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Préface

Ce livre est la traduction française de la quatrième édition du livre Combina-
torial Optimization : Theory and Algorithms écrit par deux éminents spécialistes,

Bernhard Korte et Jens Vygen, professeurs à l’université de Bonn. Considéré comme

un ouvrage de référence, il s’adresse à des chercheurs confirmés qui travaillent dans

le champ de la recherche fondamentale ou de ses applications (R&D). Il donne

une vision complète de l’optimisation combinatoire et peut donc aussi intéresser de

nombreux scientifiques non spécialistes ayant une bonne culture en mathématiques

et des connaissances de base en informatique.

L’optimisation combinatoire est un domaine assez récent des mathématiques ap-

pliquées, qui plonge ses racines dans la combinatoire (principalement la théorie des

graphes), la recherche opérationnelle et l’informatique théorique. Une des raisons de

son développement est liée au nombre considérable de problèmes concrêts qu’elle

permet de formuler. Il s’agit en grande partie de problèmes pour lesquels on connaı̂t

de «bons» algorithmes de résolution ; ceux-ci sont étudiés dans la première partie

de ce livre. Une des originalités de cet ouvrage, par rapport à d’autres traités, est

de présenter les algorithmes de résolution ayant la meilleure borne de complexité

connue à ce jour.

La seconde partie traite des problèmes difficiles à résoudre sur le plan algorith-

mique et connus sous le nom de problèmes NP-difficiles. Le plus célèbre d’entre

eux, celui du voyageur de commerce, fait l’objet, au chapitre 21, d’une étude par-

ticulièrement approfondie. D’autres tout aussi importants, comme les problèmes de

conception de réseaux, de multi-flots, de localisation de services, etc., bénéficient

également d’une présentation détaillée, ce qui est peu fréquent dans la littérature et

mérite d’être signalé.

Dans la traduction que nous proposons, nous avons cherché à traduire en français

toutes les expressions et tous les termes anglo-saxons même quand aucune traduc-

tion n’existait ; il y a cependant quelques exceptions pour des termes très tech-

niques qui ne sont universellement connus que sous leur dénomination anglaise.

Nous avons en outre inclus quelques améliorations et corrections écrites par les au-

teurs après la parution de l’édition originale actuelle ; celles-ci seront intégrées dans

la cinquième édition anglaise, actuellement en préparation.

Paris, juillet 2009 Jean Fonlupt et Alexandre Skoda



Avant-propos
à la quatrième édition originale

Avec quatre éditions anglaises et quatre traductions en cours, nous sommes très

heureux de l’évolution de notre livre ; celui-ci a été révisé, actualisé et amélioré de

manière significative pour cette quatrième édition. Nous y avons inclus des matières

classiques, parfois manquantes dans les éditions précédentes, notamment sur la

programmation linéaire, la méthode network simplex et le problème de la coupe

maximum. Nous avons également ajouté de nouveaux exercices et mis à jour les

références.

Nous sommes reconnaissants à l’Union des académies allemandes des sciences

et des lettres et à l’Académie des sciences du Land Rhénanie-du-Nord-Westphalie

pour leur soutien permanent par l’intermédiaire du projet «Mathématiques discrètes

et applications». Nous remercions également pour leurs commentaires précieux tous

ceux qui nous ont contacté après la troisième édition, en particulier Takao Asano,

Christoph Bartoschek, Bert Besser, Ulrich Brenner, Jean Fonlupt, Satoru Fujishige,

Marek Karpinski, Jens Maßberg, Denis Naddef, Sven Peyer, Klaus Radke, Rabe

von Randow, Dieter Rautenbach, Martin Skutella, Markus Struzyna, Jürgen Wer-

ber, Minyi Yue, et Guochuan Zhang. Nous continuerons à fournir des informations

actualisées sur cet ouvrage à l’adresse :

http ://www.or.uni-bonn.de/∼vygen/co.html

Bonn, août 2007 Bernhard Korte et Jens Vygen
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2.5 Planarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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9.3 Algorithme par élimination du circuit moyen minimum . . . . . . . . . . 210

9.4 Algorithme par plus courts chemins successifs . . . . . . . . . . . . . . . . . . 213

9.5 Algorithme d’Orlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

9.6 Algorithme network simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

9.7 Flots dynamiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
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Chapitre 1

Introduction

Commençons cet ouvrage par deux exemples.

Une machine est utilisée pour percer des trous dans des plaques de circuits im-

primés. Comme de nombreux circuits sont produits, il est souhaitable que chaque

circuit soit fabriqué aussi rapidement que possible. Nous ne pouvons agir sur le

temps de perçage de chaque trou qui est fixé, mais nous pouvons chercher à mini-

miser le temps total de déplacement de la perceuse. Habituellement, les perceuses

effectuent des déplacements dans deux directions : la table se déplace horizontale-

ment tandis que le bras de la machine se déplace verticalement. Comme ces deux

mouvements peuvent se faire simultanément, le temps nécessaire pour ajuster la ma-

chine entre deux positions est proportionnel au maximum des distances horizontales

et verticales parcourues. Cette quantité est souvent appelée distance de la norme in-

fini. (Les vieilles machines ne peuvent se déplacer que dans une direction à la fois ;

le temps d’ajustement est alors proportionnel à la 1-distance, somme des distances

horizontale et verticale.)

Un parcours optimal pour le perçage est donné par un ordre des positions des

trous p1, . . . , pn qui rend minimum la quantité
∑n−1

i=1 d(pi, pi+1), d étant la distance

de la norme infini : si p = (x, y) et p′ = (x′, y′) sont deux points du plan, alors

d(p, p′) := max{|x− x′|, |y− y′|}. Un ordre des trous peut être représenté par une

permutation, c.-à-d. une bijection π : {1, . . . , n} → {1, . . . , n}.

La meilleure permutation dépend bien entendu de la position des trous ; pour

chaque ensemble de positions, nous aurons une instance spécifique (suivant l’usage,

nous utiliserons le terme «instance» de préférence à «exemple»). Nous dirons

qu’une instance est une liste de points du plan, c.-à-d. une liste des coordonnées

des trous à percer. Le problème peut alors se formuler de la manière suivante :

PROBLÈME DE PERÇAGE

Instance Un ensemble de points p1, . . . , pn ∈ R2.

Tâche Trouver une permutation π : {1, . . . , n} → {1, . . . , n} telle que∑n−1
i=1 d(pπ(i), pπ(i+1)) soit minimum.
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Décrivons maintenant notre deuxième exemple. Nous devons effectuer un en-

semble de tâches dont nous connaissons les temps d’exécution. Chaque tâche peut

être confiée à une partie des employés. Plusieurs employés peuvent être affectés à

une même tâche et chaque employé peut travailler sur plusieurs tâches mais pas si-

multanément. Notre objectif est d’exécuter l’ensemble des tâches aussi rapidement

que possible.

Dans ce modèle, il suffira de déterminer le temps d’affectation de chaque em-

ployé aux différentes tâches. Le temps d’exécution de l’ensemble des tâches est

alors égal au temps de travail de l’employé le plus occupé. Nous devons donc

résoudre le problème suivant :

PROBLÈME D’AFFECTATION DES TÂCHES

Instance Un ensemble de nombres t1, . . . , tn ∈ R+ (les temps d’exécution des

n tâches), un nombre m ∈ N d’employés, et un sous-ensemble non

vide Si ⊆ {1, . . . , m} d’employés pour chaque tâche i ∈ {1, . . . , n}.

Tâche Trouver des nombres xij ∈ R+ pour tout i = 1, . . . , n et

j ∈ Si tels que
∑

j∈Si
xij = ti pour i = 1, . . . , n et tel que

maxj∈{1,...,m}
∑

i:j∈Si
xij soit minimum.

Voilà deux exemples typiques de problèmes d’optimisation combinatoire. La

manière de modéliser un problème pratique en un problème abstrait d’optimisa-

tion combinatoire n’est pas l’objet de ce livre ; il n’y a d’ailleurs aucune recette

pour réussir dans cette démarche. Outre la précision des données et des résultats

attendus, il est souvent important pour un modèle d’ignorer certains paramètres non

significatifs (par exemple, le temps de perçage qui ne peut être optimisé ou l’ordre

suivant lequel les employés exécutent les tâches).

Notons enfin qu’il ne s’agit pas de résoudre un cas particulier d’un problème,

comme celui du perçage ou celui d’affectation des tâches, mais de résoudre tous les

cas possibles de ces problèmes. Étudions d’abord le PROBLÈME DE PERÇAGE.

1.1 Énumération

Quelle est l’allure d’une solution du PROBLÈME DE PERÇAGE ? Ce problème

a un nombre infini d’instances possibles (tout ensemble fini de points du plan) et

nous ne pouvons donc faire la liste des permutations optimales associées à toutes

les instances. Ce que nous recherchons, c’est un algorithme qui associe, à chaque

instance, une solution optimale. Un tel algorithme existe : étant donné un ensemble

de n points, calculer la longueur du chemin associé à chacune des n! permutations.

Il y a de nombreuses manières de formuler un algorithme, la différence se faisant

principalement par le niveau de détails ou par le langage formel utilisé. Nous n’ac-

cepterons pas la proposition suivante comme définissant un algorithme : étant donné

un ensemble de n points, trouver un chemin optimal qui sera l’output, c.-à-d. le

résultat, car rien n’est dit sur la manière de trouver la solution optimale. La sugges-
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tion précédente, d’énumérer l’ensemble des n! permutations, est plus utile à condi-

tion de préciser la manière d’énumérer ces permutations. Voici une méthode :

énumérons par comptage tous les n-uplets des nombres 1, . . . , n, c.-à-d. les nn vec-

teurs de {1, . . . , n}n : partons de (1, . . . , 1, 1), (1, . . . , 1, 2) jusqu’à (1, . . . , 1, n),
passons à (1, . . . , 1, 2, 1), et ainsi de suite : à chaque étape, nous ajoutons 1 à la

dernière composante sauf si celle-ci vaut n, auquel cas nous revenons à la dernière

composante plus petite que n, lui ajoutons 1 et réinitialisons à 1 toutes les compo-

santes suivantes. Cette technique est parfois appelée «backtracking» (en français,

retour arrière). L’ordre selon lequel les vecteurs de {1, . . . , n}n sont énumérés est

appelé ordre lexicographique.

Définition 1.1. Soient x, y ∈ Rn deux vecteurs. Nous dirons qu’un vecteur x est
lexicographiquement plus petit que y s’il existe un indice j ∈ {1, . . . , n} tel que
xi = yi pour i = 1, . . . , j − 1 et xj < yj .

Il nous suffit maintenant de vérifier si, au cours de l’énumération, chaque vec-

teur de {1, . . . , n}n a des composantes différentes et voir dans ce cas si le che-

min représenté par cette permutation est plus court que le meilleur chemin trouvé

précédemment.

Comme cet algorithme énumère nn vecteurs, il nécessitera au moins nn étapes.

Cela n’est pas très efficace puisque le nombre de permutations de {1, . . . , n} est

n! qui est bien plus petit que nn. (Par la formule de Stirling n! ≈
√

2πnnn

en (Stir-

ling [1730]) ; voir exercice 1.) Montrons comment énumérer tous les chemins en

approximativement n2 · n! étapes grâce à l’algorithme suivant qui énumère toutes

les permutations suivant un ordre lexicographique :

ALGORITHME D’ÉNUMÉRATION DES CHEMINS

Input Un nombre naturel n ≥ 3. Un ensemble {p1, . . . , pn} de points dans

le plan.

Output Une permutation π∗ : {1, . . . , n} → {1, . . . , n} telle que

coût(π∗) :=
∑n−1

i=1 d(pπ∗(i), pπ∗(i+1)) soit minimum.

1© π(i) := i et π∗(i) := i pour i = 1, . . . , n. Posons i := n− 1.

2© Soit k := min({π(i) + 1, . . . , n + 1} \ {π(1), . . . , π(i− 1)}).
3© If k ≤ n then :

π(i) := k.

If i = n et coût(π) < coût(π∗) then π∗ := π.

If i < n then π(i + 1) := 0 et i := i + 1.

If k = n + 1 then i := i− 1.

If i ≥ 1 then go to 2©.

Partant de (π(i))i=1,...,n = (1, 2, 3, . . . , n − 1, n) et i = n − 1, l’algorithme

trouve à chaque étape la meilleure valeur possible suivante de π(i) (sans utiliser

π(1), . . . , π(i − 1)). S’il n’existe plus aucune possibilité pour π(i) (c.-à-d. k =
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n + 1), alors l’algorithme décrémente i (backtracking). Sinon il affecte à π(i) la

nouvelle valeur k. Si i = n, la nouvelle permutation est évaluée, sinon l’algorithme

évaluera toutes les valeurs possibles pour π(i+1), . . . , π(n), en affectant à π(i+1)
la valeur 0 et en incrémentant i.

Ainsi tous les vecteurs de permutation (π(1), . . . , π(n)) sont générés suivant un

ordre lexicographique. Par exemple, les premières itérations dans le cas n = 6 sont

décrites comme suit :
π := (1, 2, 3, 4, 5, 6), i := 5

k := 6, π := (1, 2, 3, 4, 6, 0), i := 6
k := 5, π := (1, 2, 3, 4, 6, 5), coût(π) < coût(π∗) ?

k := 7, i := 5
k := 7, i := 4
k := 5, π := (1, 2, 3, 5, 0, 5), i := 5
k := 4, π := (1, 2, 3, 5, 4, 0), i := 6
k := 6, π := (1, 2, 3, 5, 4, 6), coût(π) < coût(π∗) ?

Puisque l’algorithme compare le coût de la solution courante à π∗, le meilleur

chemin actuel, il fournit bien le chemin optimal. Mais quel est le nombre d’étapes ?

La réponse dépendra de ce que nous appelons un «pas» de l’algorithme. Comme le

nombre de pas ne doit pas dépendre de l’implémentation, nous devons ignorer les

facteurs constants. Ainsi, 1© nécessitera au moins 2n+1 étapes et au plus cn étapes,

c étant une constante. La notation suivante sera utile pour ignorer les constantes :

Définition 1.2. Soient f, g : D → R+ deux fonctions. Nous dirons que f est O(g)
(et nous écrirons parfois f = O(g)) s’il existe des constantes α, β > 0 telles que
f(x) ≤ αg(x) + β pour tout x ∈ D. Si f = O(g) et g = O(f) nous dirons alors
que f = Θ(g) (et bien entendu g = Θ(f)). Dans ce cas, f et g auront le même taux
de croissance.

Remarquons que la relation f = O(g) n’implique aucune symétrie entre f et

g. Pour illustrer cette définition, prenons D = N et soit f(n) le nombre de pas

ou d’étapes élémentaires de 1©. En posant g(n) = n (n ∈ N), il est évident que

f = O(g) (et que, également, f = Θ(g)) ; nous dirons que 1© s’exécute en un

temps O(n) ou en temps linéaire. L’exécution de 3© se fait en un nombre constant

de pas (nous dirons aussi en temps O(1) ou en temps constant) sauf dans le cas où

les coûts de deux chemins doivent être comparés, ce qui nécessitera un temps O(n).
Que peut-on dire de 2© ? Vérifier si j = π(h) pour tout j ∈ {π(i)+1, . . . , n} et

tout h ∈ {1, . . . , i− 1} se fait en O((n−π(i))i) étapes, c.-à-d. en un temps Θ(n2).
On peut améliorer ce temps en utilisant un tableau auxiliaire indexé par 1, . . . , n :

2© For j := 1 to n do aux(j) := 0.

For j := 1 to i− 1 do aux(π(j)) := 1.

k := π(i) + 1.

While k ≤ n et aux(k) = 1 do k := k + 1.

De cette manière, 2© s’exécute en un temps O(n). Nous n’étudierons pas dans

ce livre ce genre d’améliorations algorithmiques, laissant au lecteur le choix des

bonnes mises en œuvre.
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Examinons maintenant le temps total d’exécution de l’algorithme. Puisque le

nombre de permutations est n!, il nous faut trouver le temps de calcul entre deux

permutations. Le compteur i peut décroı̂tre de la valeur n à un indice i′, une nouvelle

valeur de π(i′) ≤ n étant trouvée. Puis le compteur est réincrémenté jusqu’à la

valeur i = n. Tant que le compteur i est constant, chacune des étapes 2© et 3© est

exécutée une seule fois, sauf dans le cas k ≤ n et i = n ; dans ce cas 2© et 3©
sont exécutées deux fois. Ainsi le nombre de pas entre deux permutations est au

plus 4n fois 2© et 3©, c.-à-d. O(n2). Le temps total d’exécution de l’ALGORITHME

D’ÉNUMÉRATION DES CHEMINS est O(n2n!).
On peut faire encore mieux ; une analyse plus fine montre que le temps de calcul

est seulement O(n · n!) (exercice 4).

Cependant, le temps de calcul de l’algorithme est trop important quand n devient

grand, car le nombre de chemins croı̂t d’une manière exponentielle avec le nombre

de points ; déjà pour 20 points, on a 20! = 2 432 902 008 176 640 000 ≈ 2, 4 ·
1018 chemins différents et même les ordinateurs les plus puissants auraient besoin

de plusieurs années pour tous les examiner. Ainsi une énumération complète est

impossible à envisager même pour des instances de taille modeste.

L’objet de l’optimisation combinatoire est de trouver de meilleurs algorithmes

pour ce type de problèmes. Nous devrons souvent trouver le meilleur élément d’un

ensemble fini de solutions réalisables (dans nos exemples : chemins de perçage ou

permutations). Cet ensemble n’est pas défini explicitement, mais dépend implicite-

ment de la structure du problème. Un algorithme doit pouvoir exploiter cette struc-

ture.

Dans le PROBLÈME DE PERÇAGE une instance avec n points sera décrite par

2n coordonnées. Alors que l’algorithme précédent énumère les n! chemins, on peut

imaginer qu’il existe un algorithme trouvant le chemin optimal plus rapidement,

disons en n2 étapes de calcul. On ne sait pas si un tel algorithme existe (on verra ce-

pendant au chapitre 15 que cela est improbable). Il existe cependant des algorithmes

bien meilleurs que ceux fondés sur la méthode d’énumération.

1.2 Temps d’exécution des algorithmes

On peut donner une définition formelle d’un algorithme, et c’est ce que nous

ferons au chapitre 15.1. Cependant, de tels modèles conduisent à des descriptions

longues et fastidieuses. Il en est de même pour les preuves mathématiques : bien

que le concept de preuve puisse être formalisé, personne n’utilise un tel formalisme

pour décrire des preuves, car elles deviendraient trop longues et presque illisibles.

Ainsi les algorithmes présentés dans ce livre seront-ils écrits dans un langage

informel. Cependant, ils seront suffisamment détaillés pour qu’un lecteur ayant un

peu d’expérience puisse les programmer sur un ordinateur sans trop d’effort.

Puisque nous ne prenons pas en compte les facteurs constants quand nous me-

surons le temps de calcul, nous n’avons pas à spécifier un modèle concret d’ordina-

teur. Nous comptons les pas élémentaires sans nous soucier du temps d’exécution de

ces pas. Comme exemples de pas élémentaires, citons les affectations de variables,
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l’accès aléatoire à une variable dont l’adresse est stockée dans un autre registre,

les sauts conditionnels (if – then – go to), ainsi que les opérations arithmétiques

élémentaires telles que l’addition, la soustraction, la multiplication, la division, la

comparaison de nombres.

Un algorithme consiste en un ensemble d’inputs valides et une suite d’ins-

tructions composées d’opérations élémentaires, de telle sorte que pour chaque in-

put valide, le déroulement de l’algorithme soit une suite bien définie d’opérations

élémentaires fournissant un output. La question essentielle sera alors d’obtenir une

borne satisfaisante du nombre d’opérations, en fonction de la taille de l’input.

L’input est en général une liste de nombres. Si tous ces nombres sont des en-

tiers, nous pouvons les coder dans une représentation binaire en réservant un em-

placement de O(log(|a|+ 2)) bits pour stocker un entier a. Les nombres rationnels

peuvent être stockés en codant séparément leur numérateur et leur dénominateur. La

taille de l’input notée taille(x) d’une instance x avec des données rationnelles est

le nombre total de bits utilisés dans la représentation binaire.

Définition 1.3. Soit A un algorithme qui accepte des inputs d’un ensemble X , et
soit f : N → R+. S’il existe une constante α > 0 telle que A se termine après au
plus αf(taille(x)) pas élémentaires (en incluant les opérations arithmétiques) pour
chaque input x ∈ X , nous dirons alors que A s’exécute en un temps O(f). Nous
dirons également que O(f) est le temps de calcul ou la complexité de A.

Définition 1.4. Un algorithme acceptant des inputs rationnels est dit polynomial
s’il s’exécute en un temps O(nk) quand la taille de l’input est n, k étant fixé, et si
la taille de tous les nombres intermédiaires calculés n’excède pas O(nk) bits.

Un algorithme acceptant des inputs arbitraires est dit fortement polynomial si
son temps de calcul est O(nk) pour tout input de n nombres, k étant une constante
fixée, et s’il se termine en temps polynomial dans le cas d’inputs rationnels. Si k =
1, nous dirons que l’algorithme est linéaire.

Notons que le temps de calcul peut être différent pour des instances distinctes

de même taille (ce n’était pas le cas pour l’ALGORITHME D’ÉNUMÉRATION DES

CHEMINS). Nous considérerons le temps de calcul dans le pire des cas, c.-à-d. la

fonction f : N → N où f(n) est le maximum du temps de calcul d’une instance de

taille n. Pour certains algorithmes, nous ne connaissons pas le taux de croissance de

f , mais nous avons seulement une borne supérieure.

Il se peut que le temps de calcul dans le pire des cas soit une mesure pessimiste

si le pire des cas se produit rarement. Dans certaines situations, un temps de calcul

moyen fondé sur des modèles probabilistes serait plus adéquat, mais nous n’abor-

derons pas cette question dans ce livre.

Si A est un algorithme qui, pour chaque input x ∈ X , calcule l’output f(x) ∈ Y ,

nous dirons que A calcule f : X → Y . Une fonction calculée par un algorithme

polynomial sera dite calculable en temps polynomial.
Les algorithmes polynomiaux sont quelquefois appelés «bons» ou «efficaces».

Ce concept a été introduit par Cobham [1964] et Edmonds [1965]. La table 1.1

illustre cela en fournissant les temps de calcul pour divers temps de complexité.
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Table 1.1.

n 100n log n 10n2 n3.5 nlog n 2n n!

10 3 μs 1 μs 3 μs 2 μs 1 μs 4 ms

20 9 μs 4 μs 36 μs 420 μs 1 ms 76 années

30 15 μs 9 μs 148 μs 20 ms 1 s 8 · 1015 a.

40 21 μs 16 μs 404 μs 340 ms 1100 s

50 28 μs 25 μs 884 μs 4 s 13 jours

60 35 μs 36 μs 2 ms 32 s 37 années

80 50 μs 64 μs 5 ms 1075 s 4 · 107 a.

100 66 μs 100 μs 10 ms 5 heures 4 · 1013 a.

200 153 μs 400 μs 113 ms 12 années

500 448 μs 2.5 ms 3 s 5 · 105 a.

1000 1 ms 10 ms 32 s 3 · 1013 a.

104 13 ms 1 s 28 heures

105 166 ms 100 s 10 années

106 2 s 3 heures 3169 a.

107 23 s 12 jours 107 a.

108 266 s 3 années 3 · 1010 a.

1010 9 heures 3 · 104 a.

1012 46 jours 3 · 108 a.

Pour différentes tailles d’inputs n, nous indiquons les temps de calcul de six

algorithmes qui nécessitent 100n log n, 10n2, n3.5, nlog n, 2n, et n! opérations

élémentaires ; nous supposons qu’une opération élémentaire s’effectue en une na-

noseconde. Comme partout dans ce livre, «log» est le logarithme en base 2.

Ainsi que la table 1.1 le montre, les algorithmes polynomiaux sont plus ra-

pides pour les instances de taille suffisamment importante. Cette table indique

également que les facteurs constants de taille modérée ne sont pas très importants si

on considère la croissance asymptotique du temps de calcul.

La table 1.2 indique la taille maximum d’inputs résolubles en une heure pour les

six algorithmes précédents. Pour (a) nous supposons qu’une opération élémentaire

s’effectue en une nanoseconde ; (b) donne les résultats pour une machine dix fois

plus rapide. Les algorithmes polynomiaux peuvent traiter de grandes instances en

des temps raisonnables. Cependant, même en multipliant par 10 la rapidité de calcul

des ordinateurs, on n’augmente pas de manière significative la taille des instances

que l’on peut résoudre pour des algorithmes exponentiels, ce qui n’est pas le cas

pour les algorithmes polynomiaux.

Les algorithmes (fortement) polynomiaux et si possible linéaires sont ceux qui

nous intéressent. Il existe des problèmes pour lesquels il n’existe aucun algorithme

polynomial et d’autres pour lesquels il n’existe aucun algorithme. (Par exemple,

un problème qui peut se résoudre en un temps fini mais pas en temps polynomial
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Table 1.2.

100n log n 10n2 n3.5 nlog n 2n n!

(a) 1.19 · 109 60000 3868 87 41 15

(b) 10.8 · 109 189737 7468 104 45 16

est celui de décider si une expression régulière définit l’ensemble vide ; voir Aho,

Hopcroft et Ullman [1974]. Un problème pour lequel il n’existe aucun algorithme

est le «HALTING PROBLEM», décrit dans l’exercice 1 du chapitre 15.)

Cependant, presque tous les problèmes étudiés dans ce livre appartiennent à une

des deux classes suivantes : pour les problèmes de la première classe, il existe un

algorithme polynomial ; pour les problèmes de la seconde, l’existence d’un algo-

rithme polynomial est une question ouverte. Néanmoins, nous savons que si un de

ces problèmes peut se résoudre en temps polynomial, alors tous les problèmes ap-

partenant à cette seconde classe sont également résolubles en temps polynomial.

Une formulation et une preuve de cette affirmation seront données au chapitre 15.

Le PROBLÈME DE L’AFFECTATION DES TÂCHES appartient à la première

classe, le PROBLÈME DE PERÇAGE appartient à la seconde.

Ces deux classes divisent à peu près ce livre en deux parties. Nous étudierons

d’abord les problèmes pour lesquels on connaı̂t des algorithmes polynomiaux. Puis,

à partir du chapitre 15, nous nous intéresserons aux problèmes difficiles. Bien

qu’on ne connaisse aucun algorithme polynomial dans ce cas, il existe souvent de

bien meilleures méthodes que l’énumération complète. De plus, pour de nombreux

problèmes (incluant le PROBLÈME DE PERÇAGE), on peut trouver des solutions ap-

prochées à un certain pourcentage de l’optimum en temps polynomial.

1.3 Problèmes d’optimisation linéaire

Revenons sur notre deuxième exemple, le PROBLÈME D’AFFECTATION DES

TÂCHES, pour illustrer brièvement un sujet central de ce livre.

Le PROBLÈME D’AFFECTATION DES TÂCHES est totalement différent du PRO-

BLÈME DE PERÇAGE puisque chaque instance non triviale a un nombre infini de

solutions. Nous pouvons reformuler ce problème en introduisant une variable T qui

sera le temps nécessaire à l’achèvement de toutes les tâches :

min T

s.c.
∑
j∈Si

xij = ti (i ∈ {1, . . . , n})

xij ≥ 0 (i ∈ {1, . . . , n}, j ∈ Si)∑
i:j∈Si

xij ≤ T (j ∈ {1, . . . , m})

(1.1)

(s.c. est une abréviation pour «sous les contraintes»)
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Les nombres ti et les ensembles Si (i = 1, . . . , n) sont donnés, et nous cher-

chons à calculer les variables xij et T . Un problème d’optimisation de ce type, avec

une fonction objectif linéaire et des contraintes linéaires, est appelé programme
linéaire. L’ensemble des solutions réalisables de (1.1) est un polyèdre ; cet en-

semble convexe a un nombre fini de points extrêmes qui inclut la solution optimale
de ce programme linéaire. Un programme linéaire peut donc, en théorie, se résoudre

par énumération complète, mais de bien meilleures méthodes existent comme nous

le verrons ultérieurement.

Bien que de nombreux algorithmes existent pour résoudre des programmes

linéaires, les techniques générales sont souvent moins performantes que les algo-

rithmes spécifiques qui exploitent la structure du problème. Dans notre exemple, il

est judicieux de modéliser les ensembles Si, i = 1, . . . , n, à l’aide d’un graphe :

associons à chaque tâche i et à chaque employé j un point (appelé sommet) et re-

lions par une arête un employé i et une tâche j si i peut être affecté à j (c.-à-d.

si j ∈ Si). Les graphes constituent une structure combinatoire fondamentale ; de

nombreux problèmes d’optimisation combinatoire se décrivent de manière naturelle

dans le contexte de la théorie des graphes.

Supposons que le temps d’exécution de chaque tâche soit de une heure et que

nous voulions savoir si toutes les tâches seront terminées en une heure. Ce problème

revient à trouver des nombres xij (i ∈ {1, . . . , n}, j ∈ Si) tels que 0 ≤ xij ≤ 1 pour

tout i et j,
∑

j∈Si
xij = 1 pour i = 1, . . . , n, et

∑
i:j∈Si

xij ≤ 1 pour j = 1, . . . , n.

On peut montrer que si ce problème a une solution, celle-ci peut être choisie entière,

les quantités xij valant alors 0 ou 1. Cela revient à affecter chaque tâche à un seul

employé qui effectuera au plus une seule tâche. Dans le langage de la théorie des

graphes, nous cherchons un couplage couvrant toutes les tâches. Le problème de la

recherche d’un couplage optimal est un des problèmes classiques de l’optimisation

combinatoire.

L’étude et le rappel de notions de base en théorie des graphes et en program-

mation linéaire sera l’objet des chapitres 2 et 3. Au chapitre 4 nous montrerons

comment résoudre les programmes linéaires en temps polynomial, et au chapitre

5 nous étudierons les polyèdres entiers. Les chapitres suivants seront consacrés à

l’étude de problèmes classiques en optimisation combinatoire.

1.4 Tri

Concluons ce chapitre en nous intéressant à un cas particulier du PROBLÈME

DE PERÇAGE ; plus précisément, nous supposerons que tous les trous doivent être

percés sur une même ligne horizontale. Il suffit de connaı̂tre une seule coordonnée

pour chaque point pi, i = 1, . . . , n. Une solution du problème de perçage est alors

facile à trouver : il s’agit de faire le tri des points selon cette coordonnée, le bras de

la machine se déplaçant alors de la gauche vers la droite. Nous n’aurons donc pas

à examiner les n! permutations, pour trouver le chemin optimal : il est en effet très

facile de trier n nombres dans un ordre non décroissant en un temps O(n2).
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Trier n nombres en un temps O(n log n) demande un peu plus de réflexion. Il y a

de nombreux algorithmes ayant cette complexité ; nous présentons ici l’algorithme

bien connu de TRI-FUSION (en anglais, merge-sort) : la liste initiale est d’abord

divisée en deux sous-listes de même taille approximative. Puis chaque sous-liste est

triée (récursivement, par le même algorithme). Enfin, les deux sous-listes triées sont

fusionnées. Cette méthode, appelée «diviser pour régner» (divide and conquer en

anglais) est souvent utilisée. Voir le paragraphe 17.1 pour une autre illustration.

Nous n’avons pas présenté ce qu’on appelle les algorithmes récursifs. Ce ne

sera pas nécessaire ici ; il nous suffira de savoir que tout algorithme récursif peut être

transformé en un algorithme séquentiel sans accroı̂tre le temps de calcul. Cependant,

certains algorithmes sont plus faciles à formuler (et à implémenter) en utilisant la

récursivité, et c’est ce que nous ferons quelquefois dans cet ouvrage.

ALGORITHME TRI-FUSION

Input Une liste a1, . . . , an de nombres réels.

Output Une permutation π : {1, . . . , n} → {1, . . . , n} telle que

aπ(i) ≤ aπ(i+1) pour tout i = 1, . . . , n− 1.

1© If n = 1 then π(1) := 1 et stop (return π).

2© m :=
⌊

n
2

⌋
.

Soit ρ :=TRI-FUSION(a1, . . . , am).

Soit σ :=TRI-FUSION(am+1, . . . , an).

3© k := 1, l := 1.

While k ≤ m et l ≤ n−m do :

If aρ(k) ≤ am+σ(l) then π(k + l − 1) := ρ(k) et k := k + 1
else π(k + l − 1) := m + σ(l) et l := l + 1.

While k ≤ m do : π(k + l − 1) := ρ(k) et k := k + 1.

While l ≤ n−m do : π(k + l − 1) := m + σ(l) et l := l + 1.

Comme exemple, considérons la liste «69, 32, 56, 75, 43, 99, 28». L’algorithme

divise d’abord cette liste en deux listes, «69, 32, 56» et «75, 43, 99, 28» puis trie

récursivement chacune des deux sous-listes. Nous obtenons les deux permutations

ρ = (2, 3, 1) et σ = (4, 2, 1, 3) correspondant aux listes triées «32, 56, 69» et «28,

43, 75, 99». Ces deux listes sont alors fusionnées de la manière suivante :

k := 1, l := 1
ρ(1) = 2, σ(1) = 4, aρ(1) = 32, aσ(1) = 28, π(1) := 7, l := 2
ρ(1) = 2, σ(2) = 2, aρ(1) = 32, aσ(2) = 43, π(2) := 2, k := 2
ρ(2) = 3, σ(2) = 2, aρ(2) = 56, aσ(2) = 43, π(3) := 5, l := 3
ρ(2) = 3, σ(3) = 1, aρ(2) = 56, aσ(3) = 75, π(4) := 3, k := 3
ρ(3) = 1, σ(3) = 1, aρ(3) = 69, aσ(3) = 75, π(5) := 1, k := 4

σ(3) = 1, aσ(3) = 75, π(6) := 4, l := 4
σ(4) = 3, aσ(4) = 99, π(7) := 6, l := 5



1. Introduction 11

Théorème 1.5. L’ALGORITHME TRI-FUSION répond correctement et s’exécute en
un temps O(n log n).

Preuve. Il est évident que cet algorithme répond correctement. Si T (n) est le

temps de calcul (nombre de pas) sur des instances ayant n nombres, observons que

T (1) = 1 et que T (n) = T (�n
2 �) + T (
n

2 �) + 3n + 6. (Les constantes dans l’ex-

pression 3n + 6 dépendent de la manière dont est défini un pas de l’algorithme.)

Nous affirmons que cela implique que T (n) ≤ 12n log n+1. Le cas n = 1 étant

trivial, nous procéderons par induction. Pour n ≥ 2, en supposant que l’inégalité est

vraie pour 1, . . . , n− 1, nous avons

T (n) ≤ 12
⌊n

2

⌋
log
(

2
3
n

)
+ 1 + 12

⌈n

2

⌉
log
(

2
3
n

)
+ 1 + 3n + 6

= 12n(log n + 1− log 3) + 3n + 8

≤ 12n log n− 13
2

n + 3n + 8 ≤ 12n log n + 1,

parce que log 3 ≥ 37
24 . �

Cet algorithme s’applique aussi au tri d’éléments d’un ensemble totalement

ordonné, pourvu que l’on puisse comparer deux éléments quelconques en temps

constant. Peut-il exister un algorithme plus rapide, disons linéaire ? Si on ne peut

trouver l’ordre qu’à la suite de comparaisons successives de deux éléments, il est

possible de montrer que tout algorithme nécessite au moins Θ(n log n) comparai-

sons dans le pire des cas. En effet, on peut représenter le résultat d’une comparaison

par zéro ou un. Le résultat de toutes les comparaisons est donc une chaı̂ne binaire

(une suite de zéro et de un). Deux ordres différents pour l’input de l’algorithme pro-

duisent deux chaı̂nes binaires différentes (sinon on ne pourrait distinguer ces deux

ordres). Pour un input ayant n éléments, il y a donc n! ordres possibles et n! chaı̂nes

binaires susceptibles d’être produites. Comme le nombre de chaı̂nes binaires de

longueur plus petite que
⌊

n
2 log n

2

⌋
est 2�n

2 log n
2 � − 1 < 2

n
2 log n

2 = (n
2 )

n
2 ≤ n!, le

nombre nécessaire de comparaisons est au moins n
2 log n

2 = Θ(n log n).
On voit donc que le temps de calcul de l’ALGORITHME TRI-FUSION est optimal

à un facteur constant près. On peut cependant trier des entiers ou des chaı̂nes suivant

un ordre lexicographique grâce à des algorithmes linéaires ; voir l’exercice 7. Han

[2004] a proposé un algorithme pour trier n entiers en O(n log log n).
Il y a très peu de problèmes pour lesquels des bornes inférieures non triviales de

ce type existent. On aura souvent besoin d’un minorant de l’ensemble des opérations

élémentaires pour obtenir une borne inférieure superlinéaire.

Exercices

1. Montrer que pour tout n ∈ N :

e
(n

e

)n

≤ n! ≤ en
(n

e

)n

.

Indication : utiliser la relation 1 + x ≤ ex pour tout x ∈ R.
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2. Montrer que log(n!) = Θ(n log n).
3. Montrer que n log n = O(n1+ε) pour tout ε > 0.

4. Montrer que le temps de calcul de l’ALGORITHME D’ÉNUMÉRATION DES CHE-

MINS est O(n · n!).
5. Soit un algorithme dont le temps de calcul est Θ(n(t + n1/t)), n étant la taille

de l’input et t un paramètre positif arbitraire. Comment choisir t en fonction de

n pour que le temps de calcul qui est une fonction de n ait un taux de croissance

minimum ?

6. Soient s, t deux chaı̂nes binaires de longueur m. Nous dirons que s est lexico-

graphiquement plus petite que t s’il existe un indice j ∈ {1, . . . , m} tel que

si = ti pour i = 1, . . . , j − 1 et sj < tj . Soient alors n chaı̂nes de longueur m
que nous souhaitons trier suivant un ordre lexicographique. Montrer qu’on peut

résoudre ce problème en un temps O(nm).
Indication : regrouper les chaı̂nes selon leur premier bit et trier chaque groupe.

7. Proposer un algorithme qui trie une liste de nombres naturels a1, . . . , an, c.-à-d.

qui trouve une permutation π telle que aπ(i) ≤ aπ(i+1) (i = 1, . . . , n − 1) en

un temps O(log(a1 + 1) + · · ·+ log(an + 1)).
Indication : trier d’abord les chaı̂nes codant les entiers suivant leur longueur.

Appliquer ensuite l’algorithme de l’exercice 6.

Note : l’algorithme étudié ici et dans l’exercice précédent est quelquefois appelé

le tri radix.
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Chapitre 2

Graphes

Les graphes seront utilisés tout au long de ce livre. Dans ce chapitre nous don-

nerons les définitions de base et nous préciserons nos notations. Nous présenterons

également quelques théorèmes classiques et quelques algorithmes fondamentaux.

Après les définitions du paragraphe 2.1, nous étudierons quelques structures es-

sentielles souvent rencontrées dans ce livre : les arbres, les cycles, les coupes. Nous

démontrerons quelques propriétés importantes, et nous considérerons des systèmes

d’ensembles reliés aux arbres au paragraphe 2.2. L’algorithme de recherche des

composantes connexes ou fortement connexes sera présenté au paragraphe 2.3. Nous

démontrerons le théorème d’Euler relatif aux parcours fermés qui passent une seule

fois par chaque arête au paragraphe 2.4. Enfin, nous étudierons les graphes dessi-

nables sur un plan sans que les arêtes se croisent aux paragraphes 2.5 et 2.6.

2.1 Définitions fondamentales

Un graphe non orienté est un triplet (V,E, Ψ) constitué de deux ensembles

finis V et E et d’une application Ψ : E → {X ⊆ V : |X| = 2}1. Un graphe
orienté est un triplet (V, E, Ψ), constitué de deux ensembles finis V et E et d’une

application Ψ : E → {(v, w) ∈ V ×V : v �= w}. V est l’ensemble des sommets du

graphe ; E est l’ensemble de ses arêtes si le graphe est non orienté et de ses arcs
s’il est orienté. Suivant un usage assez répandu, nous noterons également une arête

e = {v, w} par e = (v, w) ou e = (w, v).
Deux arêtes (arcs) e, e′ seront dites parallèles si Ψ(e) = Ψ(e′). Un graphe sans

arêtes ou arcs parallèles est un graphe simple. Quand un graphe est simple, nous

pouvons identifier e ∈ E avec son image Ψ(e) et écrire G = (V (G), E(G)),
avec E(G) ⊆ {X ⊆ V (G) : |X| = 2} ou E(G) ⊆ V (G) × V (G). Nous

utiliserons souvent cette notation même en présence d’arêtes (d’arcs) parallèles.

Ainsi l’ensemble E(G) pourra contenir plusieurs éléments «identiques». |E(G)|
1 Nous utiliserons tout au long de cet ouvrage les notations ensemblistes anglophones (ndt).
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est le nombre d’arêtes (arcs) ; si E et F sont deux ensembles d’arêtes (arcs),

|E .∪ F | = |E| + |F | même si des arêtes (arcs) parallèles apparaissent dans cette

union.

Nous dirons qu’une arête (resp. un arc) e = (v, w) joint v et w (resp. v à w) et

que v et w sont adjacents ou mutuellement voisins. v et w seront les extrémités de

e et nous dirons que v (resp. e) est incident à e (resp. à v). si e = (v, w) est un arc, v
est l’origine de e, w est l’extrémité terminale de e ; nous dirons que e est sortant
de v et entrant dans w. Nous dirons aussi que v (resp. w) est le voisin entrant (resp.

voisin sortant) de w (resp. v). Deux arcs ou arêtes ayant une extrémité commune

seront dits adjacents.

La terminologie de la théorie des graphes n’est pas complètement figée. Par

exemple, les sommets sont parfois appelés nœuds ou points ; en anglais, edge si-

gnifie arête ou arc. Un graphe avec des arêtes ou arcs parallèles est parfois appelé

multigraphe. On peut également autoriser les boucles (extrémités identiques).

Si G est un graphe orienté, nous considérerons parfois son graphe non orienté
associé G′ obtenu en enlevant l’orientation de chaque arc de G. Nous dirons alors

que G est une orientation de G′.
Un sous-graphe de G = (V (G), E(G)) est un graphe H = (V (H), E(H))

avec V (H) ⊆ V (G) et E(H) ⊆ E(G). Nous dirons que G contient H . Le graphe

H est un sous-graphe induit de G si H est un sous-graphe de G et si E(H) =
{(x, y) ∈ E(G) : x, y ∈ V (H)} ; H = G[V (H)] est le sous-graphe de G induit
par V (H). Un sous-graphe H de G est appelé couvrant si V (H) = V (G).

Si v ∈ V (G), G − v est le sous-graphe de G induit par V (G) \ {v}. Si e ∈
E(G), G − e := (V (G), E(G) \ {e}) est le graphe obtenu en supprimant e de E.

G + e := (V (G), E(G)
.∪ {e}) est le graphe obtenu en ajoutant une nouvelle arête

(un nouvel arc) e à E. Si G et H sont deux graphes, G + H est le graphe tel que

V (G + H) = V (G) ∪ V (H) et tel que E(G + H) est l’union disjointe de E(G) et

E(H).
Deux graphes G et H sont appelés isomorphes s’il existe deux bijections ΦV :

V (G) → V (H) et ΦE : E(G) → E(H) telles que ΦE((v, w)) = (ΦV (v), ΦV (w))
pour tout (v, w) ∈ E(G). Nous ne distinguerons pas deux graphes isomorphes ;

ainsi nous dirons que G contient H si G a un sous-graphe isomorphe à H .

Soit G un graphe non orienté et soit X ⊆ V (G). Le graphe résultant de la

contraction de X , et noté G/X , s’obtient en supprimant X et les arêtes de G[X],
puis en ajoutant un nouveau sommet x et en remplaçant enfin chaque arête (v, w)
avec v ∈ X , w /∈ X par une arête (x,w) (notons que cette construction pourra créer

des arêtes parallèles). Cette définition s’étend naturellement aux graphes orientés.

Soit un graphe G et X, Y ⊆ V (G). Nous poserons : E(X,Y ) := {(x, y) ∈
E(G) : x ∈ X \ Y, y ∈ Y \ X} si G est non orienté et E+(X,Y ) := {(x, y) ∈
E(G) : x ∈ X \Y, y ∈ Y \X} si G est orienté. Si G est non orienté et X ⊆ V (G)
nous poserons δ(X) := E(X, V (G) \X). L’ensemble des voisins de X est défini

par Γ (X) := {v ∈ V (G) \ X : E(X, {v}) �= ∅}. Si G est orienté et X ⊆ V (G)
nous poserons : δ+(X) := E+(X, V (G)\X), δ−(X) := δ+(V (G)\X) et δ(X) :=
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δ+(X) ∪ δ−(X). Nous utiliserons des indices (par exemple δG(X)) pour spécifier

le graphe G, si nécessaire.

Pour les ensembles de sommets ayant un seul élément {v} (v ∈ V (G)), que

nous appellerons aussi singletons, nous écrirons δ(v) := δ({v}), Γ (v) := Γ ({v}),
δ+(v) := δ+({v}) et δ−(v) := δ−({v}). Le degré d’un sommet v est |δ(v)|,
nombre d’arêtes incidentes à v. Dans le cas orienté, le degré entrant est |δ−(v)|, le

degré sortant est |δ+(v)|, et le degré est |δ+(v)|+|δ−(v)|. Un sommet v de degré 0

est appelé isolé. Un graphe dont tous les sommets ont degré k est appelé k-régulier.

Si G est quelconque,
∑

v∈V (G) |δ(v)| = 2|E(G)|. En particulier le nombre

de sommets de G de degré impair est pair. Si G est orienté,
∑

v∈V (G) |δ+(v)| =∑
v∈V (G) |δ−(v)|. Pour montrer ces relations, observons que chaque arc ou arête est

compté deux fois dans chacun des membres de la première équation et que chaque

arc est compté une fois dans chacun des membres de la deuxième équation. On peut

aussi démontrer :

Lemme 2.1. Soit G un graphe orienté et soient X,Y ⊆ V (G) :

(a) |δ+(X)|+|δ+(Y )| = |δ+(X∩Y )|+|δ+(X∪Y )|+|E+(X,Y )|+|E+(Y,X)| ;
(b) |δ−(X)|+|δ−(Y )| = |δ−(X∩Y )|+|δ−(X∪Y )|+|E+(X,Y )|+|E+(Y, X)|.
Soit G est un graphe non orienté et soient X, Y ⊆ V (G) :

(c) |δ(X)|+ |δ(Y )| = |δ(X ∩ Y )|+ |δ(X ∪ Y )|+ 2|E(X, Y )| ;
(d) |Γ (X)|+ |Γ (Y )| ≥ |Γ (X ∩ Y )|+ |Γ (X ∪ Y )|.

Preuve. Il suffit d’utiliser des arguments de comptage. Soit Z := V (G)\(X∪Y ).
Pour (a), observons que |δ+(X)| + |δ+(Y )| = |E+(X,Z)| + |E+(X, Y \ X)| +
|E+(Y,Z)|+ |E+(Y, X \Y )| = |E+(X ∪Y, Z)|+ |E+(X ∩Y,Z)|+ |E+(X, Y \
X)|+ |E+(Y,X \Y )| = |δ+(X∪Y )|+ |δ+(X∩Y )|+ |E+(X, Y )|+ |E+(Y, X)|.
(b) se déduit de (a) en inversant l’orientation de chaque arc (remplacer (v, w) par

(w, v)). (c) se déduit de (a) en remplaçant chaque arête (v, w) par une paire d’arcs

de directions opposées (v, w) et (w, v).
Pour montrer (d), observons que |Γ (X)| + |Γ (Y )| = |Γ (X ∪ Y )| + |Γ (X) ∩

Γ (Y )|+ |Γ (X) ∩ Y |+ |Γ (Y ) ∩X| ≥ |Γ (X ∪ Y )|+ |Γ (X ∩ Y )|. �

Une fonction f : 2U → R (où U est un ensemble fini et 2U est l’ensemble des

parties de U ) est appelée :

• sous-modulaire si f(X∩Y )+f(X∪Y ) ≤ f(X)+f(Y ) pour tout X,Y ⊆ U ;

• supermodulaire si f(X∩Y )+f(X∪Y ) ≥ f(X)+f(Y ) pour tout X,Y ⊆ U ;

• modulaire si f(X ∩ Y ) + f(X ∪ Y ) = f(X) + f(Y ) pour tout X, Y ⊆ U .

Le lemme 2.1 implique que |δ+|, |δ−|, |δ| et |Γ | sont sous-modulaires. Cela sera

utile ultérieurement.

Un graphe complet est un graphe simple non orienté tel que toute paire de som-

mets est adjacente. Le graphe complet à n sommets sera noté Kn. Le complément
d’un graphe simple non orienté G est le graphe H tel que G + H est un graphe

complet.
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Un couplage d’un graphe non orienté G est un ensemble d’arêtes deux à deux

non adjacentes (c.-à-d. ayant toutes leurs extrémités différentes). Une couverture
par les sommets de G est un ensemble S ⊆ V (G) tel que chaque arête de G soit

incidente à au moins un sommet dans S. Une couverture par les arêtes de G est un

ensemble F ⊆ E(G) d’arêtes tel que chaque sommet de G soit incident à au moins

une arête de F . Un ensemble stable dans G est un ensemble de sommets deux à

deux non adjacents. Un graphe sans aucune arête (ou arc) est dit vide. Une clique
est un ensemble de sommets deux à deux adjacents.

Proposition 2.2. Soit un graphe G et X ⊆ V (G). Les propositions suivantes sont
équivalentes :

(a) X est une couverture par les sommets dans G.

(b) V (G) \X est un ensemble stable dans G.

(c) V (G) \X est une clique dans le complément de G. �

Si F est une famille d’ensembles ou de graphes, nous dirons que F est un

élément minimal de F si F contient F , mais aucun sous-ensemble/sous-graphe

propre de F . De même, F est maximal dans F si F ∈ F et F n’est pas un sous-

ensemble/sous-graphe propre d’un élément de F . Un élément minimum ou maxi-
mum est un élément de cardinalité minimum/maximum.

Une couverture par les sommets minimale n’est pas forcément minimum (voir

par exemple figure 13.1), et un couplage maximal n’est en général pas maximum.

Les problèmes de la recherche d’un couplage, d’un ensemble stable ou d’une clique

maximum, de la couverture par les sommets ou par les arêtes minimum dans un

graphe non orienté auront une grande importance dans la suite de ce livre.

Le line graph2 d’un graphe simple non orienté G est le graphe (E(G), F ), tel

que F = {(e1, e2) : e1, e2 ∈ E(G), |e1 ∩ e2| = 1}. Notons que les couplages du

graphe G correspondent aux ensembles stables du line graph de G.

Soit G un graphe orienté ou non. Une suite P = [v1, e1, v2, . . . , vk, ek, vk+1] est

un parcours de v1 à vk+1 de G si k ≥ 0 et si les deux extrémités de ei sont vi et

vi+1 pour i = 1, . . . , k. v1 et vk+1 sont les extrémités de P . Si G est orienté, nous

dirons que P est un parcours orienté quand l’arc ei est sortant de vi et entrant dans

vi+1 pour i = 1, . . . , k. v1 sera l’origine du parcours P et vk+1 sera son extrémité.

Si ei �= ej pour 1 ≤ i < j ≤ k, P est un parcours simple de G. Un parcours

simple P est fermé si v1 = vk+1. Un parcours simple P tel que vi �= vj pour

1 ≤ i < j ≤ k + 1 est une chaı̂ne. Dans ce cas on pourra identifier P avec le sous-

graphe ({v1, . . . , vk+1}, {e1, . . . , ek}) de G. Si P est une chaı̂ne et x, y ∈ V (P )
P[x,y] sera l’(unique) sous-graphe de P qui est une chaı̂ne de x à y. Il est évident

qu’il existe un parcours d’un sommet v à un sommet w �= v si et seulement s’il

existe une chaı̂ne de v à w.

2 En français «graphe représentatif des arêtes d’un graphe» ; nous garderons ici l’expression

anglaise, plus concise et plus facile à utiliser (ndt).
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Un parcours orienté qui est également une chaı̂ne est un chemin. Deux sommets

d’un graphe non orienté sont connectés s’il existe une chaı̂ne ayant ces deux som-

mets comme extrémités ; un sommet t est connecté à un sommet s dans un graphe

orienté s’il existe un chemin d’origine s et d’extrémité t.
Un graphe ({v1, . . . , vk}, {e1, . . . , ek}) tel que v1, e1, v2, . . . , vk, ek, v1 est un

parcours (resp. un parcours orienté) avec vi �= vj si 1 ≤ i < j ≤ k est un cycle
(resp. un circuit). Un argument simple d’induction montre que l’ensemble des arêtes

(resp. des arcs) d’un parcours fermé (resp. d’un parcours orienté fermé) peut être

partitionné en ensembles d’arêtes de cycles (resp. d’arcs de circuits).

La longueur d’une chaı̂ne (resp. d’un chemin) est son nombre d’arêtes (resp.

d’arcs). Une chaı̂ne qui couvre les sommets d’un graphe non orienté G est appelée

chaı̂ne hamiltonienne de G ; un cycle couvrant les sommets de G est appelé cycle
hamiltonien ou tour de G. Un graphe contenant un cycle hamiltonien est appelé

graphe hamiltonien. Les chemins et circuits hamiltoniens se définissent de la même

manière quand les graphes sont orientés.

Si v et w sont deux sommets de G, la distance de v à w notée dist(v, w) ou

distG(v, w) est la longueur d’un plus court chemin de v à w si G est orienté, et

d’une plus courte chaı̂ne de v à w si G est non orienté. S’il n’existe aucune chaı̂ne

(ou chemin dans le cas orienté) de v à w, nous poserons dist(v, w) := ∞. Si G est

non orienté, on a toujours dist(v, w) = dist(w, v) pour toute paire v, w ∈ V (G).
Souvent une fonction coût c : E(G) → R sera associée aux problèmes que

nous étudierons. Si F ⊆ E(G), nous poserons c(F ) :=
∑

e∈F c(e) (et c(∅) = 0).

La fonction c : 2E(G) → R est une fonction modulaire. dist(G,c)(v, w) sera le

minimum de c(E(P )) pour toutes les chaı̂nes (chemins) P de v à w.

2.2 Arbres, cycles, coupes

Un graphe orienté ou non orienté G sera dit connexe s’il existe une chaı̂ne de v
à w pour tous v, w ∈ V (G) ; sinon G sera non connexe. Les sous-graphes connexes

maximaux de G sont les composantes connexes de G. Nous identifierons quelque-

fois les composantes connexes avec les ensembles de sommets qu’elles induisent.

Un ensemble de sommets X est connexe si le sous-graphe induit par X est connexe.

v est un sommet d’articulation si G − v a plus de composantes connexes que G ;

e ∈ E(G) est un pont si G− e a plus de composantes connexes que G.

Un graphe non orienté sans cycles est une forêt. Une forêt connexe est un arbre.

Dans un arbre, une feuille est un sommet de degré 1. Une étoile est un arbre ayant

au plus un sommet qui n’est pas une feuille.

Nous allons maintenant donner quelques propriétés des arbres et des arbores-

cences, leurs analogues dans les graphes orientés. Établissons le résultat suivant :
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Proposition 2.3.
(a) Un graphe orienté ou non orienté G est connexe si et seulement si δ(X) �= ∅

pour tout ∅ �= X ⊂ V (G).

(b) Soit G un graphe orienté et soit r ∈ V (G). Il existe un chemin de r à tout som-
met v ∈ V (G) si et seulement si δ+(X) �= ∅ pour tout X ⊂ V (G) contenant
r.

Preuve. (a) : s’il existe X ⊂ V (G) tel que r ∈ X , v ∈ V (G) \X , et δ(X) = ∅,

il ne peut exister de chaı̂ne de r à v et G n’est pas connexe. Inversement, si G n’est

pas connexe, il existe deux sommets r, v non connectés. Si R est l’ensemble des

sommets connectés à r, r ∈ R, v /∈ R et δ(R) = ∅.

(b) : la preuve est analogue. �

Théorème 2.4. Soit G un graphe non orienté connexe ayant n sommets. Les pro-
positions suivantes sont équivalentes :

(a) G est un arbre (G est connexe et sans cycles).

(b) G est sans cycles et a n− 1 arêtes.

(c) G est connexe et a n− 1 arêtes.

(d) G est un graphe connexe minimal (chaque arête est un pont).

(e) G est un graphe minimal vérifiant la propriété δ(X) �= ∅ pour tout ∅ �= X ⊂
V (G).

(f) G est un graphe maximal sans cycles (l’addition d’une arête quelconque crée
un cycle).

(g) Toute paire de sommets de G est connectée par une chaı̂ne unique.

Preuve. (a)⇒(g), car l’union de deux chaı̂nes distinctes ayant les mêmes extrémités

contient un cycle.

(g)⇒(e)⇒(d) se déduit de la proposition 2.3(a).

(d)⇒(f) : évident.

(f)⇒(b)⇒(c) : cela se déduit du fait que si une forêt a n sommets, m arêtes et p
composantes connexes, alors n = m + p. (Preuve par induction sur m.)

(c)⇒(a) : soit G connexe ayant n−1 arêtes. Si G a un cycle, on peut le supprimer

en en retirant une arête. Supposons qu’après avoir retiré k arêtes de cette manière, le

graphe résultant G′ soit connexe et sans cycles. G′ a m = n− 1− k arêtes. Comme

n = m + p = n− 1− k + 1, on a k = 0. �

En particulier, (d)⇒(a) signifie qu’un graphe est connexe si et seulement s’il

contient un arbre couvrant (un sous-graphe couvrant qui est un arbre).

Un graphe orienté est une ramification si le graphe non orienté associé est une

forêt et si chaque sommet v a au plus un arc entrant. Une ramification connexe est

une arborescence. Par le théorème 2.4, une arborescence ayant n sommets a n− 1
arcs et par conséquent il n’existe qu’un sommet r avec δ−(r) = ∅. Ce sommet

est appelé la racine de l’arborescence ; nous dirons aussi que l’arborescence est

enracinée en r. Les feuilles sont les sommets v qui vérifient δ+(v) = ∅.


