiar and, initially, it all sounds pretty easy—we
are developing applications in Java, and as we all know, Java is platform independent and we
just “write once, run anywhere.”

OK, now that you've picked yourself up off the floor and stopped laughing after that state-
ment, you've probably realized the big deal about writing mobile applications is that there are
so many little differences between devices and the Java implementations on those devices
that it's a mammoth task to support many devices.

How do we get around these “inconsistencies”?

How do we avoid having device-specific source code for everything we write?

These are among the really important questions for mobile application developers. When
I started writing applications for mobile devices, we were still learning about these inconsis-
tencies and still finding things that made us want to tear our hair out.

I'would like to suggest that your first port of call should always be the API specifications.
You see, that’s why they are there: to show you exactly what should happen and how you
should handle things—but as you know, if you sit a thousand monkeys in front of typewriters,
you certainly don’t end up with the works of Shakespeare. Well, the same applies here. If you
give all the device manufacturers the specifications for the application management software,
you certainly can’t expect them to work in exactly the same way. (Now, I'm not saying it’s all
their fault—I mean, it’s not always exactly the same hardware, and miracles don’t happen.)

So, how do we get around these inconsistencies? Well, that’s where this book and J2ME
Polish come in. I recommend going straight to the “Programming in the Real World” section
and having a quick read through it. Then you should have a better appreciation for the prob-
lems at hand, and you’ll realize that you need some help to control the mass of workarounds
that you're likely to need. Of course, that help comes in the form of J2ME Polish, and this book
explains how to use it.

FOREWORD

As I mentioned earlier, when I started writing mobile device applications, we were still
figuring out the problems, and to a certain extent we still are. I used to have my own custom
Ant scripts for individual builds of an application for individual devices. I just looked at one
of the device benchmark sites and it already has results for over 400 devices! I certainly don’t
want to have 400 versions of source code for one application. I first came across J2ME Polish
when I was looking for a better way to implement my build system, and since then I've found
it to be an extremely useful addition to my entire development process. Tools like this are what
will keep us developing applications in a reasonable amount of time for multiple devices,
which keeps the network operators and publishers happy—and you want to keep them happy,
because this mobile applications industry is one of the fastest-growing industries in the world.

So if you want to be successful, keep your knowledge up to date, keep your eye on the
ball, and keep enjoying the ride. J2ME Polish keeps developers happy and able to make every-
thing work.

Welcome to your world—make it a good one!

Kirk Bateman
Managing Director/Lead Developer
Synaptic Technologies Limited (UK)

Xvii

About the Author

ROBERT VIRKUS is the architect and lead programmer for the open source
project J2ME Polish. He is an internationally recognized J2ME expert and
is a member of Mobile Solutions Group, Bremen, Germany.

After studying law and computer science in Bremen, Germany, and
Sheffield, England, Robert began working in the mobile industry in 1999.
He followed WAP and J2ME from their very beginnings and developed
large-scale mobile betting applications.

In 2003, he founded Enough Software, the company behind J2ME Polish.

In his spare time, Robert enjoys the company of his girlfriend, Jinny, and his dog, Benny.
Other spare-time favorites are going to concerts of soul, ska, and punk-rock bands, and playing
around with old computers like Atari 400, Commodore 8296, and MCS Alpha 1.

xviii

About the Technical Reviewer

THOMAS KRAFT is a managing director of Synyx, a company located in
Karlsruhe, Germany. Synyx specializes in developing business solutions
based on open source frameworks. Thomas has many years of experience
developing Java applications, with a focus on business solutions and
J2ME applications. He is also an expert in the open source content man-
agement system OpenCms. Thomas has written several articles about
J2ME developing, mostly GUI related. Thomas resides in the beautiful
city of Karlsruhe and can be reached via e-mail at kraft@synyx.de.

Xix

XX

Acknowledgments

Writing this book was hard work, but also a lot of fun. Thanks to everyone who made it
possible, especially Jinny Verdonck, Thomas Kraft, Ricky Nkrumah, Kirk Bateman, and the
whole Apress crew. A big thanks goes also to the community that continuously extends and
improves J2ME Polish!

Introduction

This book introduces J2ME Polish, a collection of open source tools for creating “polished”
wireless Java applications. J2ME Polish is best known for its build tools and its user interface—
but more about that later. In this book, you will learn how to use J2ME Polish to your advantage.
You will also learn about the challenges you will encounter in the real world of wireless Java
programming and how J2ME Polish can help you to master these problems, by circumventing
device bugs, integrating the best matching resources, and more.

The first part of this book helps you to install and integrate J2ME Polish in your develop-
ment system. The second part of the book deals with the various tools included in J2ME
Polish, including the following:

* Device database (Chapter 6)

¢ Build tools (Chapter 7)

* Preprocessor (Chapter 8)

* Logging framework (Chapter 9)
e Utilities (Chapter 10)

* Game engine (Chapter 11)

* User interface (Chapter 12)

You can also extend J2ME Polish in almost every aspect, which I discuss in Chapter 13.

In the third and last part of the book, you will learn about differences between J2ME devices,
known issues, and typical challenges of J2ME programming in the real world.

In this book, I assume that you are already familiar with J2ME development, so you
should know what a MIDlet is, what the Mobile Media API is used for, and so forth. This book
will not teach J2ME programming; instead, it focuses on how you can get the most out of your
programming.

Please feel free to get in touch with me at robert@enough.de.

XXi

PART 1

Getting Ready

Creating mobile Java applications is great fun. Use this part for learning how to install
J2ME Polish and other necessary or useful tools for J2ME programming. If you already
have J2ME Polish up and running, | suggest that you skim through this part, so you don’t
miss out on the additional tips and tricks.

CHAPTER 1

Quick Setup Guide

In this chapter:
* Download J2ME Polish (http://www.j2mepolish.org).

e Install J2ME Polish (double-click the downloaded file or call java -jar
j2mepolish-[version].jar).

* Check out the sample applications (call ant or ant test j2mepolish in the
samples/menu or samples/roadrunner directory), if you have Ant and the
Wireless Toolkit (WTK) installed.

About two years ago, [was working on yet another mobile application and experienced the
agony of J2ME development: the application worked fine on the emulators, but not in the
crude real world. Then it worked on one device, but not another. After a while, my coworkers
and I managed to get it running on all our target devices (five different handsets), but we had
to split up the application into a different branch for each device we targeted. Then we needed
to incorporate any changes into each branch. What a headache! We used way too much time
coding device adjustments—more time than we devoted to the actual application itself. Being
good programmers, we managed it in the end, of course. Then we presented our finished proj-
ect. Although the application itself was regarded as good, the design was utterly rejected. So,
we had to redo the code, once again in every branch.

This scenario probably sounds familiar to you. And, as a programmer, you probably won-
dered, as 1 did, if it really had to be that way. Why should you create yet another application
branch just for incorporating device-specific adjustments? Why should you do these adjust-
ments in the first place? And last, but not least, why should you, as a programmer, be forced
to design the user interface of the application yourself? These are the types of problems that
J2ME Polish was designed to address.

In this chapter, you'll get a quick start with J2ME Polish. Here, I assume that you have set
up Ant and the Wireless Toolkit already. Please refer to the following chapters for a detailed
step-by-step guide.

CHAPTER 1 ©° QUICK SETUP GUIDE

Installing J2ME Polish

The installation of J2ME Polish is done in three distinct phases:

1. Install the Java Software Development Kit (SDK) 1.4 or higher, the Wireless Toolkit
(WTK), and a Java integrated development environment (IDE) or Ant.

2. Install J2ME Polish.
3. Integrate J2ME Polish into your favorite IDE.

You can download J2ME Polish from http://www.j2mepolish.org and start the installation
by either double-clicking the downloaded .jar file or by calling

java -jar j2mepolish-[version].jar

from the command line. (Sanity note: Please substitute the [version] with the actual version
number of J2ME Polish.) You should now be presented with the screen similar to Figure 1-1.

- & IzPack - Installation of J2ZME-Polish _ISIxk
J2ME Polish 1.4

wielcome to J2ME Palish 1.41
JZME Polish Is suite of 100l for creating “polished’ |2ME
applications. Each tool mests a definile need of J2ME developers:

Build-tonls with an integrated device-database, a powerful GUI, a
localization framework, a game-engine, a logging framework and
a collection of utilities.

Find more information about J2ME Falish at waw j2mepolish.org
Copyright 2003, 2004 Enough Software

5)
www.j2mepolish.org

(Macie with IzPack - hitp: | furew.|Zforge.com /)

£ Hext €3 Quit

Figure 1-1. Installing J2ME Polish

Launching the Sample Applications

After you have installed J2ME Polish to any directory, which I refer to as ${polish.home}, you
can check out the sample applications, which can be found in the samples directory. Change
(cd) to one of the directories, such as samples/menu, and call Ant from the command line:

ant test j2mepolish

The default WTK emulator should pop up when J2ME Polish has finished processing the
application, as shown in Figure 1-2.

CHAPTER 1 " QUICK SETUP GUIDE

= =] +5550000 - DefaultColorP

MIDlet Help

J2ME Polish

Figure 1-2. The sample menu application in the WTK emulator

If you see any error messages, most likely your Ant setup or your path to the WTK is not
correct. See the “Troubleshooting Sample Application Errors” section in Chapter 3 for help.

You can also start J2ME Polish from within any Java IDE. You need to mount the sample
project, right-click the build.xml file within it, and select Run Ant, Execute, or a similar menu
command to launch J2ME Polish. If you want to start the emulator, make sure that you have
selected the test target first, followed by the j2mepolish target.

Exploring the Sample Applications

If you wonder how the sample applications are made, you can take a peek at the build.xml file
in either the samples/menu or samples/roadrunner directory. This standard Ant file controls
the build process and uses the <j2mepolish> task for creating the application.

5

CHAPTER 1 ©1 QUICK SETUP GUIDE

If you take a look at the code itself in the src directory of the Menu application, you will
find a very simple application that uses a javax.microedition.lcdui.list for displaying a
menu. Open the resources/polish.css file to find out how this application was designed. This file
contains the design information in a human-readable format. To gain your first experience
with J2ME Polish, change the fontColor in the colors section on the top from rgb(30, 85, 86)
to red, and then restart J2ME Polish by calling ant test j2mepolish!

Congratulations, you are now ready to rumble!

Summary

This chapter explained the necessary steps for installing and using J2ME Polish in a very con-
densed manner. The following chapters describe how to install the other tools you need to
run J2ME Polish, detail the J2ME Polish installation steps, recommend some additional tools
that you might find helpful, and show how you can tightly integrate J2ME Polish into your
favorite IDE.

CHAPTER 2

Installing the Prerequisites

In this chapter:
* Install the Java SDK (http://java.sun.com/j2se).

e Install the WTK (http://java.sun.com/products/j2mewtoolkit, or the Mac OS X version
from http://mpowers.net/midp-o0sx).

* Obtain an IDE (such as Eclipse, http://www.eclipse.org), if you don't already have one.
e Install Ant (http://ant.apache.org).

¢ Obtain device emulators (from vendors, such as http://forum.nokia.com,
http://motocoder.com, and http://developer.samsungmobile.com).

J2ME Polish relies on several open-source and free tools. You need to have the Java 2 Software
Development Kit (SDK), the Wireless Toolkit (WTK), and Ant—either stand-alone or as part of
your integrated development environment (IDE). You should also install device emulators
from several vendors for testing your applications. Even though these are not strictly needed
for developing great applications, they make your programming life a good deal easier. This
chapter covers the installation of these tools.

The Java 2 SDK

J2ME Polish is a solution for creating wireless Java applications. So, it’s only natural that you
need Java itself as well. Java comes in three editions for catering to different needs:

* The Java 2 Standard Edition (J2SE) runs on your desktop computer and is needed by
J2ME Polish for generating the actual mobile applications.

e The Java 2 Micro Edition (J2ME) runs on mobile phones, but also on television set-top
boxes, personal digital assistants (PDAs), and embedded devices.

e The Java 2 Enterprise Edition (J2EE) runs on servers and is used for powering web
applications or delivering mobile applications over the air.

If you do not have J2SE installed, please download the latest 1.4.x version now from
http:/ljava.sun.com/j2se and install it. You can also use Java 5.0 (1.5.x), but many mobile
emulators require J2SE 1.4, so I recommend that you to stick to the 1.4 branch for now.

CHAPTER 2 © INSTALLING THE PREREQUISITES

Tip See Beginning J2ME: From Novice to Professional, Third Edition, by Jonathan Knudsen (Apress, 2005)
for a great introduction to J2ME development.

The Wireless Toolkit

The Wireless Toolkit (WTK) provides not only a generic emulator of a Java-enabled mobile
phone, but also a preverification tool, which you need to make a J2ME application ready for
deployment.

The installation is straightforward once you have downloaded it from http://java.sun.com/
products/j2mewtoolkit. Just install it into the default directory, and you're ready to go.

WTK Versions

Several versions of the WTK are available, notably the old 1.0.4 version for Mobile Information
Device Profile (MIDP) 1.0 phones and the latest version from the 2.x branch. Usually, you
should go with the latest version, but you can also use the 1.0.4 version if you prefer it. The
main difference is that you need to compile the code to Java 1.1 when you use the older WTK,
whereas Java 1.2 is used by default when WTK 2.x is available. In theory, this shouldn't make a
difference, but sometimes you might encounter really mind-boggling bugs that seem to be
linked to overloading problems. In such cases, the javac target can make a difference, so just
keep in mind that you can change it when you use WTK 2.x, but not when you use WTK 1.0.4.

WTK for Mac OS X

The standard WTK is not available for Mac OS X, but you can use a port that is provided by
mpowers LLC at http://mpowers.net/midp-osx. To do so, you need to have X11 installed as well,
which you can obtain at http://www.apple.com/macosx/x11.

The WTK itself is delivered as a disc image, which is mounted automatically when you
double-click it. Just install it by dragging the mounted disc image onto the desktop first, and
then into the Applications folder. If you don’'t have administrator’s rights, you can move the disc
image into the Applications folder within your home folder (create that folder if necessary).

IDE

In case you don’t use an IDE yet, I recommend the Eclipse IDE, which is available for free from
http:/lwww.eclipse.org. Eclipse provides a modular and powerful environment based on plug-
ins. J2ME Polish also brings along some Eclipse plug-ins that help you to write preprocessing
code, manage emulators, and so on. Chapter 3 discusses the possible integration in more
detail. Refer to http:/leclipse-tutorial.dev.java.net/ to learn more about developing Java pro-
grams with Eclipse.

Other popular IDEs include NetBeans (http://www.netbeans.org/) and JBuilder (http://
www.borland.com/jbuilder/).

CHAPTER 2 " INSTALLING THE PREREQUISITES

Ant

Ant forms the well-established standard for building any Java applications. You can use Ant
from the command line or from within any serious IDE, such as Eclipse, NetBeans, JBuilder,
or IDEA.

If you want to use Ant from the command line, you should download the binary distribu-
tion from http://lant.apache.org and extract it. You then need to adjust your PATH environment
variable, so that the ant command from the bin directory can be found.

If you have installed Ant into C:\tools\ant, enter the following command on your Windows
command line (or your shell script):

SET PATH=%PATH%;C:\tools\ant\bin

You can change the PATH variable permanently in the System Settings of Windows (Start »
Settings » Control Center » System » Advanced » Environment Variables).

Also set the JAVA_HOME environment variable, which needs to point to the installation
directory of the Java 2 SDK:

SET JAVA HOME=C:\j2sdk1.4.2 06
Under Unix/Linux/Mac OS X, use the export command instead of the SET command:

export PATH=$PATH:/home/user/tools/ant/bin
export JAVA HOME=/opt/java

You can set any environment variable automatically by editing the .bashrc script, found in
your home folder.
Now you should be able to test your Ant setup by querying the installed version:

> ant -version
Apache Ant version 1.6.2 compiled on September 11 2004

Note Please refer to the “Ant Crash Course” section in Chapter 7 for a guide to getting started with Ant.
It’s not that difficult!

Vendor-Specific Emulators

Emulators let you check out the look and feel of an application, and sometimes even help you
find bugs. Some emulators are little more than the standard WTK with another skin, but some
do reproduce the actual behavior of the device quite well.

Caution Beware of the “But it works in the emulator” trap! Never rely on an emulator. Test as early and
as often as possible on the real device.

10

CHAPTER 2

INSTALLING THE PREREQUISITES

You can usually download emulators directly from the vendors’ web sites, such as listed in
Table 2-1. Some vendors provide additional services, such as discussion forums and the like.
Most sites require you to register before you can download any resources. Sometimes, carriers
and operating system developers provide emulators too. Most emulators are available for Win-
dows only; some are available for Linux as well. For Mac OS X, you can use the mpowerplayer
SDK (http://mpowerplayer.com).

Table 2-1. Emulator Vendors

Vendor

URL

Remarks

Nokia

Motorola

Samsung

Sony Ericsson

Siemens

Symbian

http:/lforum.nokia.com

http://motocoder.com

http:/ldeveloper.samsungmobile.com

http://developer.sonyericsson.com

http:/lcommunication-market.
siemens.del/portal/main.aspx?pid=1

http:/flwww.symbian.com/developer

Look for Java tools and SDKs for getting
several emulators. Most common are
the Series 60 and the Series 40
developer kits.

The Motorola SDK contains several
emulators for most J2ME-enabled
devices. Go to Tools » SDK to download
the SDK.

The Samsung site supports only
Microsoft Internet Explorer 6.0 and
above. KDE’s Konqueror also works, but
Mozilla-based browsers cannot be used.
Check out the Resources section for
downloading the SDKs.

You can download the SDK from Docs &
Tools » Java.

Download the toolkit by choosing
Resources » Tools.

Download the emulators from the SDKs
section.

Summary

In this chapter, we looked at the various basic tools that you need in order to use J2ME Polish.
In the next chapter, you will learn how to install and set up J2ME Polish itself, so that you can
start developing professional mobile applications!

CHAPTER 3

Installing J2ME Polish

In this chapter:
* Get the J2ME Polish installer (http://www.j2mepolish.org).
« Invoke the installer (by calling java -jar j2mepolish-[version].jar).
* Use the provided sample applications.

Thanks to the graphical installer, the setup of J2ME Polish is relatively painless. This chapter
describes the installation of J2ME Polish, as well as some third-party tools that you can use
with J2ME Polish.

J2ME Polish Installation Guide

You can download the J2ME Polish installer from http://www.j2mepolish.org. Just select Down-
load from the main page.

Tip While you're at htfp://www.j2mepolish.org, you can also subscribe to the mailing lists by selecting
Discussion, then Mailing Lists. The polish-users list provides help and general discussions about J2ME
Polish. The polish-announce list keeps you updated about new releases.

You can invoke the installer either by double-clicking the downloaded file or by calling
java -jar j2mepolish-[version].jar from the command line. You need to substitute the
[version] part with the real version number, such as j2mepolish-1.4.1.jar. Now the installer
should start.

The installer is a simple wizard that needs your input for some steps. It presents three
critical screens: license selection, WTK directory selection, and component selection.

License Selection

The license selection screen, shown in Figure 3-1, asks you to decide which license you want
to use. The license will be included in the build.xml files, which control the actual build
process. So, you can change the license at any time by modifying these files.

1

