
Beginning Java™ and Flex
Migrating Java, Spring, Hibernate, and Maven

Developers to Adobe Flex

■ ■ ■

Filippo di Pisa

ii

Begi nning Jav a™ and F lex: Mi grating Jav a, Spri ng, Hibernate, and Maven Developers to
Adobe Flex

Copyright © 2009 by Filippo di Pisa

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2385-6

ISBN-13 (electronic): 978-1-4302-2386-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Tom Welsh
Technical Reviewer: Bradford Taylor
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Debra Kelly
Copy Editor: Sharon Terdeman
Compositor: Tricia Bronkella
Indexer: Ann Rogers and Ron Strauss
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. A "live" version of the
source code is maintained by the author at
https://filippodipisa.svn.cvsdude.com/apress_flexjava/archive/. (Username: apressapress,
Password: FlexAndJava).

■ CONTENTS

iii

I dedicate this book to my father, Pino, my mother, Raffaella, my sister, Beatrice, and my wife,

Soledad, the most important people in my life.

iv

Contents at a Glance

Contents at a Glance .. iv

Contents .. v

About the Author .. xi i

About the Technical Reviewer .. xi i i

Acknowledgments .. .xiv

Introduct ion .. xv

■Chapter 1: Developing with Java and Flex .. 1

■Chapter 2: Presenting the Sample Application .. 21

■Chapter 3: Configuring Your Development Environment 31

■Chapter 4: Inversion of Control . 89

■Chapter 5: Spring JDBC and Hibernate .. 131

■Chapter 6: Spring Security . 183

■Chapter 7: Flex (The View Layer) . 195

■Chapter 8: Working with Data in F lex .. 251

■Chapter 9: B lazeDS ... 303

■Chapter 10: Using Flex, Spring, and Hibernate Together 353

■

v

Contents

Contents at a Glance .. iv

Contents .. v

About the Author .. xi i

About the Technical Reviewer .. xi i i

Acknowledgments .. xiv

Introduct ion .. xv

■Chapter 1: Developing with Java and Flex .. 1

Why Java?.. 1

Why ActionScript?..2

Why Java and ActionScript Together? ...2

Programming Using Lightweight Frameworks...3
Benefits of Lightweight Frameworks ... 3

Introduction to Spring ..4

Introduction to Hibernate ...8
The Benefits of Hibernate .. 9

Introduction to BlazeDS ...10
BlazeDS vs. Adobe LiveCycle Data Services .. 11

Introduction to Flex ..13
Flex vs. Ajax ... 13

Flex, Flash Cs3, and ActionScript... 14

ActionScript vs. MXML ... 15

■ CONTENTS

vi

Introduction to UML..15
Basic Diagrams .. 15

Summary..18

■Chapter 2: Presenting the Sample Application .. 21

Architecture ...21

The Presentation Layer ..25

The Service Layer ..25

The Data Access Layer...27

The Domain Model ...28

Summary..30

■Chapter 3: Configuring Your Development Environment 31

The Source Code Editor: Eclipse IDE..31
Eclipse Projects.. 32

Eclipse Plug-ins ... 35

Installing Eclipse .. 36

Configure Eclipse for Flex and J2EE .. 37

Version Control: Subversion...40
Subversion Installation... 42

Basic SVN Project Structure... 42

Using SVN with the Command-Line Client ... 42

Installing Subclipse .. 48

The Database Tools: MySQL...49
Install MySQL on Windows... 50

Installing MySQL on a Mac... 52

Adding the MySQL GUI Tools.. 53

Basic MySQL Operation from the Command Line .. 54

Basic MySQL Operations Using MySQL Query Browser ... 57

■ CONTENTS

vii

The Java Application Container: Tomcat..63
Installing Tomcat.. 64

Tomcat Directories... 65

Tomcat Configuration Files .. 65

The Presentation Tools: Flex Builder..66
Installing the Flex Builder .. 66

Installing the Flex SDK 4 .. 69

The Build, Test and Deploy Tool: Maven ..71
Installing Maven... 72

Configuring Maven ... 72

Installing the Maven Eclipse Plug-in .. 73

Creating Your First Maven Project ... 73

The POM Document.. 75

Building a Project with Maven ... 77

Using Maven Plug-ins .. 77

Using Maven Dependencies... 79

Using Repositories ... 79

Deploying Your Application .. 81

Creating a Maven Archetype .. 82

Flex Maven Archetypes .. 83

Useful Maven Commands .. 83

Summary..87

■Chapter 4: Inversion of Control . 89

Spring Modules ..91

Spring Maven Dependencies ...93

Creating a Spring Project ...97

Configure the Spring Container..108
XML-Based Configuration .. 108

Injecting Lists and Collections ... 112

Annotation-Based Configuration .. 117

■ CONTENTS

viii

The Bean Factory ... 124

ApplicationContext and WebApplicationContext .. 125

Properties... 125

Summary..129

■Chapter 5: Spring JDBC and Hibernate .. 131

The DAO Design Pattern...131

Introduction to Plain Old JDBC ...133

Introduction to Spring JDBC...141
JDBC Template... 141

JDBC DAO Support ... 141

Hibernate and Spring ...148
Add Hibernate to your Spring Project... 148

Configure Hibernate ... 150

XML-Based Configuration .. 153

Annotation-Based Configuration .. 157

Using Hibernate with Spring ..173
Querying Using HQL ... 174

HQL and Hibernate Support Matrix .. 176

Use Native SQL... 179

Introduction to Transactions .. 179

Summary.. 182

■Chapter 6: Spring Security .. 183

Introduction to Spring Security ..183

Web Authorization Using URL Patterns ..184

The Importance of Filters ...184

Authentication and Authorization...186
Authentication Methods ... 187

Decision Managers and Voters .. 192

Summary..194

■ CONTENTS

ix

■Chapter 7: Flex (The View Layer) . 195

The FlashPlayer Overview..195

Flex Components ...195

The Flex Framework Architecture..196

Flex Development Overview...198

Flex Builder ..198
Create a Project.. 199

Flex Builder Perspectives... 205

Build an Application ... 205

Run an Application ... 206

Debug an Application ... 207

Navigate between Classes ... 207

Shortcut keys ... 208

Flex Components ...209
Containers .. 213

Layout Containers .. 213

Navigation Containers .. 214

Control Components... 215

Using External CSS Styles..219

Use Flex with Flash IDE..222
Create Flash Animations for Flex ... 226

Flex Events...229
Custom Events ... 233

Data Binding...237

Creating Custom Components ...239
MXML Custom Components ... 240

AS Custom Components... 241

Deploying Custom Components ... 245

Summary..249

■ CONTENTS

x

■Chapter 8: Working with Data in F lex .. 251

An Overview of Data Models ..251

Structuring Data for Views...256
Data Collections ... 256

Access to Remote Data ..261
HTTPService Components .. 262

Building Our First Java and Flex Application.. 263

RemoteObject Component ... 286

WebService Component ... 289

Using Eclipse Web Services Explorer ... 291

Using the WebService Component ... 293

Creating ActionScript Code to Consume a Web Service using Flex Builder..................................... 294

Storing Data on the Local Machine ..298

Summary..300

■Chapter 9: B lazeDS ... 303

Flex BlazeDS Architecture..303

Configuring BlazeDS ..305

Using Remoting Services ...309
Creating a Flex Java POJO BlazeDS Application .. 311

Creating the Flex Client.. 332

Using Messaging Services ...338
Real-Time Messaging with BlazeDS .. 338

Creating a Simple Chat Application.. 338

Summary..352

■Chapter 10: Using Flex, Spring, and Hibernate Together 353

The Flex-Spring-Hibernate Maven Archetype ..353
Using the Flex-Spring-Hibernate Archetype .. 357

Configuring the Application..361

Planning the Application with UML ..363

■ CONTENTS

xi

The Data Model UML Diagrams.. 363

The DAOs UML Diagrams ... 365

The Service Layer UML Diagram.. 366

Architecting Application Security... 367

Injecting the Spring Beans ... 368

Flex Client GUI Architecture ...369

Develop the Flex-Java-Spring-Hibernate Application..373
Coding the Domain Objects.. 373

Coding the Hibernate DAO objects ... 380

Create a Test Case ... 382

Coding the Service layer .. 386

Export Spring Services to BlazeDS... 390

Coding the Flex GUI application ... 391

Add a Login Form to Flex ... 395

Summary..414

■ CONTENTS

xii

About the Author

■ F ilippo d i P isa fell in love with IT in 1983, when his auntie Maria Rosa gave him
one of the first home computers on the market—the Texas Instruments TI-
99/4A—for Christmas. After passing through the Sinclair Spectrum and
Commodore era at the age of 24, he started his first IT company assembling PCs.
Then he rode the new economy bubble launching various dot-coms—always
software driven. Partly for business reasons, but largely because of a passion for
programming and software engineering, he learned many high-productivity
technologies such as Java, Spring, Hibernate, Acegi Security, ActionScript, Flex,
ColdFusion, Fusebox, JavaScript, and Perl. Filippo is now a London-based
consultant working for a number of household names in the UK market. Since
growing up in Bologna (Italy), he has lived in Milan, Madrid, and Barcelona. He

married Soledad in Ibiza on June 27, 2009.

■ CONTENTS

xiii

About the Technical Reviewer

■ Brad ford Taylor is an Architect for the Dallas-based business and technology consulting firm Credera.
He has more than 13 years of experience in Java Enterprise Application Development and has been
developing Flex/Spring applications for the past 4 years. Most recently he has been helping develop the
Open Source E-Commerce framework Broadleaf Commerce.

Bradford has been involved in a variety of projects, including e-commerce, company portals and
Flex applications. While at Credera, he has worked on The Container Store’s implementation of
Broadleaf Commerce. He has also helped Pursuant re-architect its Unifyer application, wrote the latest
implementation of Truthcasting, worked with Blockbuster on enhancements to its e-commerce
platform, and made enhancements to its Silverlight Movie browsing application.

Before his work at Credera, Bradford consulted at Neiman Marcus to create user applications to
work with its customer data mart. He started his career at Nextel, where he worked on the company
portal and developed Nextel’s internet application for phone resellers. He has worked with banks, the
Department of Defense, major retailers, and small companies to help develop both Java and Flash/Flex
applications to meet their business needs.

■ CONTENTS

xiv

Acknowledgments

I dedicate this book to my father, Pino, my mother, Raffaella, and my sister, Beatrice, who have stood by
me through my whole crazy life.

I have many people to thank for their support on this book, but the one person I would really like to
acknowledge is my wife, Soledad. For the past six months she has watched TV using a headset, or just
reading the subtitles, so as not to disturb me in my nightly writing.

The second person without whom this book could not have been written is my colleague and friend
Chris Seal. He helped me a lot, reading chapter after chapter, making suggestions from the project
management point of view and improving my Italian-English. Thanks Chris!

I would also like to thank the fantastic Apress team who believed in me while I was writing this book, and
provided excellent support in authoring and the technical aspect. In particular, I am really pleased to
have worked with Steve Anglin, Tom Welsh, Debra Kelly, Bradford Taylor, Sharon Terdeman, and
Matthew Moodie. Thanks a lot!

A special thanks also to my agent and friend Shervin Rahmani from explorerec.com who believed in me
from the beginning and introduced my consulting services to some of the UK's top-name companies.

Filippo di Pisa

■ INTRODUCTION

xv

Introduction

Over the past few years, the now open source Adobe Flex Framework has been adopted by the Java
community as the preferred framework for Java RIAs using Flash for the presentation layer. Flex helps
Java developers build and maintain expressive web and desktop applications that deploy consistently on
most web browsers and a growing number of mobile devices.

Beginning Java and Flex describes new, simpler, and faster ways to develop enterprise RIAs.
This book is not only for Java or Flex developers but for all web developers who want to increase their
productivity and the quality of their development.

In this book I will show you how to develop using the most popular Java lightweight frameworks
such as Spring and Hibernate, using Flex and ActionScript 3 as the view layer. Once you have mastered
this new development frontier, including concepts like Dependency Injection (DI) and Object
Relationship Management (ORM), you will very likely want to use them for all your projects.
Flex and Java are becoming very popular for both business and interactive applications, and they can
open doors to the different branches of software development such as gaming, finance, advertising, and
desktop applications of all kinds.

Who This Book Is For
If you are a developer who wants to use Java and Flex together, then this book is for you! This is
especially so if you are any of the following.

• An ActionScript/Flash developer–You really should read this book because it will show you how

best to use Java in your applications. Learning Java is a great way of immersing yourself in the

latest software engineering patterns and frameworks.

• A Java developer–If you are a Java developer and know about Enterprise JavaBeans (EJBs), I really

suggest you should think about using POJOs and Java frameworks such as Spring and Hibernate.

By reading this book you will also pick up Flex, which puts the power of Flash into your

presentation layer. Learning Flex will bring you into the world of Adobe and Flash, which

promises to become increasingly important. With CS5, the next release of Flash, Adobe promises

that we will be able to write ActionScript applications and compile them to native Objective-C

ready to run on the iPhone!

• A Web developer–If you are using languages such as PHP or Cold Fusion, please consider

switching to Java lightweight frameworks. I guarantee that once you have mastered them your

productivity will soar, and–thanks to Java–the quality of your code will get better too. For any web

developer, learning Flex is a must even if you are already an Ajax or JavaFX guru. And along with

Flex and ActionScript 3 you will also pick up knowledge of Flash, which at the time of this writing

is everywhere.

■ INTRODUCTION

xvi

The Book
This book has been designed to help you in three ways.

1. First, it gives you an easily understood overview of the different technologies that we are going to

use.

2. Then it shows you how to set up your development environment.

3. With all the prerequisites taken care of, you learn how to use each framework in turn, starting

with Spring and moving on to Hibernate, then BlazeDS, then Flex, and finally putting everything

together using Maven.

Here is a brief summary of what each chapter deals with.

Chapt er 1 introduces you to the technologies that we are going to use, including Java, Flex, Spring, and
Hibernate. It also sums up the benefits of object-oriented programming over procedural or scripting
languages, and the strengths of a lightweight programming approach.

Chapt er 2 introduces the sample application that we are going to use in this book and its architecture.

Chapt er 3 shows you how to set up all the development tools you will need. While reasonably
straightforward, this could turn out to be a painful, annoying, and time-consuming process unless you
do it right. It can take a lot of time and effort to configure a complex development environment, but it
really makes a difference once you have it up and running smoothly.

Chapt er 4 covers the most important aspects of the Spring framework. You will learn the key concepts
of DI and Inversion of Control (IoC) and how to configure Spring and inject beans into the Spring IoC
container using both XML configuration and Java annotations.

Chapt er 5 demonstrates how to create a Java EE data-driven application using both JDBC and ORM
frameworks. I will show you the Data Access Object (DAO) pattern architecture and the difference
between using "plain old JDBC" and Spring JDBC to connect to a database. Then I will explain the value
of using Hibernate and Spring instead of the Spring JDBC and introduce transactions, which play an
important role in Java EE development.

Chapt er 6 shows you how to secure a Java application using the Spring Security framework (formerly
Acegi Security). You will see how Spring Security delegates all requests to filters added by default into the
Spring Security filter chain stack. Then I will show you how to add a custom authentication filter into the
filter chain stack, replacing the default one. Finally, I will set out the different authentication processes
using databases, LDAP repositories, and static values.

Chapt er 7 gives you a complete overview of the Flex framework and the Flex Builder IDE. I will explain
how to create and compile a Flex project using the Flex Builder Eclipse plug-in. Then you will learn how
to listen for and dispatch Flex events, create custom components, use external CSS files, data binding,
control Flash MovieClips, and more. This chapter takes you through all the concepts that I think are
fundamental for starting to develop using Flex.

Chapt er 8 shows you the most important ways to structure data on the Flex client and to access data on
a remote server. First, I will show you how to bind ActionScript data collection to ActionScript DataGrid
components and how to create a real-time search into the collection using filters. Next, I will create a
Java application that provides a list of users through servlets. The Flex client will retrieve the XML using
the HTTPService component. Finally, I will show you how to use the Flex RemoteObject component.

■ INTRODUCTION

xvii

Chapt er 9 introduces the BlazeDS server. You will learn how to retrieve and send data from a Flex
application to a Java application and how to exchange real-time messages among different clients using
the BlazeDS server.

Chapt er 10 puts it all together–Spring, Hibernate, BlazeDS, and Flex. We will create a Flex-Spring-
Hibernate project using the Flex-Spring-Hibernate Maven archetype. The archetype creates the entire
project directory structure containing all the Spring, Hibernate, and BlazeDS configuration and
properties files. It also adds all the packages usually needed for this kind of application using the Model
View Controller (MVC) and DAO patterns. In this chapter, I cover all the most important aspects of Flex-
Spring-Hibernate-Maven development. You can reuse the same archetype to start your own project, and
you’ll see how your developer productivity will quickly increase.

Java and Flex let you create amazing applications using object-oriented languages and the latest
software engineering techniques, making you not just a better developer but also a better software
engineer.

C H A P T E R 1

■ ■ ■

1

Developing with Java
and Flex

Two of the most difficult decisions for a project manager, CIO, or developer are which platform to target
and which language to use. Books have been dedicated to the relative merits of one language over
another and the options are much more complex than you might think. While a developer may have a
preference, based on his own experiences or selfish desires, the project may be best served by different
choices.

And there are many available. The IT/developer world is constantly changing. During the last 15
years, many languages have found and lost favor, while seemingly “dead” languages such as Ruby have
experienced a resurgence. (In Ruby's case, this is due to the arrival of the Rails framework). I expect this
trend to continue and that the life of a developer will be one of constant evolution.

To survive in today’s market, developers need to learn more than one language. However, they also
need to be able to choose which is best for a particular endeavor, which can sometimes be just as
difficult. In the next sections, I’m going to discuss the choices I made for this book.

Why Java?
I am not a Java fanatic, and I don’t want to create a polemic saying that Java is better than C# or vice
versa. My view is that every language has its place and has a market, especially since so much effort
involves working with existing applications and code.

A nontechnical manager I worked with used to advise using “the best tool for the job.” The best
example from my past is when I had to create a Windows application that worked with iTunes via COM
objects. I felt that C# would be the fastest, so C# is what I used.

I do believe that enterprise Web applications are better served by using Java. This is partly due to the
hosting platforms Java runs on and the lack of dependencies on operating environments like .NET.

Developers should enjoy programming in Java and are often surprised at how fast they can obtain
results. Studies have consistently shown that switching to the Java platform increases programmer
efficiency. Java is a simple and elegant language that has a well-designed and intuitive set of APIs.
Programmers write cleaner code with a lower bug count when compared with other languages, which in
turn reduces development time.

Java is certainly more difficult to learn than scripting languages such as PHP, ColdFusion, and the
like. Still, once you have mastered Java, you will find there is no comparison for writing stable, scalable
enterprise applications.

PHP and ColdFusion are excellent languages, and possibly even too successful. The problem with
these two languages, so common in Web environments, is not that they are not powerful enough but
that they make it too easy to code poorly and still get usable results. They forgive a lot of mistakes. This
has meant that too many developers write bad code, just because they can get away with it. Too often,
though, while they do get usable results, their code is not stable or scalable.

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

2

Of course, there is plenty of badly written Java code, too. However, in Java, before you are actually
able to do anything, you must at least know the basics of object-oriented programming, data types,
serialization, unit testing, and so forth.

So while there is bad code in Java, you don't tend to get really bad code that works— unlike what
you see in many ColdFusion or PHP applications.

I’ve been developing for many years (some would say too many!) and I am constantly striving to use
the best technologies available. In my opinion, at the moment the best technologies are Java and
lightweight programming (which I’ll discuss later in the chapter).

Why ActionScript?
A lot of developers think of ActionScript (AS) simply as a scripting language for Flash animation and for
attaching scripts on the timeline.

Well, it’s not!
At least ActionScript 3 (AS3), which arrived with Flash Player 9, isn’t and should in no way be

confused with earlier versions of ActionScript. It is a completely new language and a whole new virtual
machine, with an ability to build Web applications and games that are like nothing else in the
marketplace.

With Adobe AS3, you can do so much more than with Ajax and JavaScript. It is more efficient, and
elegant, and without the bizarre restrictions of what works and what doesn’t. Furthermore, AS3 is cross-
platform, which is crucial in today’s diverse environment (Mac OS, Windows and Linux), and cross-
browser without too much hassle. AS3 supports regular expressions, binary sockets, remote data access,
X-Y-Z axis manipulation, 3D drawing, 3D effects, audio mixing, peer-to-peer (P2P) communication and
more. AS3 is compiled in a totally different bytecode from its predecessor. Flash Player 9 and Flash
Player 10 both contain two virtual machines for backward compatibility with all AS releases.

Adobe Flex, a software development kit for creating applications based on Flash, has added a new
dimension. It allows you to develop amazing user interfaces (UI) and rich Internet applications (RIA) in
an elegant way while using Java design patterns and server-side capabilities.

Why Java and ActionScript Together?
If you are already an AS developer, you may be asking yourself why you should bother to learn Java,
especially as Flex and AS allow you to use any number of server-side technologies and Web services.

On the other hand if you are a Java developer, you may be thinking—AS and Flex are still scripting
languages, and Ajax with Spring MVC Swing or other Java frameworks work, so why bother? (MVC is a
complete design pattern that I’ll cover in Chapter 5.)

The fact is, even aside from Java’s stability, elegance, and performance, the frameworks that Java
has at its disposal greatly improve the software engineering productivity cycle. And Flex and Java
together allow the developer to build very complex and well-presented applications in very quick time
frame.

Furthermore, server frameworks like BlazeDS allow you to connect to back-end distributed data and
push data in real time to Adobe Flex and Adobe AIR applications. The results can be staggering. This
means you can work with Java objects directly within your Flex application and vice versa.

You can use the power of Java for server-side business logic, and the AS3 API to create a fantastic UI,
games, video streaming applications, and much more. Moreover, Flex and AS are not JavaScript
competitors; you need to use both to obtain the best results for your RIA applications.

Flex provides different APIs and libraries to use JavaScript, Ajax, and certain browser features. The
only negative that I see in both Flex/AS3 and Java is the steep learning curve for scripters. And that is
exactly why I have written this book!

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

3

Programming Using Lightweight Frameworks
A framework is a basic conceptual structure used to address complex issues. In software programming,
the term commonly denotes code that is generic in function but can be overridden by user code using
specific functionality. Frameworks can be similar to software libraries and they share many common
characteristics, such as being reusable abstractions of code wrapped in an API. One difference with
libraries is that the flow of control is dictated by the framework and not the caller.

In the past few years, there have been a lot of frameworks built in the Java community using plain
old Java objects (POJO). A POJO is "plain" in the sense that it is not a JavaBean, an Enterprise JavaBean,
or anything of that sort; it’s just an ordinary object.

■ NNote An Enterprise JavaBean is not a single class but a representative of an entire component model. The core
principle shared by all lightweight enterprise Java frameworks is the use of plain old Java objects (POJOs) for the

data access and business logic.

Lightweight technologies have evolved due in large part to a “developer rebellion” against the
heavyweight and cumbersome EJB 2.1 (and earlier). Lightweight frameworks have the stated aim of
making developers more productive and their applications less error-prone. This is achieved by
removing the rigid EJB 2.1 infrastructure classes and interfaces and the "over the top" XML deployment
descriptors. (Lightweight, by the way, means light load, not soft or weak.) Lightweight frameworks
promote better and cleaner applications through better architecture. They are easier to reuse, which
saves time and money.

Hibernate, for example, is a lightweight ORM (Object-relational Mapping) framework that can be
great for implementing business and persistence logic. It allows interaction between the database and
Java. For example, you can generate your database schema directly from your Java classes, and vice
versa.

In this book I have chosen to use the most popular and stable Java and AS frameworks for creating
business and media web applications, namely:

• Spring (a lightweight container)

• Hibernate (the most popular ORM)

Benefits of Lightweight Frameworks
When you have to develop an enterprise application, you must decide on the best language and the
correct development methodology. There are 2 main approaches to developing an application—
procedural and object-oriented (OO). The procedural approach organizes the code by manipulating
data with functions. This style of programming dominated software development for years,
implemented by very popular languages such as C, Pascal and others.

The object-oriented method organizes code around objects that have relationships and
collaborations with other objects, making the application easier to understand, maintain, extend, and
test than with a procedural design.

Despite the benefits of object-oriented design, most Web applications, including Java EE
applications, are written in procedural style. Web languages such as PHP and Cold Fusion haven’t
supported OO design until the latest releases, and Java EE itself encourages developers to write
procedural code because of EJB, a standard architecture for writing distributed business applications.

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

4

EJB is a heavyweight framework that provides a large number of useful services like declarative
transactions, security management, and so forth. It was adopted enthusiastically by most Java
developers, who had to abandon their OO skills to configure lots of XML, and write procedural Java code
to build EJB components. For several years, EJB was the de facto standard— until the rise of POJO
lightweight frameworks.

The goal of POJO is to support writing Java applications using standard OO design and patterns. EJB
encouraged developers to write procedural code, thus losing the advantage of many of the best practices
used for normal Java development. Other Web languages tried to follow the EJB architecture by
concentrating development on a component base. Now both Java and other Web languages are moving
back to OO design. However POJO alone is not sufficient in enterprise applications development, where
you need security management, persistence objects, and all the other services implemented by the EJB
framework.

The solution is to use POJO lightweight frameworks that are not as intrusive as EJB and significantly
increase developer productivity. POJO lightweight frameworks provide services without requiring that
the application classes implement any special interfaces. With lightweight frameworks you can write EE
applications using an OO design, and later in this book I’ll show you how to manage these libraries just
by configuring an XML file.

Lightweight framework programming can save you lots of time, in particular through avoiding the
need for lots of code and complex OO design patterns. However, before using Java and Flex lightweight
programming, you need to have good OO design skills otherwise you will get into trouble. If your OO
design skills are in need of refreshing, you may want to take a look at Java objects and Java design
patterns before proceeding.

The lightweight frameworks that I use and describe in this book are Spring, Hibernate for Java, and
Flex for AS and Flash. Using all of these together, you’ll see how you can write fast and elegant code to
produce amazing RIA applications.

In Table 1-1, I have summarized the differences between standard EJB, Web languages, and POJO
approaches.

Table 1-1. Differences in various progamming approaches

Operation Web Languages EJB POJO

Business logic Procedural style Procedural style Object-oriented design

Database access Odbc, Jdbc, Sql JDBC/Entity beans Persistence framework

Returning data to the view Components DTOs Business objects

Application assembly Most of the times
architected by the
developer

Explicit JNDI lookups Dependency injection

Transaction management - EJB container Spring framework

Security management - EJB container Spring security

Introduction to Spring
Spring is a lightweight framework based on the Dependency Injection (DI) pattern. It is lightweight
because Spring uses POJO, which makes it very powerful and very easy to extend or implement.

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

5

Spring’s primary use is as a framework for enabling the use of Inversion of Control (IOC). It is also a
powerful Java Enterprise application framework that provides a large number of features and services.
Spring is initially a bit difficult to understand, but once mastered, you will see a great improvement in
your productivity. For enterprise applications, Spring is an excellent tool because it is a complete, well-
written, well-documented, scalable, and open source—with a lot of community support.

With Spring, you are able to inject all your classes directly into the container using an XML file. This
means that the Spring container instantiates all classes and injects into others as defined by XML. You
no longer have any dependency lookup problems.

Think of Spring as a container that assembles all your classes together and any part can easily be
swapped out. Each part is just a plain Java object.

Without DI, you would have to create a layer that assembles everything, and probably you would
also have to change the code for any environment because of the code embedded relationship between
the different classes.

public class UserService (){

 private UserDao userDao;

 public UserService(){
 userDao = new UserDao();
 }
}

With DI, you solve this problem because you have to create a parameterized version of the same

code, allowing it to accept injected classes

public class UserService (){

 private UserDao userDao;

 public UserService(UserDao userDao){
 userDao = userDao;
 }
}

But Spring is not just an IOC framework (though everything is based on the IOC framework). Spring

provides services and resources for database connection pools, database transaction, security,
messaging, caching, and much more. To manage the security of all your application with groups, roles,
and permissions, for example, you only have to inject some classes into the Spring security framework.

Spring supports all major data access technologies such as JDBC, Hibernate, JPA, and Ibatis. For
example, to query a database you don’t have to create the code to manage the connection, process the
result set, and release the connection itself. All these processes are handled by Spring.

The typical architecture of a Spring application comprises a presentation layer that uses a service
layer to communicate to the data access layer, which can deal with database, mail servers, or any other
data containers, as shown in Figure 1-1.

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

6

Figure 1-1. Architecture of a Spring application

The presentation layer contains all views and components that are concerned with the presentation
of the application to the user. Typically, the view is implemented with JSP or a similar technology; in this
book we’ll use Flex.

The service layer represents the business logic of the application. All operations pass through the
service layer. You can have different service layers for different services, such as UserServices,
MailServices, and so on. In the upcoming chapters, you will learn how to expose the Java Spring service
layer to Flex/AS, and to allow the presentation layer to use it.

The data access layer provides all methods to save, send, and retrieve data. Usually the data access
layer works with the database, mail servers, .xml, or the file system.

As mentioned previously, Spring is based on a IoC container where all objects(beans) are
instantiated. To help you understand this concept better, I’m going to use a basic IOC Flex container I
wrote to inject different .xml files to different service layers. My application needed to provide different
content to the view, such as video, images, and text, and everything is based on different XML files. At
the time, I had to create the application as quickly as possible, and I had other applications to create, so
the more code I could reuse and the faster I could deliver the project, the better I would be.

My goal was to create a container where I could inject the .xml files and relate them to the different
content factories of the application. I copied precisely the Spring .xml syntax to make it readable by the
Spring developer. Below is the application .xml file to show you how I injected the .xml files to the
different content factories.

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

7

<beans>
 <bean id="XMLArticlesList" claz="com.publicis.iocframework.core.XMLLoader"�
path="articlesList.XML" />

XMLLoader is a core class of my IOC framework that loads XML from a given path.

 <bean id="articlesService"
claz="com.publicis.articles.business.ArticlesServiceImpl">
 <constructorarg value="articlesDao" ref="articlesDao" />
 </bean>

ArticlesServiceImpl is the application service layer, and you have to pass into the default

constructor the object type articlesDao.

 <bean id="articlesDao" claz="com.publicis.articles.dao.XML.ArticleDaoXML">
 <constructorarg value="XMLArticlesList" />
 </bean>

ArticlesDaoXML is the data access layer and you have to pass into the constructor an object XML

type.
As you can see, I am able to inject classes and manage their dependencies directly from an XML file

without recompiling and changing my code. Moreover, I can reuse the XmlLoader core class to load into
the IOC container any XML file and reuse it for a different application. For example, I could pass the
XmlArticlesList object to another object simply by adding a new XML tag like this:

<bean id="mediaDao" claz="com.publicis.articles.dao.XML.mediaDaoXML">
 <constructorarg value="XMLArticlesList" />

Dependency injection frameworks exist for a number of platforms and languages, such as AS, Flex,

Java, C++, PHP, ColdFusion, Microsoft, .NET, Ruby, Python and Perl. Below is a table with the most
popular IOC frameworks for AS, Flex, and Java.

Table 1-2. Dependency injection frameworks

Language/platform DI Framework

AS Spring ActionScript (formerly Prana Framework)

AS di-as3

AS Syringe

Flex Flicc

Flex Mate

Flex Swiz

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

8

Java Google Guice

Java JBoss microcontainer

Java Spring framework

Java Java 5 / EJB 3

Java Spring ME

Introduction to Hibernate
Hibernate is another very popular lightweight POJO Java framework. Before I discuss Hibernate, let me
introduce you to object-relational mapping (ORM) frameworks.

Many software applications use relational databases to store data, including such products as
Oracle, MySql, Microsoft SQL Server, PostgreSql, and others. Various frameworks, such as JDBC or ORM,
are used to retrieve data from such databases. An ORM framework provides a service to map the
relational model to the OO model. Hibernate is an ORM framework that has become a natural choice for
working with POJO (though it supports EJB 3.0 as well).

In practice, Hibernate maps your database tables to classes. A standard ORM also provides
persistence objects, which means it will persist data for you so that you don't have to write tedious SQL
statements using JDBC. For example, to insert or update data into the database, you can use the method
save(entity), which saves you a lot of time compared with writing the full SQL INSERT or UPDATE.

The table mapped in the OO model is called an entity and all entities are persistent in a Hibernate
session. You will learn how to inject this session into the Spring container and also how to use Spring
Hibernate Templates to make your life easier. After mastering these techniques, you’ll see how easy it is
to work with databases and OO, and if you have worked with SQL, JDBC and other technologies before, I
think you will be pleasantly surprised.

Hibernate also provides Hibernate Query Language (HQL), in which you can write code that’s
similar to SQL to retrieve data from a persisted object. For example, imagine that you have mapped the
database table users to the entity User, and you want to select a user by his id. To do so, you can write an
HQL query like this:

int id = 2;
String hql='from User u where u.id = :id ';
Query query = session.createQuery(hql);
query.setInt(id);
User user = (User)query.uniqueResult();

Hibernate works with a large number of databases such as Oracle, MySQL, MS SQL server, Sybase,

IBM DB2, and others. You just have to tell Hibernate the database dialect you want to use, to ensure that
Hibernate uses the correct and fully optimized SQL for that database. In the next chapter, you will learn
how to set the dialect for MySQL and the other databases.

To round off this Hibernate introduction, let me use a UML diagram, shown in Figure 1-2, to
illustrate a simple physical relational database mapped to OO classes.

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

9

Figure 1-2. Database tables mapped to object-oriented classes.

The Benefits of Hibernate
After reading the previous sections, you probably already recognize the many advantages that ORM
frameworks and persistence objects offer. We talked about the method save that allows you to
insert/update data into the database, avoiding the tedious INSERT or UPDATE SQL statements.
Hibernate saves you typing in the tedious SQL, though it allows you to use SQL when necessary.

Another benefit of Hibernate is that it never updates the database if the object state hasn’t changed.
In hand-coded JDBC, it is very common to have to write code to avoid this very problem. When a user
presses the submit button on a form, even without making any changes, JDBC doesn’t know so it
updates the database anyway.

Hibernate also provides a very efficient caching system. You can cache persistent objects and enable
cluster cache to memory or the local disk.

With Hibernate, you can work with different database types just by changing the property dialect.
This means you can use your application with a different database by just changing one line of code.
Sometimes, however, you will still need to write SQL to retrieve data using complex queries. These are
hard to formulate with just the Hibernate filters, so Hibernate offers you a choice. Either you can work
with Hibernate's query language (HQL), which allows you to query your persisted objects with a
language similar to SQL, or you can revert to standard SQL usage, which forces Hibernate to use normal
SQL.

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

10

A key advantage of Hibernate from my point of view is its integration with Spring. In fact, Spring
provides a Hibernate Template that simplifies the use of Hibernate. The Hibernate Template provides
convenience methods that enable the developer to write less code, as you can see from the following:.

public vvoid remove(User user) {
 getHibernateTemplate().delete(user);
}

Hibernate also provides hooks so Spring can manage sessions and transactions in a transparent and

elegant way.

Introduction to BlazeDS
Now we’re ready to look at another important piece for connecting Spring services to the user
interface—BlazeDS, a technology for remotely connecting to Java objects and for sending messages
between clients. As Adobe points out, BlazeDS allows you to connect to back-end distributed data and
push data in real time to Adobe Flex and Adobe AIR rich Internet applications (RIA). You can think of
Blaze as a bridge between Adobe Flex (the presentation layer) and Java Spring Services (the business
logic layer), as shown in Figure 1-3. Figure 1-4 outlines the BlazeDS server architecture.

Figure 1-3. BlazeDS acts as a bridge between Flex and Java.

If you are an AS developer, you may have developed many applications using XML or SOAP.
Adopting BlazeDS means your application will load data up to 10 times faster than with those text-based
formats, as it employs an AMF (Action Message Format) data transfer format. (AMF is based on SOAP. If
you’re from an AS and Flash background, you should be familiar with AMF; if you’re from a Java
background, you just need to know AMF is much faster than standard SOAP in this environment).

Figure 1-4. The architecture of a BlazeDS server.

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

11

BlazeDS implements real time messaging and you can have multiple clients connected to the same
server. BlazeDS pushes data over HTTP so there is no problem with firewall configuration. The BlazeDS
technology is free under an open source license, which means that you can extend it or use it with
different client technologies.

BlazeDS vs. Adobe LiveCycle Data Services
If you are already involved with Flex development, you may be aware that many users are confused
about the differences between Flex Data Services, Adobe LiveCycle Data Services ES, Adobe LiveCycle
Data Services DS, and BlazeDS. In this book, I will cover only BlazeDS, as it is open source, and it is
powerful with strong performance. However, I want to clear up the confusion and give you an
understanding of the big picture or maybe big puzzle that is Adobe Data Services.

Part of the confusion is relatively easy to solve—Flex Data Services was renamed to Adobe LiveCycle
Data Services, commonly referred as LiveCycle DS. In LiveCycle ES, the ES means Enterprise Suite, and
this is an SOA-based platform that provides many built-in services like sending and receiving emails,
calling web services, executing SQL, uploading files via FTP, and so forth. You can add new services
using Java POJOs, and on the top of the base platform, there are solution components like Adobe
LiveCycle Forms ES, Adobe LiveCycle PDF Generator ES, Adobe LiveCycle Digital Signatures ES, and
more. One of the solution components is Adobe LiveCycle DS, which is basically a subset of Adobe Life
Cycle Data Services ES.

There is a free version of Adobe LiveCycle DS called DS Express, which is restricted to a single
application and a single CPU, so it can’t be used for production work. Finally, there is BlazeDS, which is
open source and provides a subset of functionalities of LiveCycle DS. Table 1-3 shows the substantial
differences between LiveCycle DS and BlazeDS. (Source
http://sujitreddyg.wordpress.com/2008/01/31/BlazeDS-and-lcds-feature-difference/).
For more details on the features, please visit
http://www.adobe.com/products/livecycle/dataservices/features.html.

Table 1-3. Differences between LiveCycle DS and BlazeDS.

Features LiveCycleDS BlazeDS

Dat a management Servi ces

Client-Server synchronization x

Conflict resolution x

Data paging x

SQL adapter x

Hibernate adapter x

Document Servi ces

LiveCycle remoting x

RIA-to-PDF conversion x

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

12

Enterp rise-Class Flex app li cati on
services

Data access/remoting x x

Proxy service x x

Automated testing support x

Software clustering x x

Web tier compiler x

Enterp rise Integrati on

WSRP generation x

Ajax data services x x

Flex-Ajax bridge x x

Runtime configuration x x

Open adapter architecture x x

JMS adapter x x

Server-side component integration x x

ColdFusion integration x

Offli ne Appli cati on Supp ort

Offline data cache x

Local message queuing x

Real - Ti me D at a

Publish and Subscribe messaging x x

Real -time data quality of service x

RTMP tunneling x

CHAPTER 1 ■ DEVELOPING WITH JAVA AND FLEX

13

Introduction to Flex
In the previous sections, we talked about Java POJO and lightweight frameworks programming, and also
the bridge between the Java business logic to the presentation layer. We will present our data or media
using Flex. Adobe defines Flex as a highly productive, free, open source framework for building and
maintaining expressive web applications that deploy consistently on all major browsers, desktops, and
operating systems. However, as with all marketing talk, I bet that still leaves you somewhat perplexed.
Maybe if you are an ActionScriptor, you think Flex is just a set of components for bad developers!

On the other hand, if you are a Java developer, maybe you think Flex is merely a scripting language
like JavaScript that you can use to build a Flash micro site.

The more correct answer in my view is that Flex is a framework that sits on top of AS3. It allows you
to develop Flash driven-business and media applications. Flex was built for software developers with
object-oriented skills to enable them to write stable Flash applications. Flex is very similar to Java Swing
(a framework for creating graphical user interfaces (GUIs) for applications and applets in Java). A plus
for Flex is that it runs in Adobe Flash Player, meaning that you can deploy your application to all major
browsers, desktops, and operating systems. Another plus is that Flex is AS, so you can develop GUIs,
games, and amazing animations. Flex also has remote objects, so you can use your remote objects, such
as Java objects, with your AS objects.

Flex can be a little frustrating at first, but give it time. Not all of its advantages are immediately
apparent, but the more you use it, the more you will come to see the benefits. Chances are, you will end
up using the Flex compiler even for a simple microsite. Why? Simply because you will see that is easier to
debug, write code, compile, and it is also standard OO.

And remember—Flex is not MXML! The only real problem I see with Flex is an overuse of MXML,
which is bad coding and often done by those without an appreciation of OO programming. (MXML is an
XML-based markup language originally from Macromedia. It was created for building the user interface,
not the client business logic.)

Relying too heavily on MXML causes applications to be unstable, whether due to bad architecture or
bad code, and they are ultimately difficult to maintain. It’s a far better practice to use AS for the business
logic and keep MXML just for the view and some UI components.

■ NNote The mindset you need to employ is that Flex is used for Rich Internet Applications, not Rich Web
Applications. There isn’t a clear line between RIAs and RWAs, but Flex is definitely on the RIA side of things in that
you are building applications that are desktop-like but use the Internet for deployment ease and connectivity to

services. This is in contrast to AJAX, which is more toward the RWA end of the spectrum in that it increases

functionality and usage efficiency of web pages.

Flex vs. Ajax
Ajax stands for Asynchronous JavaScript and XML. It means that you can combine HTML, JavaScript,
and XML to create client Web applications that can interact with a server asynchronously. In practical
terms, it means your web page can load and send data to the server without needing to reload the page.

If you are coming from a Java POJO lightweight programming background, you may be wondering
why you should have to learn a Flash-driven language when you already have thousands of productive
Java frameworks. As I suggested earlier for the ActionScriptor, just give it a little time or one full project
and you’ll reap the benefits. I have developed a lot using JavaScript and Ajax, and while JavaScript is
improving day by day, it is still a scripting language. It supports just simple linear animations and it is
not a strongly typed OO language.

