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Preface

Semigroup theory is a relatively young part of mathematics. As a separate
direction of algebra with its own objects, formulations of problems, and
methods of investigations, semigroup theory was formed about 60 years ago.

One of the main motivations for the existence of some mathematical
theories are interesting and natural examples. For semigroup theory the ob-
vious candidates for such examples are transformation semigroups. Various
transformations of different sets appear everywhere in mathematics all the
time. As the usual composition of transformations is associative, each set of
transformations, closed with respect to the composition, forms a semigroup.

Among all transformation semigroups one can distinguish three classical
series of semigroups: the full symmetric semigroup T (M) of all transforma-
tions of the set M ; the symmetric inverse semigroup IS(M) of all partial
(that is, not necessarily everywhere defined) injective transformations of M ;
and, finally, the semigroup PT (M) of all partial transformations of M . If
M = {1, 2, . . . , n}, then the above semigroups are usually denoted by Tn,
ISn and PT n, respectively. One of the main evidences for the importance of
these semigroups is their universality property: every (finite) semigroup is a
subsemigroup of some T (M) (resp. Tn); and every (finite) inverse semigroup
is a subsemigroup of some IS(M) (resp. ISn). Inverse semigroups form a
class of semigroups which are closest (in some sense) to groups.

An analogous universal object in group theory is the symmetric group
S(M) of all bijective transformations of M . Many books are dedicated to the
study of S(M) or to the study of transformation groups in general. Transfor-
mation semigroups had much less luck. The “naive” search in MathSciNet
for books with the keywords “transformation semigroups” in the title results
in two titles, one being a conference proceedings, and another one being old
50-page-long lecture notes in Russian ([Sc4]). Just for comparison, an anal-
ogous search for “transformation groups” results in 75 titles. And this is in
spite of the fact that the semigroup T (M) was studied by Suschkewitsch
already in the 1930s. The semigroup IS(M) was introduced by Wagner
in 1952, but the first relatively small monograph about it appeared only
in 1996 ([Li]). The latter monograph considers some basic questions about
IS(M): how one writes down the elements of IS(M), when two elements
of IS(M) commute, what is the presentation of IS(M), what are the con-
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gruences on IS(M). For example, such basic semigroup-theoretical notions
as ideals and Green’s relations are mentioned only in the Appendix without
any direct relation to IS(M).

Much more information about the semigroup T (M) can be found in the
last chapter of [Hi1]; however, it is mostly concentrated around the combi-
natorial aspects. Otherwise one is left with the options to search through
examples in the parts of the abstract theory of semigroups using the classi-
cal books [CP1, Gri, Ho3, Ho7, Hi1, Law, Pe] or to look at original research
papers.

The aim of the present book is to partially fill the gaps in the literature.
In the book we introduce three classical series of semigroups, and for them
we describe generating systems, ideals, Green’s relations, various classes of
subsemigroups, congruences, conjugations, endomorphisms, presentations,
actions on sets, linear representations and cross-sections. Some of the results
are very old and classical, some are quite young. In order not to overload
the reader with too technical and specialized results, we decided to restrict
the area of the present book to the above-mentioned parts of the theory of
transformation semigroups.

The book was thought to be an elementary introduction to the theory of
transformation semigroups, with a strong emphasis on the concrete exam-
ples in the form of three classical series of finite transformation semigroups,
namely, Tn, ISn and PT n. The book is primarily directed to students, who
would like to make their first steps in semigroup theory. The choice of the
semigroups Tn, ISn and PT n is motivated not only by their role in semi-
group theory, but also by our strong belief that a good understanding of
a couple of interesting and pithy examples is more important for the first
acquaintance with some theory than a formal learning of dozens of theorems.

Another good motivation to consider the semigroups Tn, ISn and PT n at
the same time is the observation that many results about these semigroups,
which for each of them were obtained independently by different people and
in different times, in reality can be obtained in a unified (or almost unified)
way.

Several results which will be presented extend in one or another way to
the cases of infinite transformation semigroups. However, we restrict our-
selves to the case of finite semigroups to make the exposition as elementary
and accessible for a wide audience as possible. We are not after the biggest
possible generality. Another argument is that we also try to attract the
reader’s attention to numerous combinatorial aspects and applications of
the semigroups we consider.

With our three principal examples of semigroups on the background we
also would like to introduce the reader to the basics of the abstract theory of
semigroups. So, along the discussion of these examples, we tried to present
many important basic notions and prove (or at least mention) as many
classical abstract results as possible.
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The requirements for the reader’s mathematical background are very
low. To understand most of the content, it is enough to have a minimal
mathematical experience on the level of common sense. Perhaps some famil-
iarity with basic university courses in algebra and combinatorics would be a
substantial help. We have tried to define all the notions we use in the book.
We have also tried to make all proofs very detailed and to avoid complicated
constructions whenever possible.

The penultimate section of each chapter is called “Addenda and Com-
ments.” A part of it consists of historical comments (which are by no means
complete). Another part consists of some remarks, facts, and statements,
which we did not include in the main text of the book. The reason is usually
the much less elementary level of these statements or the more complicated
character of the proofs. However, we include them in the Addenda as from
our point of view they deserve attention in spite of the fact that they do not
really fit into the main text. Some statements here are also given with proofs,
but these proofs are less detailed than those in the main text. For this part
of the book, our requirements for the reader’s mathematical background are
different and are closer to the standard mathematical university curriculum.
In the Addenda, we sometimes also mention some open problems and try to
describe possible directions for further investigations.

The division of the book into the main text and the Addenda is not
very strict as sometimes the notions and facts mentioned in the Addenda
are used in the main text.

The last section of each chapter contains problems. Some problems (not
many) are also included in the main text. The latter ones are mostly simple
and directed to the reader. Sometimes they also ask to repeat a proof given
before for a different situation. These problems are in some sense compulsory
for the successful understanding of the main text (i.e., one should at least
read them). The additional problems of the last section of each chapter
can be quite different. Some of them are easy exercises, while others are
much more complicated problems, which form an essential supplement to
the material of the chapter. Hints for solutions of the latter ones can be
found at the end of the book.

The book was essentially written during the visit of the first author to
Uppsala University, which was supported by The Royal Swedish Academy
of Sciences and The Swedish Foundation for International Cooperation in
Research and Higher Education (STINT). The financial support of The
Academy and STINT, and the hospitality of Uppsala University are grate-
fully acknowledged. We thank Ganna Kudryavtseva, Victor Maltcev, and
Abdullahi Umar for their comments on the preliminary version of the book.

Kyiv, Ukraine Olexandr Ganyushkin
Uppsala, Sweden Volodymyr Mazorchuk
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Chapter 1

Ordinary and Partial
Transformations

1.1 Basic Definitions

The principal objects of interest in the present volume are finite sets and
transformations of finite sets. Let M be a finite set, say M={m1, m2, . . . , mn},
where n is a nonnegative integer. Transformation of M is an array of the
following form:

α =
(

m1 m2 · · · mn

k1 k2 · · · kn

)
, (1.1)

where all ki ∈ M . If x ∈ M , say x = mi, the element ki will be called the
value of the transformation α at the element x and will be denoted by α(x).
The fact that α is a transformation of M is usually written as α : M → M .
As the nature of elements of M is not important for us, instead of M we
shall usually consider the set N = Nn = {1, 2, . . . , n}.

Apart from the transformations of M we shall also consider the so-called
partial transformations of M , that is, transformations of the form α : A→M ,
where A = {l1, l2, . . . , lk} is a subset of M . Note that the set A can be empty.
Again, the element α can be written in the following tabular form:

α =
(

l1 l2 · · · lk
α(l1) α(l2) · · · α(lk)

)
. (1.2)

Abusing notation, we may also write α : M → M for a partial transforma-
tion, having in mind that such α is only defined on some elements from M .
Note that the order of elements in the first row of arrays (1.1) and (1.2) is
not important.

With each (partial) transformation α as above we associate the following
standard notions:

• The domain of α: dom(α) = A

O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups, Algebra 1

and Applications 9, DOI: 10.1007/978-1-84800-281-4 1,
c© Springer-Verlag London Limited 2009



2 CHAPTER 1. ORDINARY AND PARTIAL TRANSFORMATIONS

• The codomain of α: dom(α) = M\A

• The image of α: im(α) = {α(x) : x ∈ A}

The word range, which is also frequently used in the literature, is a synonym
of the word image. If dom(α) = M , the transformation α is called full or
total .

The set of all total transformations of M is denoted by T (M), and the
set of all partial transformations of M is denoted by PT (M). Obviously,
T (M) ⊂ PT (M). To simplify our notation we set Tn = T (N) and PT n =
PT (N).

Sometimes it is convenient to use a slightly modified version of (1.2) for
some α ∈ PT n. In the case of PT n it is natural to form the first row of
the array for α by simply listing all the elements from N in their natural
order. Then, to define α completely, one needs a special symbol to indicate
that some element x belongs to dom(α). We shall use the symbol ∅. In
other words, α(x) = ∅ means that x ∈ dom(α). Thus the element α can be
written in the following form:

α =
(

1 2 . . . n
k1 k2 . . . kn

)
, (1.3)

where ki = α(i) if i ∈ dom(α) and ki = ∅ if i ∈ dom(α).

Example 1.1.1 Here is the list of all elements of PT 2:(
1 2
1 1

)
,

(
1 2
1 2

)
,

(
1 2
2 1

)
,

(
1 2
2 2

)
,

(
1 2
1 ∅

)
,

(
1 2
2 ∅

)
,

(
1 2
∅ 1

)
,

(
1 2
∅ 2

)
,

(
1 2
∅ ∅

)
.

The first row of this list consists of total transformations and hence lists all
elements in T2.

Proposition 1.1.2 The set Tn contains nn elements and the set PT n con-
tains (n + 1)n elements.

Proof. Each element α ∈ Tn is uniquely defined by array (1.3), where each
ki ∈ N. Since the choices of kis are independent, we have |Tn| = nn

by the product rule. In the case of PT n, the elements ki can be inde-
pendently chosen from the set N∪{∅}. Hence the product rule implies
|PT n|=(n + 1)n.

The cardinality |im(α)| of the image of a partial transformation α ∈ PT n

is called the rank of this partial transformation and is denoted by rank(α).
Thus rank(α) equals the number of different elements in the second row of
array (1.2). The number def(α) = n − rank(α) is called the defect of the
partial transformation α.
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A partial transformation α ∈ PT n is called

• Surjective if im(α) = N

• Injective if x �= y implies α(x) �= α(y) for all x, y ∈ dom(α)

• Bijective if α is both surjective and injective

If α is given by (1.2), then surjectivity means that the second row of array
(1.2) contains all elements of N; and injectivity means that all elements in
the second row of array (1.2) are different. Bijective transformations on N
are also called permutations of N.

Proposition 1.1.3 Let α ∈ Tn. Then the following conditions are equiva-
lent:

(a) α is surjective

(b) α is injective

(c) α is bijective

Proof. By the definition of a bijective transformation, it is enough to show
that the conditions (a) and (b) are equivalent. We start by proving that
injectivity implies surjectivity. Let α ∈ Tn be injective and given by (1.3).
Because of the injectivity of α, the second row of (1.3) gives n different
elements of the set N, namely, α(1), α(2), . . . , α(n). But N contains exactly
n elements. Hence N = {α(1), α(2), . . . , α(n)}, and thus α is surjective.

Conversely, let α ∈ Tn be surjective and given by (1.3). Then the second
row of (1.3) contains all n elements of the set N. But this row contains
exactly n elements. Hence they all must be different. This implies that α is
injective.

1.2 Graph of a (Partial) Transformation

With each partial transformation α on N one naturally associates a directed
graph Γα. A directed graph (or a digraph) is a pair, Γ = (V, E), where V is
a set and E ⊂ V × V . The elements of V are called vertices of Γ and the
elements of E are called directed edges or arrows of Γ . If (a, b) ∈ E, then
the vertex a is called the tail of (a, b) and the vertex b is called the head of
(a, b).

The graph Γα = (Vα, Eα) is called the graph of the transformation α and
is constructed in the following way: The set Vα of vertices coincides with N;
for x, y ∈ N the element (x, y) belongs to Eα if and only if x ∈ dom(α) and
α(x) = y.
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Example 1.2.1 For the transformation

α =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8 9 7 13 7 16 ∅ 1 13 11 16 4 12 9 14 13

)

the graph Γα has the following form:

10 �� 11

���
��

��
��

� 6

����
��

��
��

15

��

2

��

16

��

4

����
��

��
��

14 �� 9 �� 13 �� 12

��

8

��
1

�� 3

��

5

		��
��

��
�

7

(1.4)

It is obvious that a directed graph Γ = (N, E) will be the graph of some
total (partial) transformation of N if and only if each vertex is the tail of
exactly one (at most one) arrow. The graph Γα decomposes into a disjoint
union of connected components. Intuitively, this is an obvious notion, for ex-
ample, graph (1.4) has three connected components. The rigorous definition
is as follows.

First we define a subgraph. If Γ = (V, E) is a directed graph, a subgraph
of Γ is a directed graph Γ ′ = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E. A di-
rected graph Γ = (V, E) is called connected if for each partition of V into a
disjoint union of nonempty subsets V1 and V2 there exists a ∈ V1 and b ∈ V2

such that either (a, b), or (b, a) is an arrow. If Γ is a directed graph, then the
connected components of Γ are simply the maximal connected subgraphs of
Γ , that is, those connected subgraphs of Γ which are not proper subgraphs
of any other connected subgraph of Γ .

Exercise 1.2.2 Prove that two different connected components of a directed
graph Γ do not have common arrows.

To understand the structure of Γα it is of course enough to understand
the structure of its connected components. For this we shall need some more
graph-theoretical notions. Let Γ (V, E) be a directed graph and a, b ∈ V . An
oriented path from a to b in Γ is a sequence x0 = a, x1, . . . , xk = b of vertices
such that (xi, xi+1) ∈ E for each i = 0, 1, . . . , k − 1. Vertex a is called the
tail of the path and vertex b is called the head of the path. If we have an
oriented path such that a = b and xi �= xj for all 0 ≤ i < j < k, then such
path is called an (oriented) cycle and is denoted by (x0, x1, . . . , xk−1). If Γ
does not contain any arrow with tail b we will say that our path breaks at b.
Analogously one defines infinite paths. Such paths may be without tails,
without heads, or without both tails and heads.

Let Γ be a directed graph and v be a vertex of Γ . We define a trajectory
of v as any longest possible path with the tail v. There are two possibilities:
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either such trajectory is finite and hence breaks at some point, or this tra-
jectory is infinite. For example, 5, 7 is a trajectory of vertex 5 in graph (1.4),
which breaks at vertex 7; and 2, 9, 13, 12, 4, 13, 12, 4, 13, . . . is a trajectory
of point 2. In general, a point can have many different trajectories. However,
we have the following obvious statement.

Lemma 1.2.3 Let Γ be a directed graph. Then the following conditions are
equivalent:

(a) Each vertex of Γ has a unique trajectory

(b) Each vertex of Γ is the tail of at most one arrow

We will say that the infinite trajectory x0 = v, x1, . . . terminates at
the cycle (xk, xk+1, . . . , xk+m−1) if the path xk, xk+1, . . . , xk+m−1 is a cycle,
xi = xi+m for all i ≥ k and xk−1 �= xk+m−1. Thus, the trajectory of vertex 2
in graph (1.4) terminates at the cycle (13, 12, 4); and the trajectory of vertex
4 terminates at the cycle (4, 13, 12).

Proposition 1.2.4 Let α ∈ PT n.

(i) Every vertex of Γα has a unique trajectory.

(ii) The trajectory of each x ∈ N in Γα either breaks at some vertex or
terminates at some cycle.

(iii) α is total if and only if the trajectory of each x ∈ N in Γα terminates
at some cycle.

(iv) Let x, y ∈ N. If y occurs in the trajectory of x in Γα, then the trajectory
of y is a subsequence of the trajectory of x.

Proof. Since each vertex of Γα is a tail of at most one arrow, the state-
ment (i) follows immediately from Lemma 1.2.3. The statement (iv) follows
immediately from (i).

Assume that the trajectory x = x0, x1, . . . of x does not break. Since
Γα is finite, this trajectory must contain repetitions of some vertices. Let
k be minimal for which there exists a repetition of xk and let xk+m be the
first repetition of xk. Since each vertex of Γα is a tail of at most one arrow,
the condition xk = xk+m implies xk+1 = xk+m+1, which, in turn, implies
xk+2 = xk+m+2, and so on. Hence our trajectory terminates at the cycle
(xk, xk+1, . . . , xk+m−1). This proves (ii).

If α is total, the trajectory of each vertex cannot break. Hence (iii) follows
from (ii).

For α ∈ PT n and x ∈ N we denote by trα(x) the trajectory of x in Γα.
This is well-defined because of Proposition 1.2.4(i). Define now the binary
relation ωα on N in the following way: For x, y ∈ N set x ωα y if trα(x) and
trα(y) have at least one common vertex.
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Lemma 1.2.5 The relation ωα is an equivalence relation.

Proof. That ωα is reflexive and symmetric is obvious. To prove the tran-
sitivity of ωα consider x, y, z ∈ N such that x ωα y and y ωα z. Let a be a
common vertex of trα(x) and trα(y) and b be a common vertex of trα(y)
and trα(z). Without loss of generality we can assume that the first occur-
rence of a in trα(y) is not later than the first occurrence of b in trα(y). But
this means that b occurs in trα(a) by Proposition 1.2.4(iv). Another appli-
cation of Proposition 1.2.4(iv) implies that b occurs in trα(x). Hence x ωα z,
completing the proof.

The equivalence classes of ωα are called the orbits of α. For x ∈ N the
orbit of x in Γα will be denoted by oα(x). From the definition of ωα it follows
that for any x ∈ dom(α) we have x ωα α(x). Hence all vertices which occur
in trα(x) belong to oα(x). Furthermore, for each x ∈ N we can restrict the
partial transformation α to the orbit K = oα(x), obtaining a new partial
transformation, α(K) ∈ PT (oα(x)). Certainly, α(K) does not depend on the
choice of the vertex in K.

Proposition 1.2.6 For each x ∈ N the graph Γα(K) is a connected compo-
nent of Γα.

Proof. From the definition of ωα it follows that the graph Γα(K) is connected
and contains all those arrows of Γα, for which both the heads and the tails
belong to K. Assume now that (x, y) is an arrow of Γα such that x ∈ K.
Then y ∈ trα(x) and hence x ωα y, that is, y ∈ K. If (x, y) is an arrow of Γα

such that y ∈ K, then again y ∈ trα(x) and hence x ωα y, that is, x ∈ K.
This means that Γα(K) is not properly contained in any connected subgraph
of Γα, which proves our statement.

As an immediate corollary of Proposition 1.2.6 we have:

Corollary 1.2.7 The mapping K 	→ Γα(K) is a bijection between the orbits
of α and the connected components of Γα.

A directed graph Γ=Γ (V, E) is called a tree with the sink a∈V provided
that for each x ∈ V the trajectory of x in Γ is unique and breaks at a. For
instance, in the example (1.4) if K = oα(3), the connected component Γα(K)

is a tree with the sink 7. A (nonempty) disjoint union of several trees with
sinks is called a forest of trees with sinks.

Exercise 1.2.8 Let Γ be a tree with the sink a. Show that Γ is connected;
that each b �= a is a tail of exactly one arrow; and that Γ contains neither
oriented nor unoriented cycles.

A directed graph Γ = (V, E) is called a cycle provided that we can
enumerate V = {a1, . . . , ak} such that E = {(a1, a2), (a2, a3), . . . , (ak−1, ak),
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(ak, a1)}. If Γi = (Vi, Ei), i ∈ I, are directed graphs, then their union Γ =
∪i∈IΓi is defined as follows Γ = (V, E), where V = ∪i∈IVi and E = ∪i∈IEi.
For example, each directed graph is a union of its connected components.

Theorem 1.2.9 Each connected component of Γα, α ∈ PT n, is either

(i) a tree with a sink, or

(ii) a union of a forest of trees with sinks with a cycle on the set of all
their sinks.

We note that the forest in Theorem 1.2.9(ii) may contain only one tree
with a sink. The union of this tree with a sink with the cycle on its sink is not
a tree with a sink anymore. We also note that the forest in Theorem 1.2.9(ii)
may also have some trivial trees with sinks, that is, trees consisting only of
sinks. If all trees in this forest are trivial, Theorem 1.2.9(ii) simply describes
a cycle.

Proof. Let α ∈ PT n and Γα(K) = (K, EK) be a connected component of Γα,
and x ∈ K. Then Lemma 1.2.3 and Proposition 1.2.4(i) imply that x has a
unique trajectory in both Γα and Γα(K) . Moreover, since K is a connected
component of Γα we also have that the trajectories of x in Γα and Γα(K)

coincide (and hence they both are equal to trα(x)).
Assume first that trα(x) breaks at some vertex, say a. Let y ∈ K be

arbitrary. Then, by definition, trα(x) and trα(y) have a common vertex,
say z. Hence trα(z) is a subsequence of both trα(x) and trα(y). But trα(x)
breaks at a, which means that trα(z) must break at a as well. This implies
that trα(y) breaks at a. This means, by definition, that Γα(K) is a tree with
the sink a, that is, of the type Theorem 1.2.9(i).

Now we assume that trα(x) terminates at some cycle, say (a1, a2, . . . , ak).
For each ai, i = 1, . . . , k, the trajectory of ai is unique by Proposition 1.2.4(i)
and hence is ai, ai+1, . . . , ak, a1, . . . . For every y ∈ K, the trajectory trα(y)
has a common subsequence with trα(x) and thus must contain some ai. For
i = 1, . . . , k we denote by Ki the set of all those vertices y from K such
that the first vertex from the cycle (a1, a2, . . . , ak) in trα(y) is ai. Note that
Ki ∩ Kj = ∅ for i �= j by definition.

Assume that i �= j and let (x, y) be an arrow in Γα(K) such that x ∈ Ki

and y ∈ Kj . Then trα(x) has the form x, y, y1, . . . , where y, y1, . . . is just
trα(y). However, the first element from the cycle (a1, a2, . . . , ak) in trα(x) is
ai, whereas in trα(y) it is aj �= ai. This is possible only in the case of x = ai

and y = aj . This means that every arrow in Γα(K) from some element in Ki

to some element in Kj in fact belongs to the cycle (a1, a2, . . . , ak).
For each i = 1, . . . , k, consider the graph Γi = (Ki, Ei), where

Ei = ((Ki × Ki) ∩ E)\{(ai, ai)},
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(this means that Ei consists of all arrows from E, which has both tails and
heads in Ki, with the exception of the arrow (ai, ai)). Let Γ0 be the cycle
(a1, a2, . . . , ak). From the previous paragraph, we have that Γα(K) = ∪k

i=0Γi.
Furthermore, Kis are disjoint for i = 1, . . . , k. To show that Γα(K) is of
the form described in Theorem 1.2.9(ii) it remains to show that each Γi,
i = 1, . . . , k, is a tree with the sink ai.

By definition, Γi does not contain any arrow with the tail ai. Let y ∈ Ki.
Then trα(y) has the form y = y0, y1, . . . , ym = ai, ai+1, . . . , where ym = ai

is the first occurrence of ai in trα(y). By the definition of Ki, all vertices
y1, . . . , ym−1 do not belong to Γ0. Hence the definition of Ei implies that
y = y0, y1, . . . , ym = ai is the trajectory of y in Γi, and it breaks at ai. In
other words, the trajectory of each vertex in Γi breaks at ai and thus Γi is
a tree with the sink ai. This completes the proof.

Example 1.2.10 The graph Γα from Example 1.2.1 is given by (1.4) and
has three connected components. The third component is a tree with the
sink 7. The second component is a cycle (that is, the union of the cycle
(1, 8) with the corresponding forest of trivial trees with sinks). The first
component is the union of the cycle (4, 13, 12) with the following forest of
trees with sinks:

15 �� 14



�
��

��
��

� 11

����
��

��
��

10��

2 �� 9



�
��

��
��

� 16

����
��

��
��

6��

13

12 4

An immediate corollary of Theorem 1.2.9 is the following:

Corollary 1.2.11 Different cycles of Γα belong to different connected com-
ponents of Γα.

1.3 Linear Notation for Partial Transformations

The graphical presentation of a transformation α ∈ PT n via Γα is very
transparent, but also rather space consuming. For a plain mathematical
text, it would be very useful to have some space-saving alternative. For
permutations this is known as the cyclic notation and can be easily described
by the following example:

Example 1.3.1 For the permutation

α =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 8 15 2 10 1 14 4 7 5 6 11 13 3 12

)
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the graph Γα has the following form:

1 �� 9 �� 7 �� 14 �� 3

����
��

��
��

6

��

11�� 12�� 15����

2 �� 8

		��
��

��
�

4

�� 5

��
10

�� 13



Using the notation for cycles, introduced on page 4 in the paragraph after
Exercise 1.2.2, we may write

α = (1, 9, 7, 14, 3, 15, 12, 11, 6)(2, 8, 4)(5, 10)(13).

Clearly the above notation is not uniquely defined. Writing a cycle we
can start from each of its vertices. Moreover, the order of cycles in the cyclic
notation can also be chosen in an arbitrary way. In this subsection, we would
like to generalize this notation to be able to use it for all elements of PT n.
A very good hint how to do this is given by Theorem 1.2.9, which roughly
says that we only have to find a nice notation for trees with sinks. We call
our notation linear and will define it recursively.

Assume for the moment that the graph Γα, where α ∈ PT n, is a tree
with the sink a. If a is the only vertex of Γ , we shall write Γα = [a] (or
simply α = [a]). If Γα contains some other vertices, then it has to have the
following form:

���
��

��
��

��
��

��
��

. . .

����
��
��
��
��
��
��
�

���
��

��
��

��
��

��
��

. . .

����
��
��
��
��
��
��
�

Γ1 . . . . . . . . . Γk

a1

��														 ak

��















a

(1.5)

For i = 1, . . . , k, the subgraph Γi of the graph (1.5) above is a tree with the
sink ai and has strictly less vertices than Γα. Assume that we already have
the linear notation Γ̃i for Γi, i = 1, . . . , k. Then the linear notation for Γα

(and α) is defined recursively as follows

Γα = [Γ̃1, Γ̃2, . . . , Γ̃k; a].

This defines the notation for the elements given by Theorem 1.2.9(i).
Assume now that Γα is connected and given by Theorem 1.2.9(ii). Then

Γα is the union of some cycle, say (a1, . . . , ak), with certain disjoint trees Γi

with sinks ai, i = 1, . . . , k. Let Γ̃i, i = 1, . . . , k, be the corresponding linear
notation. In this case, we define the linear notation for Γα (and α) as follows

Γα = (Γ̃1, Γ̃2, . . . , Γ̃k).
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Finally, for any α ∈ PT n, we define the linear notation for Γα (and α)
to be the product of linear notation over all connected components of Γα,
written in an arbitrary order. In the same way as the classical cycle notation
for permutations, the linear notation for (partial) transformartions is unique
only up to permutation of certain components of the notation. Namely, the
connected components can be written in an arbitrary order, and on each
step of the recursive procedure the order of the components Γ̃1, . . . , Γ̃k can
also be chosen arbitrarily.

Note that, by the above definition, the ordinary cycle (a1, a2, . . . , ak) is
denoted by ([a1], [a2], . . . , [ak]). This is of course not very practical, so to
avoid this unnecessary complication inside the notation for cycles (but not
for trees with sinks!) we shall usually skip the brackets “[ ]” surrounding
trivial trees with sinks. Sometimes, if n is fixed, one can also skip all loops
(i.e., the elements of the form (x) = ([x])). This just means that all x ∈ N,
which do not appear in the notation, correspond to loops. It is clear that
this does not give rise to any confusion, moreover, it restores the original
notation for usual cycles and permutations.

Example 1.3.2 For the transformation α from Example 1.2.1 we have

α = ([[[[15]; 14], [2]; 9], [[[10]; 11], [6]; 16]; 13], 12, 4)(1, 8)[[3], [5]; 7].

1.4 Addenda and Comments

1.4.1 To use graphs for presentation of transformations was proposed by
Suschkewitsch in [Su1].

1.4.2 Let α ∈ PT n. The element x ∈ N satisfying α(x) = x is usually called
a fixed point of α. If α is a permutation, then all the connected components
of Γα are cycles. Fixed points of α correspond to cycles of length 1. In
the cyclic notation for α such cycles are usually omitted (for the identity
element one thus has to use a special notation, for example ε). If after such
simplification the cyclic notation for α contains only one cycle, say of length
k, the α is usually called a cycle of length k. Cycles of length 2 are called
transpositions.

1.4.3 An alternative “linear” notation for total transformations was pro-
posed in [AAH]. Although [AAH] works only with total transformations
it is fairly straightforward to generalize their notation to cover all partial
transformations. Roughly speaking the [AAH]-notation reduces to listing
the trajectories of all vertices of the graph Γα. If we know the trajectory
x0 = x, x1, x2, . . . of the vertex x, then of course we know the trajectories of
each of the vertices x1, x2, . . . , so we can omit the latter ones. A trajectory
is denoted by [a1, a2, . . . , ak|aj ], where 1 ≤ j ≤ k. This means the following:
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• If j < k, the trajectory a1, a2, . . . of the vertex a1 terminates at the
cycle (aj , aj+1, . . . , ak)

• If j = k and ak does not occur previously, then the trajectory a1, a2, . . .
of the vertex a1 terminates at the cycle (ak)

• If j = k and ak does occur previously, it means that we already know
the trajectory of ak, in this case the trajectory of the vertex a1 is
obtained by attaching a1, a2, . . . , ak to the known trajectory of ak

On each step we choose any vertex, say a, whose trajectory is not yet written
down, and we write down the trajectory of a until we either reach a vertex,
whose trajectory is already written down, or we terminate the trajectory of
a in some cycle. To make the notation as short as possible, on each step one
should try to choose a new vertex, which is not a head of any arrow in Γα.

For example, for the transformation

α =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8 9 7 13 7 16 7 1 13 11 16 4 12 9 14 13

)

the [AAH]-notation for α will have the following form:

[15, 14, 9, 13, 12, 4|13][10, 11, 16, 13|13][6, 16|16][2, 9|9][8, 1|8][3, 7|7][5, 7|7].

For comparison, our notation for α looks as follows:

([[[[15]; 14], [2]; 9], [[[10]; 11], [6]; 16]; 13], 12, 4)(1, 8)([[3], [5]; 7]).

From our point of view the [AAH]-notation has some disadvantages,
namely,

• The cyclic notation for permutations is not a partial case of the [AAH]-
notation

• The [AAH]-notation is long, that is, it always contains elements oc-
curring more than one time

• The [AAH]-notation is by far not unique, even up to permutations of
certain components of this notation

Another disadvantage of the [AAH]-notation, related to the composition
of transformations, will be discussed in 2.9.3. An advantage of the [AAH]-
notation in comparison to our notation is that it contains less brackets.

1.4.4 In [Ka] it was shown that the number of those α ∈ Tn for which Γα

is connected equals

n!
n−1∑
k=0

nk−1

k!
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This can be proved, for example, in the following way:
From Theorem 1.2.9 it follows that Γα is connected if and only if it is

a union of a forest of trees with sinks with a cycle on the set of all sinks.
For each such α and for each i ≥ 0 we define the set N

(i)
α as the set of all

x ∈ N such that the first element from the cycle occurs in trα(x) on step i.
Obviously, N

(0)
α consists of the elements of our cycle and N = ∪i≥0N

(i)
α is

a disjoint union. Furthermore, α(N (i)
α ) ⊂ N

(i−1)
α for i > 0. The number of

those α, for which |N (i)
α | = ni, 0 ≤ i ≤ t, and such that

∑t
i=0 ni = n equals

(
n

n0, n1, . . . , nt

)
(n0 − 1)!nn1

0 nn2
1 . . . nnt

t−1 (1.6)

(here the polynomial coefficient
(

n
n0,n1,...,nt

)
gives the number of ordered

partitions of N into blocks with cardinalities n0,. . . , nt, respectively; (n0−1)!
is the number of ways to form a cycle out of n0 elements; and n

ni+1

i is the
number of maps from the block with ni+1 elements to the block with ni

elements). We can rewrite (1.6) as follows

n!
n0

· nn1
0

n1!
· nn2

1

n2!
. . .

nnt
t−1

nt!
. (1.7)

Now to find the number Xn0 of those α ∈ Tn for which Γα is connected and
contains a cycle of length n0 one has to add up all summands of the form
(1.7) for all t ≤ n − n0 and all decompositions n1 + · · · + nt = n − n0. Let
n − n0 = k. Then

nk−1

k!
=

(n0 + k)k−1

k!
=

k−1∑
i=0

1
k!

· (k − 1)!
i!(k − 1 − i)!

· ni
0 · kk−1−i =

=
k∑

n1=1

nn1−1
0

(n1 − 1)!
· kk−n1

(k − n1)!
,

where for the last equality we substituted i by n1 − 1. Continuing in the
same way we get

nk−1

k!
=

=
k∑

n1=1

nn1−1
0

(n1 − 1)!
·

k−n1∑
n2=1

nn2−1
1

(n2 − 1)!
· · ·

k−n1−···−nt−1∑
nt=1

nnt−1
t−1

(nt − 1)!
· n−1

t =

=
1
n0

k∑
n1=1

nn1
0

n1!

k−n1∑
n2=1

nn2
1

n2!
· · ·

k−n1−···−nt−1∑
nt=1

nnt
t−1

nt!
=

=
∑

n1+···+nt=n−n0

1
n0

· nn1
0

n1!
· nn2

1

n2!
. . .

nnt
t−1

nt!
. (1.8)
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Hence Xn0 = n! · nk−1

k! , where k = n−n0. Since 1 ≤ n0 ≤ n, the final answer
is now computed as follows

n∑
n0=1

Xn0 = n!
n−1∑
k=0

nk−1

k!
.

1.5 Additional Exercises

1.5.1 Let N denote the set of all positive integers. Give an example of a
transformation α : N → N such that

(a) α is injective but not surjective.

(b) α is surjective but not injective.

1.5.2 Prove that limn→∞
|PT n|
|Tn| = e.

1.5.3 Directed graphs Γi = (Vi, Ei), i = 1, 2, are called isomorphic provided
that there exists a bijection ϕ : V1 → V2 which induces a bijection from E1

to E2. Compute the number of pairwise nonisomorphic graphs Γα, where

(a) α ∈ T3.

(b) α ∈ T4.

(c) α ∈ PT 2.

(d) α ∈ PT 3.

(e) α ∈ PT 4.

1.5.4 Find the number of those partial transformations α ∈ PT 8, whose
graphs are isomorphic to the following graph:

•

��•

•

��

•�� •��

• �� •

��

•��

1.5.5 For α ∈ PT n characterize dom(α), im(α), dom(α), rank(α), and
def(α) in terms of Γα.

1.5.6 Compute the number of those α ∈ Tn (resp. α ∈ PT n) for which
im(α)

(a) Does not contain given elements a1, a2,. . . , ak
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(b) Contains given elements a1, a2,. . . , ak

(c) Coincides with the given set {a1, a2, . . . , ak}
1.5.7 Prove that the number of those α ∈ PT n, for which Γα is a tree with
a sink, equals nn−1.

1.5.8 Prove that the number of those α ∈ PT n, for which Γα does not
contain cycles, equals

∑n
k=1

(
n−1
k−1

)
nn−k.

1.5.9 (a) Find the number of those α ∈ Tn which fix at least one (resp.
exactly one) element (that is, α(x) = x for at least one or exactly one
element x ∈ N, respectively).

(b) The same problem for PT n.

1.5.10 Let Γ = (V, E) be a directed graph. Consider the set X , which
consists of all possible unordered partitions of V into disjoint unions of
nonempty subsets Vis such that for each i �= j the graph Γ does not con-
tain any arrow from Vi to Vj . The set X is partially ordered in the natural
way with respect to inclusions of components of partitions. Prove that the
partition of V , which corresponds to the partition of Γ into connected com-
ponents, is the minimum of X .

1.5.11 Let Γ = (V, E) be a directed graph. Consider the set Y, which
consists of all possible unordered partitions of V into disjoint unions of
nonempty subsets Vis such that for each i we have that the subgraph
(Vi, (Vi ×Vi)∩E) is connected. The set Y is partially ordered in the natural
way with respect to inclusions of components of partitions. Prove that the
partition of V , which corresponds to the partition of Γ into connected
components, is the maximum of Y.

1.5.12 For α ∈ Tn, let tk(α) denote the number of those x ∈ N for which
|{y ∈ N : α(y) = x}| = k. Prove that

(a)
n∑

k=0

tk(α) = n,

(b)
n∑

k=0

ktk(α) = n.

1.5.13 For α ∈ PT n let tk(α) denote the number of those x ∈ N for which
|{y ∈ N : α(y) = x}| = k. Prove that

(a)
n∑

k=0

tk(α) = n,

(b)
n∑

k=0

ktk(α) ≤ n.



Chapter 2

The Semigroups Tn , PT n ,
and ISn

2.1 Composition of Transformations

Let X and Y be two sets. A mapping from X to Y is an array of the form

f =
(

x
f(x)

)
x∈X

,

where all f(x) ∈ Y . This is usually denoted by f : X → Y . The element f(x)
is called the value of the mapping f at the element x. A transformation, as
defined in Sect. 1.1, is just a mapping from a set to itself. Let now X, Y, Y ′, Z
be sets such that Y ⊂ Y ′ and let f : X → Y and g : Y ′ → Z be two
mappings. In this situation, we can define the product or the composition gf
of f and g by the following rule: The composition gf is the mapping from
X to Z such that for all x ∈ X we have (gf)(x) = g(f(x)). In particular,
we can always compose two total transformations of the same set and the
result will be a total transformation of this set.

The above definition admits a straightforward generalization to partial
mappings. A partial mapping from X to Y is a mapping α : X ′ → Y , where
X ′ ⊂ X. In this case, we say that the partial mapping α is defined on
elements from X ′. Again, a partial transformation, as defined in Sect. 1.1, is
a partial mapping from a set to itself. One usually abuses notation and writes
α : X → Y just emphasizing that α is a partial mapping. Let α : X → Y and
β : Y → Z be two partial mappings. We define their product or composition
βα as the partial mapping, defined on all those x ∈ X for which α and β
are defined on the elements x and α(x), respectively; on such x the value
of βα is given by (βα)(x) = β(α(x)). In particular, we can always compose
two partial transformations of the same set and the result will be another

O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups, Algebra 15
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partial transformation of this set. We also note that the definition of the
composition of total transformations is just a special case of that of partial
transformations.

Proposition 2.1.1 The composition of (partial) mappings is associative,
that is, if α, β, and γ are partial mappings, then the composition γ(βα) is
defined if and only if the composition (γβ)α is defined, and if they both are
defined, we have γ(βα) = (γβ)α.

Proof. Follows immediately from the following picture:

X Y Z V

•
x

α
��

βα

��� � 
 � � � � � � � � � � � �

γ(βα)=(γβ)α

��
•
y β ��

γβ

��� � � � � � � � � � � � 
 � �•
z γ �� •

v

Associativity of the composition of partial transformations naturally
leads to the notion of a semigroup. Let S be a nonempty set, and let · :
S × S → S be a binary operation on S. Then (S, ·) is called a semigroup
provided that · is associative, that is, a · (b · c) = (a · b) · c for all a, b, c ∈ S.
To simplify the notation, in the case when the operation · is clear from the
context one usually writes S for (S, ·). Furthermore, one usually writes ab
instead of a · b.

Exercise 2.1.2 Let (S, ·) be a semigroup. Show that the value of the product
a1a2 · · · an, where all ai ∈ S, does not depend on the way of computing it
(that is, of putting brackets into this product).

Let (S, ·) be a semigroup. From Exercise 2.1.2 it follows that for every
a ∈ S we have a well-defined element ak = a · a · · · a︸ ︷︷ ︸

ktimes

. The number of elements

in S is called the cardinality of S and is denoted by |S|.
By Proposition 2.1.1, in both Tn and PT n the composition of (partial)

transformations is an associative operation. Hence we have:

Proposition 2.1.3 Both Tn and PT n are semigroups with respect to the
composition of (partial) transformations.

The semigroup Tn is called the full transformation semigroup on the set
N or the symmetric semigroup of all transformations of N. The semigroup
PT n is called the semigroup of all partial transformations on N.
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A nonempty subset T of a semigroup (S, ·) is called a subsemigroup of
S provided that T is closed with respect to · (that is, a · b ∈ T as soon as
a, b ∈ T ). Obviously, in this case, T itself is a semigroup with respect to the
restriction of the operation · to T . The fact that T is a subsemigroup of S
is usually denoted by T < S.

Exercise 2.1.4 Show that for arbitrary α, β ∈ PT n the following is true:

(a) dom(βα) ⊂ dom(α)

(b) im(βα) ⊂ im(β)

(c) rank(βα) ≤ min(rank(α), rank(β))

2.2 Identity Elements

An element e of a semigroup S is called a left or a right identity provided
that ea = a, or ae = a, respectively, for all a ∈ S. An element e, which is a
left and a right identity at the same time, is called a two-sided identity or
simply an identity.

If S contains some left identity el and some right identity er we have
el = el · er = er and hence these two elements coincide. Hence in this case S
contains a unique identity element, which is, moreover, a two-sided identity.
However, a semigroup may contain many different left identities or many
different right identities (see Exercise 2.10.2). It is possible for a semigroup
to contain neither left nor right identities. An example of such a semigroup
is the semigroup (N, +). Another example is the semigroup {2, 3, 4, . . . } with
respect to the ordinary multiplication.

A semigroup which contains a two-sided identity element is called a
monoid. The absence of an identity element can be easily repaired in the
following way.

Proposition 2.2.1 Each semigroup can be extended to a monoid by adding
at most one element.

Proof. Let (S, ·) be a semigroup. If S contains an identity, we have nothing
to prove. If S does not contain any identity element, consider the set S1 =
S ∪ {1}, where 1 �∈ S. Define the binary operation ∗ on S1 as follows: For
a, b ∈ S1 set

a ∗ b =

⎧⎪⎨
⎪⎩

a · b, a, b ∈ S;
a, b = 1;
b, a = 1.

A direct calculation shows that ∗ is associative, hence S1 is a semigroup.
Furthermore, from the definition of ∗ we have that 1 is the identity element
in S1. Moreover, the restriction of the operation ∗ to S coincides with the
original operation ·. Hence S is a subsemigroup of S1.



18 CHAPTER 2. THE SEMIGROUPS Tn, PT n, AND ISn

Denote by εn : N → N the identity transformation

εn =
(

1 2 · · · n
1 2 · · · n

)
.

If n is clear from the context we shall sometimes write ε instead of εn. The
following statement is obvious.

Proposition 2.2.2 The transformation εn is the (two-sided) identity ele-
ment in both Tn and PT n. In particular, both, Tn and PT n, are monoids.

Let S be a monoid with the identity element 1. An element a ∈ S is called
invertible or a unit provided that there exists b ∈ S such that ab = ba = 1.
Such an element b, if it exists, is unique. Indeed, assume that b1 and b2 are
different such elements, then

b1 = b1 · 1 = b1(ab2) = (b1a)b2 = 1 · b2 = b2.

The element b is called the inverse of a and is denoted by a−1. Note that if
b is the inverse of a, then a is the inverse of b. In other words, (a−1)−1 = a.
The set of all invertible elements of the monoid S is denoted by S∗. Note
that 1 ∈ S∗ since 1 · 1 = 1. In particular, S∗ is not empty.

The above terminology and notation deserve some explanation. Usually
the operation in an abstract semigroup is thought of as a multiplication.
Since the element 1 is the identity element in such multiplicative semigroups
as N, Z, R, C, it is natural to denote the identity element of an abstract
semigroup by the same symbol 1. This also justifies the notions “unit” and
“inverse.” However, there are many semigroups where the operation is not
the multiplication, for example the semigroup (Z, +). The identity element
in this semigroup is the number 0 and not the number 1. And the inverse of
the number n ∈ Z is the number −n and not the number n−1 (note that the
latter one is not always defined, and when it is defined, it is not an integer
in general).

A monoid in which each element has an inverse is called a group.

Proposition 2.2.3 Let S be a monoid with the identity element 1. Then
S∗ is a group.

Proof. Obviously, if a ∈ S∗, then a−1 ∈ S∗ as well. If a, b ∈ S∗, then we have

ab · b−1a−1 = a · bb−1 · a−1 = a · 1 · a−1 = aa−1 = 1.

Analogously one shows that b−1a−1 · ab = 1 and hence b−1a−1 = (ab)−1. In
particular, ab ∈ S∗. Thus S∗ is a submonoid of S and each element of S∗

has an inverse in S∗. The claim follows.

Proposition 2.2.4 Let α ∈ Tn, or α ∈ PT n. Then α is invertible if and
only if α is a permutation on N.
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Proof. Assume that α is invertible and β is a (partial) transformation such
that αβ = βα = ε. Note that dom(ε) = N. Hence Exercise 2.1.4(a) implies
dom(α) = N. Further, if x, y ∈ N are such that x �= y, then ε(x) �= ε(y).
If α(x) = α(y), we would get ε(x) = β(α(x)) = β(α(y)) = ε(y), a contra-
diction. This means that α(x) �= α(y). Hence α is everywhere defined and
injective and thus is a permutation by Proposition 1.1.3.

Conversely, if

α =
(

1 2 · · · n
i1 i2 · · · in

)

is a permutation, the element

α =
(

i1 i2 · · · in
1 2 · · · n

)

is a permutation as well and a direct computation shows that αβ = βα = ε,
that is, α is invertible.

The group T ∗
n = PT ∗

n of all permutations on N is called the symmetric
group on N and is denoted by Sn.

2.3 Zero Elements

An element 0 of a semigroup S is called a left or a right zero provided that
0a = 0, or a0 = 0, respectively, for all a ∈ S. An element 0 which at the
same time is a left and a right zero, is called a two-sided zero or simply a
zero.

If S contains some left zero 0l and some right zero 0r, we have 0l =
0l · 0r = 0r and hence these two elements coincide. Hence in this case S
contains a unique zero element, which is, moreover, a two-sided zero. The
analog of Proposition 2.2.1 is the following statement.

Proposition 2.3.1 Each semigroup can be extended to a semigroup with
zero by adding at most one element.

Proof. Let (S, ·) be a semigroup. If S contains a zero, we have nothing to
prove. Otherwise, consider the set S0 = S ∪ {0}, where 0 �∈ S. Define the
binary operation ∗ on S0 as follows: For a, b ∈ S0 set

a ∗ b =

⎧⎪⎨
⎪⎩

a · b, a, b ∈ S;
0, b = 0;
0, a = 0.

A direct calculation shows that ∗ is associative, hence S0 is a semigroup.
Furthermore, from the definition of ∗ we have that 0 is the zero element in S0

and that the restriction of ∗ to S coincides with ·. Hence S is a subsemigroup
of S0.


