Optimisation combinatoire

Springer
Paris

Berlin
Heidelberg
New York
Hong Kong
Londres
Milan
Tokyo

Bernhard Korte
Jens Vygen

Optimisation combinatoire

Théorie et algorithmes

Traduit de I’anglais par Jean Fonlupt et Alexandre Skoda

@ Springer

Bernhard Korte
Research Institute

for Discrete Mathematics
University of Bonn
Lennéstrafie 2

53113 Bonn

Germany
dm@or.uni-bonn.de

Traducteurs

Jean Fonlupt

Jens Vygen

Research Institute

for Discrete Mathematics
University of Bonn
Lennéstrafie 2

53113 Bonn

Germany

vygen @or.uni-bonn.de

Alexandre Skoda

Université Paris-1
Panthéon-Sorbonne

Faculté de mathématiques Centre d’économie de la Sorbonne
175, rue du Chevaleret 106-112, boulevard de 1"Hopital
75013 Paris 75013 Paris

Jean.Fonlupt@math.jussieu.fr alexandre.skoda @univ-paris]1.fr

Professeur émérite
Université Paris-VI

ISBN : 978-2-287-99036-6 Springer Paris Berlin Heidelberg New York

© Springer-Verlag France 2010
Imprimé en France
Springer-Verlag France est membre du groupe Springer Science + Business Media

Cet ouvrage est soumis au copyright. Tous droits réservés, notamment la reproduction et la représentation, la traduc-
tion, la réimpression, I’exposé, la reproduction des illustrations et des tableaux, la transmission par voie d’enregistre-
ment sonore ou visuel, la reproduction par microfilm ou tout autre moyen ainsi que la conservation des banques
données. La loi francaise sur le copyright du 9 septembre 1965 dans la version en vigueur n’autorise une reproduction
intégrale ou partielle que dans certains cas, et en principe moyennant les paiements des droits. Toute représentation,
reproduction, contrefacon ou conservation dans une banque de données par quelque procédé que ce soit est sanctionnée
par la loi pénale sur le copyright.

L'utilisation dans cet ouvrage de désignations, dénominations commerciales, marques de fabrique, etc., méme sans
spécification ne signifie pas que ces termes soient libres de la législation sur les marques de fabrique et la protection
des marques et qu’ils puissent étre utilisés par chacun.

La maison d’édition décline toute responsabilité quant a I’exactitude des indications de dosage et des modes d’emplois.
Dans chaque cas il incombe a I’'usager de vérifier les informations données par comparaison a la littérature existante.

DANGER

Maguette de couverture : Jean-Frangois MONTMARCHE
[llustration de couverture : Ina PRINZ

LE PHOTOCOPILLAGE

TUE LE LIVRE

Collection IRIS
Dirigée par Nicolas Puech

Ouvrages parus :

— Méthodes numériques pour le calcul scientifique. Programmes en Matlab
A. Quarteroni, R. Sacco, F. Saleri, Springer-Verlag France, 2000

— Calcul formel avec MuPAD
F. Maltey, Springer-Verlag France, 2002

— Architecture et micro-architecture des processeurs
B. Goossens, Springer-Verlag France, 2002

— Introduction aux mathématiques discrétes
J. Matousek, J. Nesetril, Springer-Verlag France, 2004

- Les virus informatiques : théorie, pratique et applications
E. Filiol, Springer-Verlag France, 2004

— Introduction pratique aux bases de données relationnelles. Deuxiéme édition
A. Meier, Springer-Verlag France, 2006

— Bio-informatique moléculaire. Une approche algorithmique
P.A. Pevzner, Springer-Verlag France, 2006

— Algorithmes d’approximation
V. Vazirani, Springer-Verlag France, 2006

— Techniques virales avancées
E. Filiol, Springer-Verlag France, 2007

— Codes et turbocodes
C. Berrou, Springer-Verlag France, 2007

— Introduction a Scilab. Deuxieme édition
J.P. Chancelier, F. Delebecque, C. Gomez, M. Goursat, R. Nikouhah, S. Steer,
Springer-Verlag France, 2007

— Maple : régles et fonctions essentielles
N. Puech, Springer-Verlag France, 2009

— Les virus informatiques : théorie, pratique et applications. Deuxiéme édition
E. Filiol, Springer-Verlag France, 2009
A paraitre :

— Concepts et méthodes en phylogénie moléculaire
G. Perriéere, Springer-Verlag France, 2010

Preéface

Ce livre est la traduction frangaise de la quatrieme édition du livre Combina-
torial Optimization : Theory and Algorithms écrit par deux éminents spécialistes,
Bernhard Korte et Jens Vygen, professeurs a I’université de Bonn. Considéré comme
un ouvrage de référence, il s’adresse a des chercheurs confirmés qui travaillent dans
le champ de la recherche fondamentale ou de ses applications (R&D). Il donne
une vision complete de I’optimisation combinatoire et peut donc aussi intéresser de
nombreux scientifiques non spécialistes ayant une bonne culture en mathématiques
et des connaissances de base en informatique.

L’ optimisation combinatoire est un domaine assez récent des mathématiques ap-
pliquées, qui plonge ses racines dans la combinatoire (principalement la théorie des
graphes), la recherche opérationnelle et I’'informatique théorique. Une des raisons de
son développement est liée au nombre considérable de problemes concréts qu’elle
permet de formuler. Il s’ agit en grande partie de problemes pour lesquels on connait
de «bons» algorithmes de résolution ; ceux-ci sont étudiés dans la premiere partie
de ce livre. Une des originalités de cet ouvrage, par rapport a d’autres traités, est
de présenter les algorithmes de résolution ayant la meilleure borne de complexité
connue a ce jour.

La seconde partie traite des problemes difficiles a résoudre sur le plan algorith-
mique et connus sous le nom de problemes NP-difficiles. Le plus célebre d’entre
eux, celui du voyageur de commerce, fait I’objet, au chapitre 21, d’une étude par-
ticulierement approfondie. D’autres tout aussi importants, comme les problemes de
conception de réseaux, de multi-flots, de localisation de services, etc., bénéficient
également d’une présentation détaillée, ce qui est peu fréquent dans la littérature et
mérite d’étre signalé.

Dans la traduction que nous proposons, nous avons cherché a traduire en frangais
toutes les expressions et tous les termes anglo-saxons méme quand aucune traduc-
tion n’existait; il y a cependant quelques exceptions pour des termes tres tech-
niques qui ne sont universellement connus que sous leur dénomination anglaise.
Nous avons en outre inclus quelques améliorations et corrections écrites par les au-
teurs apres la parution de 1’édition originale actuelle ; celles-ci seront intégrées dans
la cinquieme édition anglaise, actuellement en préparation.

Paris, juillet 2009 Jean Fonlupt et Alexandre Skoda

Avant-propos
a la quatrieme édition originale

Avec quatre éditions anglaises et quatre traductions en cours, nous sommes tres
heureux de I’évolution de notre livre ; celui-ci a été révisé, actualisé et amélioré de
maniere significative pour cette quatrieme édition. Nous y avons inclus des maticres
classiques, parfois manquantes dans les éditions précédentes, notamment sur la
programmation linéaire, la méthode network simplex et le probleme de la coupe
maximum. Nous avons également ajouté de nouveaux exercices et mis a jour les
références.

Nous sommes reconnaissants a I’Union des académies allemandes des sciences
et des lettres et a I’Académie des sciences du Land Rhénanie-du-Nord-Westphalie
pour leur soutien permanent par 1’intermédiaire du projet « Mathématiques discretes
et applications». Nous remercions également pour leurs commentaires précieux tous
ceux qui nous ont contacté apres la troisieme édition, en particulier Takao Asano,
Christoph Bartoschek, Bert Besser, Ulrich Brenner, Jean Fonlupt, Satoru Fujishige,
Marek Karpinski, Jens MaBberg, Denis Naddef, Sven Peyer, Klaus Radke, Rabe
von Randow, Dieter Rautenbach, Martin Skutella, Markus Struzyna, Jiirgen Wer-
ber, Minyi Yue, et Guochuan Zhang. Nous continuerons a fournir des informations
actualisées sur cet ouvrage a 1’adresse :
http ://www.or.uni-bonn.de/~vygen/co.html

Bonn, aofit 2007 Bernhard Korte et Jens Vygen

Sommaire

Préface vii
Avant-propos a la quatrieme édition originale ix
Sommaire xi
1 Imtroduction 1
L1 Bnumération.ouoee e e 2
1.2 Temps d’exécution des algorithmes 5
1.3 Problémes d’optimisation linéaire 8
| o P 9
BXeICICeS .« ottt 11
RETEIeNCeS . .ot e 12
2 Graphes 13
2.1 Définitions fondamentales, 13
2.2 Arbres, cycCles, COUPES vtinii 17
2.3 Connexitet 25
2.4 Graphes eulériens et bipartiscouiiiiiiniiineenn.. 32
2.5 Planarité 34
2.6 Dualité planaire 42
BXerCICeS .ottt 45
REfErenceso 49
3 Programmation linéaire 51
3.1 Polyedresoonii 53
3.2 Algorithme dusimplexe, 56
3.3 Implémentation de I’algorithme du simplexe 59
34 Dualité 63
3.5 Enveloppes convexes et polytopescoiiiiinnion.. 67
BXerCICeS . oot 68

RELErenceso 71

Xii

Optimisation combinatoire — Théorie et algorithmes

Algorithmes de programmation linéaire. 73
4.1 Taille des sommets etdesfacescooiiiii.. 74
4.2 Fractions CONtINUESutttutnn ettt 76
4.3 Méthode d’élimination de Gausscoeuuunniionn. 79
4.4 Méthode des ellipsoldesoviiiiniine i 83
4.5 Théoreme de Khachiyan.................................. ... 88
4.6 Séparation et OptimiSationueuuiiirniinnnnnnn 90
EXEICICES . ..ottt e 97
REfErences 99
Programmation en nombres entiers 101
5.1 Enveloppe entiere d’'un polyedre 103
5.2 Transformations unimodulaires 107
5.3 Totale duale-intégralitéciiiiiiiiiiniann.. 109
5.4 Matrices totalement unimodulaires 112
5.5 Planscoupants 117
5.6 Relaxation lagrangiennecoiiiiiiii.... 122
EXEICICES . ..ottt 124
REfErences 128
Arbres couvrants et arborescences, 131
6.1 Arbre couvrant de poids minimum 132
6.2 Arborescence de poids minimum 138
6.3 Descriptions polyédrales 142
6.4 Empilements d’arbres et d’arborescences 145
EXEICICES . . oottt 148
REfErencest 152
Pluscourtschemins 155
7.1 Plus courts chemins a partir d’'une source 156
7.2 Plus courts chemins entre toutes les paires de sommets 161
7.3 Circuit moyen Minimumlcouuuneeeennnnneeeennnnn... 163
EXEICICES . ..ottt 165
REfErences 167
Flots dansles réseauxoiiiniininnennann.. 171
8.1 Théoreme flot-max/coupe-min.c.ccoiiieeeonn... 172
8.2 Théoremede Mengerouuiuuninneieiinneannnnnn. 176
8.3 Algorithme d’Edmonds-Karp..............., 178
8.4 Flots bloquants et algorithme de Fujishige 180
8.5 Algorithme de Goldberg-Tarjan..............c.ovviniinn.... 182
8.6 Arbresde Gomory-Hu i, 187
8.7 Capacité d’une coupe dans un graphe non orienté 193
EXEICICES . ..ottt e 195

RETEIeNces . ..ot 201

Sommaire xiii

10

11

12

13

Flots de colit minimum, 205
9.1 Formulationduprobléme 205
9.2 Uncritere d’optimalité oo 207
9.3 Algorithme par élimination du circuit moyen minimum 210
9.4 Algorithme par plus courts chemins successifs 213
9.5 AlgorithmedOrlin i 217
9.6 Algorithme network simplex i .. 221
9.7 Flotsdynamiquesoiiiiiiiiiiiiiiiiiiiiiiei.. 225
EXEICICES . ..ottt 227
REfErences 231
Couplage maximum i 235
10.1 Couplage dans les graphes bipartiscc....... 236
10.2 Matricede Tutteiiiiiininn ... 238
10.3 Théoremede Tutte ccouiiiiiiiiineiinnnn .. 240
10.4 Décompositions en oreilles des graphes facteur-critiques 243
10.5 Algorithme du couplage d’Edmonds....................oouun. 249
EXEICICES . ..ottt 259
REfErences 262
Couplage avecpoids i 267
11.1 Probleme d’affectation i, 268
11.2 Apercu de I’algorithme du couplage avec poids 269
11.3 Implémentation de 1’algorithme du couplage avec poids 272
11.4 Postoptimalité i 286
11.5 Polytope ducouplagec.ooouuiiiniiiiniiniiineenn.. 287
EXEICICES . ..ottt e 291
REfErences 293
b-couplageset T-joints 295
12,1 b-couplagesttt 295
12.2 T-joints de poids minimumcccouuuieeiennnn.... 299
12.3 T-joints €t T-COUPES . . oot vttt et et 303
12.4 Théoreme de Padberg-Rao, 306
EXEICICES . ..ottt e 310
REFErenceso 313
Matroides it 315
13.1 Systemes d’indépendance et matroides 315
13.2 AULIES AXIOMES . ..ottt t ettt ettt e e e 320
133 Dualité 324
13.4 Algorithme glouton i, 329
13.5 Intersection de matroidesc.oviiuiiinninneenn .. 334
13.6 Partition de matroides, 339
13.7 Intersection de matroides avec poidsc.coun.... 341
EX@ICICES ..ottt e 345

REfErences 348

Xiv

Optimisation combinatoire — Théorie et algorithmes

14

15

16

17

18

Généralisations des matroides 351
14.1 Greedoidesiiiiiiie i e 351
14.2 Polymatroldesouuuniet e 355
14.3 Minimisation de fonctions sous-modulaires 360
14.4 Algorithme de Schrijver i, 362
14.5 Fonctions sous-modulaires symétriques 366
EXOICICES vttt et e e e 368
RETEIeNCes . ..ot e 371
NP-complétude 375
15.1 Machinesde Turing.oouunineitiiiin ... 376
152 Thésede Church i, 378
153 Pet NP . 383
15.4 Théoréme de COoOKcouiiiiiiiniiiiiii ... 388
15.5 Quelques problemes NP-completsdebase 392
15.6 Classe CONP oot e e e 400
15.7 Problemes NP-difficilesot 402
EXOICICES .ottt 406
REfEreNnces 410
Algorithmes d’approximation 413
16.1 Couverture pardes ensemblesccoooiiiiinnnn.... 414
16.2 Probleme de la coupe-maxc.ooeiineiinnennneenn.. 420
16.3 Colorationoiiiiiii i 426
16.4 Schémas d’approximationo iiiinn.... 434
16.5 Satisfaisabilité maximumiiiiiieiiinainn... 437
16.6 Théoreme PCPttt e et 442
16.7 L-réducCtions . . .« v oottt et et 447
EXEICICES . ..ottt 453
REfErences e 457
Le problemedusacados i, 463
17.1 Sac a dos fractionnaire et probleme du médian pondéré 463
17.2 Un algorithme pseudo-polynomial 466
17.3 Un schéma d’approximation entierement polynomial 468
EXEICICES . ..ottt 471
REfErences 472
Le probléeme du bin-packing 475
18.1 Heuristiques gloutonnescoouiiuneeeennnnn... 476
18.2 Un schéma d’approximation asymptotique 481
18.3 Algorithme de Karmarkar-Karp............. 486
BXerCICeS .« ottt e 489

RETEIEeNCES . ..ot 491

Sommaire XV

19 Multiflots et chaines aréte-disjointes 493
19.1 Multiflots 494
19.2 Algorithmes pour le multiflot 497
19.3 Probléme des chemins arc-disjoints 502
19.4 Probleme des chaines aréte-disjointes 506
EXEICICES . .ottt 512
REfErences 515
20 Problemes de conception deréseaux 519
20.1 Arbresde Steineroiiuiiiiiiiii 520
20.2 Algorithme de Robins-Zelikovsky................. 525
20.3 Conception de réseaux fiables 531
20.4 Un algorithme d’approximation primal-dual 535
20.5 AlgorithmedeJaint 543
EXEICICES . ..ttt 550
REfErences oot 553
21 Le probleme du voyageur de commerce 557
21.1 Algorithmes d’approximation pourle PVC 557
21.2 Probléme du voyageur de commerce euclidien 562
21.3 Méthodes locales, 570
21.4 Polytope du voyageur de COMMErcecoeuuun.... 577
21.5 Bornesinférieures i i 583
21.6 Méthodes par séparation et évaluation 586
EXEICICES . .ottt 588
REfErences 592
22 Le probleme de localisation 597
22.1 Probleme de localisation sans capacités 597
22.2 Solutions arrondies de la programmation linéaire 600
22.3 Méthodes primales-dualesccuvineiinennneenn.. 602
22.4 Réduction d’échelle et augmentation gloutonne 607
22.5 Bornes du nombre d’installations 611
22.6 Recherchelocale 615
22.7 Problemes de localisation avec capacités 621
22.8 Probleme de localisation universel 624
EX@ICICES . ..ottt e 631
REfErencesot 633
Notations 637
Index des noms d’auteurs. i 641

Index général 651

Chapitre 1

Introduction

Commencons cet ouvrage par deux exemples.

Une machine est utilisée pour percer des trous dans des plaques de circuits im-
primés. Comme de nombreux circuits sont produits, il est souhaitable que chaque
circuit soit fabriqué aussi rapidement que possible. Nous ne pouvons agir sur le
temps de percage de chaque trou qui est fixé, mais nous pouvons chercher a mini-
miser le temps total de déplacement de la perceuse. Habituellement, les perceuses
effectuent des déplacements dans deux directions : la table se déplace horizontale-
ment tandis que le bras de la machine se déplace verticalement. Comme ces deux
mouvements peuvent se faire simultanément, le temps nécessaire pour ajuster la ma-
chine entre deux positions est proportionnel au maximum des distances horizontales
et verticales parcourues. Cette quantité est souvent appelée distance de la norme in-
fini. (Les vieilles machines ne peuvent se déplacer que dans une direction a la fois ;
le temps d’ajustement est alors proportionnel a la 1-distance, somme des distances
horizontale et verticale.)

Un parcours optimal pour le percage est donné par un ordre des positions des
trous p1, . . . , P, qui rend minimum la quantité Z;:ll d(pi, pi+1), d étant la distance
de la norme infini : si p = (x,y) et p’ = (a’,y’) sont deux points du plan, alors
d(p,p’) :== max{|z — 2’|, |y — ¥'|}. Un ordre des trous peut &tre représenté par une
permutation, c.-a-d. une bijection 7 : {1,...,n} — {1,...,n}.

La meilleure permutation dépend bien entendu de la position des trous ; pour
chaque ensemble de positions, nous aurons une instance spécifique (suivant 1’usage,
nous utiliserons le terme «instance» de préférence a «exemple»). Nous dirons
qu’une instance est une liste de points du plan, c.-a-d. une liste des coordonnées
des trous a percer. Le probleme peut alors se formuler de la maniere suivante :

PROBLEME DE PERCAGE
Instance Un ensemble de points p1, ..., p, € R2.

Téche Trouver une permutation 7 : {1,...,n} — {1,...,n} telle que
1 . ..
>ty d(Pr(i), Pr(i+1)) SOit minimum.

2 Optimisation combinatoire — Théorie et algorithmes

Décrivons maintenant notre deuxieme exemple. Nous devons effectuer un en-
semble de tiches dont nous connaissons les temps d’exécution. Chaque tache peut
étre confiée a une partie des employés. Plusieurs employés peuvent étre affectés a
une méme tache et chaque employé peut travailler sur plusieurs tiches mais pas si-
multanément. Notre objectif est d’exécuter 1’ensemble des tiches aussi rapidement
que possible.

Dans ce modele, il suffira de déterminer le temps d’affectation de chaque em-
ployé aux différentes taches. Le temps d’exécution de I’ensemble des taches est
alors égal au temps de travail de ’employé le plus occupé. Nous devons donc
résoudre le probléme suivant :

PROBLEME D’ AFFECTATION DES TACHES

Instance Unensemble de nombres ¢4, .. .,t, € R, (les temps d’exécution des
n taches), un nombre m € N d’employés, et un sous-ensemble non
vide S; C {1,...,m} d’employés pour chaque tiche i € {1,...,n}.

Téache Trouver des nombres x;; € R, pour tout ¢ = 1,...,n et
7 € S; tels que Zjesi z;; = t; pour ¢ = 1,...,n et tel que
Max;c(1,..m} Zi:jESi x;; soit minimum.

Voila deux exemples typiques de problémes d’optimisation combinatoire. La
maniere de modéliser un probleme pratique en un probleme abstrait d’optimisa-
tion combinatoire n’est pas ’objet de ce livre; il n’y a d’ailleurs aucune recette
pour réussir dans cette démarche. Outre la précision des données et des résultats
attendus, il est souvent important pour un modele d’ignorer certains parametres non
significatifs (par exemple, le temps de percage qui ne peut étre optimisé ou I’ordre
suivant lequel les employés exécutent les taches).

Notons enfin qu’il ne s’agit pas de résoudre un cas particulier d’un probleme,
comme celui du pergage ou celui d’affectation des taches, mais de résoudre tous les
cas possibles de ces problémes. Etudions d’abord le PROBLEME DE PERCAGE.

1.1 Enumération

Quelle est I’allure d’une solution du PROBLEME DE PERCAGE ? Ce probléme
a un nombre infini d’instances possibles (tout ensemble fini de points du plan) et
nous ne pouvons donc faire la liste des permutations optimales associées a toutes
les instances. Ce que nous recherchons, c’est un algorithme qui associe, a chaque
instance, une solution optimale. Un tel algorithme existe : étant donné un ensemble
de n points, calculer la longueur du chemin associé a chacune des n! permutations.

Iy a de nombreuses manieres de formuler un algorithme, la différence se faisant
principalement par le niveau de détails ou par le langage formel utilisé. Nous n’ac-
cepterons pas la proposition suivante comme définissant un algorithme : étant donné
un ensemble de n points, trouver un chemin optimal qui sera I’output, c.-a-d. le
résultat, car rien n’est dit sur la maniere de trouver la solution optimale. La sugges-

1. Introduction 3

tion précédente, d’énumérer 1’ensemble des n! permutations, est plus utile a condi-
tion de préciser la maniere d’énumérer ces permutations. Voici une méthode :

énumérons par comptage tous les n-uplets des nombres 1, ..., n, c.-a-d. les n™ vec-
teurs de {1,..., n}" : partons de (1,...,1,1), (1,...,1,2) jusqu’a (1,...,1,n),
passons a (1,...,1,2,1), et ainsi de suite : & chaque étape, nous ajoutons 1 a la

derniére composante sauf si celle-ci vaut n, auquel cas nous revenons a la derniére
composante plus petite que n, lui ajoutons 1 et réinitialisons a 1 toutes les compo-
santes suivantes. Cette technique est parfois appelée «backtracking» (en frangais,
retour arriére). L’ordre selon lequel les vecteurs de {1,...,n}" sont énumérés est
appelé ordre lexicographique.

Définition 1.1. Soient x,y € R"™ deux vecteurs. Nous dirons qu’un vecteur x est
lexicographiquement plus petit que y s’il existe un indice j € {1,...,n} tel que
T =y;pouri=1,...,5—letx; <y,

Il nous suffit maintenant de vérifier si, au cours de I’énumération, chaque vec-
teur de {1,...,n}™ a des composantes différentes et voir dans ce cas si le che-
min représenté par cette permutation est plus court que le meilleur chemin trouvé
précédemment.

Comme cet algorithme énumere n” vecteurs, il nécessitera au moins n" étapes.
Cela n’est pas trés efficace puisque le nombre de permutations de {1,...,n} est
n! qui est bien plus petit que n™. (Par la formule de Stirling n! ~ /27n ’ch (Stir-
ling [1730]); voir exercice 1.) Montrons comment énumérer tous les chemins en
approximativement n? - n! étapes griace a I’algorithme suivant qui énumeére toutes
les permutations suivant un ordre lexicographique :

ALGORITHME D’ENUMERATION DES CHEMINS

Input Un nombre naturel n > 3. Un ensemble {p,...,p,} de points dans
le plan.
Output Une permutation 7* : {1,...,n} — {1,...,n} telle que

colt(m*) := Z;le d(Pr+(i)> P+ (i+1)) SOit minimum.

@® w(i):=detw*(i):=ipouri=1,...,n. Posonsi:=n— 1.
@ Soitk:=min({w(i)+1,...,n+ 1} \ {m(1),...,7(i = 1)}).
® Ifk<nthen:

(1) :== k.

If i = n et cott(m) < cott(n*) then 7* := 7.
Ifi<nthenw(i+1):=0eti:=7+1.
Ifk=n+1then::=¢— 1.
If i > 1 then go to).

Partant de (7())i=1,...» = (1,2,3,...,n — 1,n) et i = n — 1, l'algorithme
trouve a chaque étape la meilleure valeur possible suivante de 7(¢) (sans utiliser
w(1),...,7m(i — 1)). S’il n’existe plus aucune possibilité pour 7(¢) (c.-a-d. k =

4 Optimisation combinatoire — Théorie et algorithmes

n + 1), alors ’algorithme décrémente ¢ (backtracking). Sinon il affecte a 7 (7) la
nouvelle valeur k. Si ¢ = n, la nouvelle permutation est évaluée, sinon I’algorithme

évaluera toutes les valeurs possibles pour w(i+1),...,m(n), en affectant a w(i + 1)
la valeur O et en incrémentant 7.
Ainsi tous les vecteurs de permutation (7(1), ..., 7(n)) sont générés suivant un

ordre lexicographique. Par exemple, les premieres itérations dans le cas n = 6 sont
décrites comme suit :

m=(1,2,3,4,5,6), i:=5
k=6, 7mi=(1,2,3,4,6,0), =6
k:=5, m:=(1,2,3,4,6,5), cout(m) < cott(m*)?
k=1, 1:=9
k=1, 7=
k=5 m:=(1,2,3,50,5), i:=5
ki=4, 7:=(1,2,3,54,0), i:=6
k:=6, w:=(1,2,3,5,4,06), cout(m) < cott(m*)?

Puisque 1’algorithme compare le coiit de la solution courante a 7*, le meilleur
chemin actuel, il fournit bien le chemin optimal. Mais quel est le nombre d’étapes ?
La réponse dépendra de ce que nous appelons un «pas» de 1’algorithme. Comme le
nombre de pas ne doit pas dépendre de I’'implémentation, nous devons ignorer les
facteurs constants. Ainsi, (I) nécessitera au moins 2n+ 1 étapes et au plus cn étapes,
c étant une constante. La notation suivante sera utile pour ignorer les constantes :

Définition 1.2. Soient f,g : D — R deux fonctions. Nous dirons que f est O(g)
(et nous écrirons parfois = O(g)) s’il existe des constantes o, 3 > 0 telles que
f(z) < ag(x) + B pour tout x € D. Si f = O(g) et g = O(f) nous dirons alors
que | = O(g) (et bien entendu g = O(f)). Dans ce cas, f et g auront le méme taux
de croissance.

Remarquons que la relation f = O(g) n’implique aucune symétrie entre f et
g. Pour illustrer cette définition, prenons D = N et soit f(n) le nombre de pas
ou d’étapes élémentaires de (I). En posant g(n) = n (n € N), il est évident que
f = O(g) (et que, également, f = O(g)); nous dirons que () s’exécute en un
temps O(n) ou en temps linéaire. L’exécution de (3) se fait en un nombre constant
de pas (nous dirons aussi en temps O(1) ou en temps constant) sauf dans le cas ou
les cofits de deux chemins doivent étre comparés, ce qui nécessitera un temps O(n).

Que peut-on dire de (2) ? Vérifier si j = w(h) pourtout j € {7 (i) +1,...,n}et
touth € {1,...,i— 1} se faiten O((n — m(i))i) étapes, c.-a-d. en un temps O(n?).
On peut améliorer ce temps en utilisant un tableau auxiliaire indexé par 1,...,n :

@ Forj:=1tondoauzx(j):=0.
For j :=1to: — 1 do aux(n(j)) := 1.
k:=7(i)+1.
While k <netaux(k) =1dok :=k+ 1.
De cette maniere, 2) s’exécute en un temps O(n). Nous n’étudierons pas dans
ce livre ce genre d’améliorations algorithmiques, laissant au lecteur le choix des
bonnes mises en ceuvre.

1. Introduction 5

Examinons maintenant le temps total d’exécution de 1’algorithme. Puisque le
nombre de permutations est n!, il nous faut trouver le temps de calcul entre deux
permutations. Le compteur ¢ peut décroitre de la valeur n a un indice 7', une nouvelle
valeur de 7(i') < n étant trouvée. Puis le compteur est réincrémenté jusqu’a la
valeur ¢ = n. Tant que le compteur i est constant, chacune des étapes Q) et (3) est
exécutée une seule fois, sauf dans le cas k < n et i = n; dans ce cas Q) et B
sont exécutées deux fois. Ainsi le nombre de pas entre deux permutations est au
plus 4n fois @) et B), c.-a-d. O(n?). Le temps total d’exécution de I’ALGORITHME
D’ENUMERATION DES CHEMINS est O(n2n!).

On peut faire encore mieux ; une analyse plus fine montre que le temps de calcul
est seulement O(n - n!) (exercice 4).

Cependant, le temps de calcul de I’algorithme est trop important quand n devient
grand, car le nombre de chemins croit d’une maniere exponentielle avec le nombre
de points ; déja pour 20 points, on a 20! = 2 432 902 008 176 640 000 ~ 2,4 -
10'® chemins différents et méme les ordinateurs les plus puissants auraient besoin
de plusieurs années pour tous les examiner. Ainsi une énumération complete est
impossible a envisager méme pour des instances de taille modeste.

L’objet de I’optimisation combinatoire est de trouver de meilleurs algorithmes
pour ce type de problemes. Nous devrons souvent trouver le meilleur élément d’un
ensemble fini de solutions réalisables (dans nos exemples : chemins de percage ou
permutations). Cet ensemble n’est pas défini explicitement, mais dépend implicite-
ment de la structure du probleme. Un algorithme doit pouvoir exploiter cette struc-
ture.

Dans le PROBLEME DE PERCAGE une instance avec n points sera décrite par
2n coordonnées. Alors que 1’algorithme précédent énumere les n! chemins, on peut
imaginer qu’il existe un algorithme trouvant le chemin optimal plus rapidement,
disons en n? étapes de calcul. On ne sait pas si un tel algorithme existe (on verra ce-
pendant au chapitre 15 que cela est improbable). Il existe cependant des algorithmes
bien meilleurs que ceux fondés sur la méthode d’énumération.

1.2 Temps d’exécution des algorithmes

On peut donner une définition formelle d’un algorithme, et c’est ce que nous
ferons au chapitre 15.1. Cependant, de tels modeles conduisent a des descriptions
longues et fastidieuses. Il en est de méme pour les preuves mathématiques : bien
que le concept de preuve puisse €tre formalisé, personne n’utilise un tel formalisme
pour décrire des preuves, car elles deviendraient trop longues et presque illisibles.

Ainsi les algorithmes présentés dans ce livre seront-ils écrits dans un langage
informel. Cependant, ils seront suffisamment détaillés pour qu’un lecteur ayant un
peu d’expérience puisse les programmer sur un ordinateur sans trop d’effort.

Puisque nous ne prenons pas en compte les facteurs constants quand nous me-
surons le temps de calcul, nous n’avons pas a spécifier un modele concret d’ordina-
teur. Nous comptons les pas élémentaires sans nous soucier du temps d’exécution de
ces pas. Comme exemples de pas élémentaires, citons les affectations de variables,

6 Optimisation combinatoire — Théorie et algorithmes

I’acces aléatoire a une variable dont 1’adresse est stockée dans un autre registre,
les sauts conditionnels (if — then — go to), ainsi que les opérations arithmétiques
élémentaires telles que 1’addition, la soustraction, la multiplication, la division, la
comparaison de nombres.

Un algorithme consiste en un ensemble d’inputs valides et une suite d’ins-
tructions composées d’opérations élémentaires, de telle sorte que pour chaque in-
put valide, le déroulement de 1’algorithme soit une suite bien définie d’opérations
élémentaires fournissant un output. La question essentielle sera alors d’obtenir une
borne satisfaisante du nombre d’opérations, en fonction de la taille de I’input.

L’input est en général une liste de nombres. Si tous ces nombres sont des en-
tiers, nous pouvons les coder dans une représentation binaire en réservant un em-
placement de O(log(|a| + 2)) bits pour stocker un entier a. Les nombres rationnels
peuvent étre stockés en codant séparément leur numérateur et leur dénominateur. La
taille de I’input notée taille(x) d’une instance x avec des données rationnelles est
le nombre total de bits utilisés dans la représentation binaire.

Définition 1.3. Soit A un algorithme qui accepte des inputs d’un ensemble X, et
soit f : N — R.. S’il existe une constante o« > 0 telle que A se termine aprés au
plus o f (taille(x)) pas élémentaires (en incluant les opérations arithmétiques) pour
chaque input x € X, nous dirons alors que A s’exécute en un temps O(f). Nous
dirons également que O(f) est le temps de calcul ou la complexité de A.

Définition 1.4. Un algorithme acceptant des inputs rationnels est dit polynomial
s’il s’exécute en un temps O(n*) quand la taille de input est n, k étant fixé, et si
la taille de tous les nombres intermédiaires calculés n’excéde pas O(n*) bits.

Un algorithme acceptant des inputs arbitraires est dit fortement polynomial si
son temps de calcul est O(n*) pour tout input de n nombres, k étant une constante
fixée, et s’il se termine en temps polynomial dans le cas d’inputs rationnels. Si k =
1, nous dirons que ’algorithme est linéaire.

Notons que le temps de calcul peut étre différent pour des instances distinctes
de méme taille (ce n’était pas le cas pour ’ALGORITHME D’ENUMERATION DES
CHEMINS). Nous considérerons le temps de calcul dans le pire des cas, c.-a-d. la
fonction f : N — N ou f(n) est le maximum du temps de calcul d’une instance de
taille n. Pour certains algorithmes, nous ne connaissons pas le taux de croissance de
f, mais nous avons seulement une borne supérieure.

Il se peut que le temps de calcul dans le pire des cas soit une mesure pessimiste
si le pire des cas se produit rarement. Dans certaines situations, un temps de calcul
moyen fondé sur des modeles probabilistes serait plus adéquat, mais nous n’abor-
derons pas cette question dans ce livre.

Si A est un algorithme qui, pour chaque input z € X, calcule 'output f(z) € Y,
nous dirons que A calcule f : X — Y. Une fonction calculée par un algorithme
polynomial sera dite calculable en temps polynomial.

Les algorithmes polynomiaux sont quelquefois appelés «bons» ou «efficaces».
Ce concept a été introduit par Cobham [1964] et Edmonds [1965]. La table 1.1
illustre cela en fournissant les temps de calcul pour divers temps de complexité.

1. Introduction 7

Table 1.1.

’ n ‘ 100nlogn 10n2 n3s nlosn 2" n!
10 3 us 1 us 3 us 2 us 1 us 4 ms
20 9 us 4 s 36 us 420 us I ms | 76 années
30 15 ps 9 us 148 pus 20 ms ls | 810" a.
40 21 ps 16 us 404 us 340 ms 1100 s
50 28 us 25 us 884 us 4s 13 jours
60 35 us 36 us 2 ms 32s | 37 années
80 50 s 64 s 5 ms 1075s | 4-107 a.

100 66 s 100 ps 10 ms 5heures | 4-10'3 a.
200 153 ps 400 ps 113 ms | 12 années
500 448 ps 2.5ms 3s | 5-10°%a.
1000 1 ms 10 ms 32s | 3-10"a.
10* 13 ms 1s | 28 heures

10° 166 ms 100s | 10 années

106 2s | 3 heures 3169 a.

107 23s | 12jours 107 a.

10® 266's | 3années | 3-10' a.

10%° 9 heures | 3-10% a.

10*2 46 jours | 3-10% a.

Pour différentes tailles d’inputs n, nous indiquons les temps de calcul de six
algorithmes qui nécessitent 100n logn, 10n2, n3°, nl°e™, 2" et n! opérations
élémentaires ; nous supposons qu’une opération élémentaire s’effectue en une na-
noseconde. Comme partout dans ce livre, «log» est le logarithme en base 2.

Ainsi que la table 1.1 le montre, les algorithmes polynomiaux sont plus ra-
pides pour les instances de taille suffisamment importante. Cette table indique
également que les facteurs constants de taille modérée ne sont pas trés importants si
on considere la croissance asymptotique du temps de calcul.

La table 1.2 indique la taille maximum d’inputs résolubles en une heure pour les
six algorithmes précédents. Pour (a) nous supposons qu’une opération élémentaire
s’effectue en une nanoseconde ; (b) donne les résultats pour une machine dix fois
plus rapide. Les algorithmes polynomiaux peuvent traiter de grandes instances en
des temps raisonnables. Cependant, méme en multipliant par 10 la rapidité de calcul
des ordinateurs, on n’augmente pas de maniere significative la taille des instances
que I’on peut résoudre pour des algorithmes exponentiels, ce qui n’est pas le cas
pour les algorithmes polynomiaux.

Les algorithmes (fortement) polynomiaux et si possible linéaires sont ceux qui
nous intéressent. Il existe des problemes pour lesquels il n’existe aucun algorithme
polynomial et d’autres pour lesquels il n’existe aucun algorithme. (Par exemple,
un probléme qui peut se résoudre en un temps fini mais pas en temps polynomial

8 Optimisation combinatoire — Théorie et algorithmes

Table 1.2.
’ ‘ 100n logn ‘ 10n2 ‘ n3® ‘ nlogn ‘ 2" ‘ n! ‘
(a) 1.19 - 10° 60000 | 3868 87 | 41 | 15

®) | 10.8-10° | 189737 | 7468 104 | 45 | 16

est celui de décider si une expression réguliere définit I’ensemble vide ; voir Aho,
Hopcroft et Ullman [1974]. Un probléme pour lequel il n’existe aucun algorithme
est le k<HALTING PROBLEM», décrit dans I’exercice 1 du chapitre 15.)

Cependant, presque tous les problemes étudiés dans ce livre appartiennent a une
des deux classes suivantes : pour les problémes de la premiere classe, il existe un
algorithme polynomial ; pour les problemes de la seconde, I’existence d’un algo-
rithme polynomial est une question ouverte. Néanmoins, nous savons que si un de
ces problémes peut se résoudre en temps polynomial, alors tous les problemes ap-
partenant a cette seconde classe sont également résolubles en temps polynomial.
Une formulation et une preuve de cette affirmation seront données au chapitre 15.

Le PROBLEME DE L’AFFECTATION DES TACHES appartient & la premiére
classe, le PROBLEME DE PERCAGE appartient a la seconde.

Ces deux classes divisent a peu pres ce livre en deux parties. Nous étudierons
d’abord les problemes pour lesquels on connait des algorithmes polynomiaux. Puis,
a partir du chapitre 15, nous nous intéresserons aux problemes difficiles. Bien
qu’on ne connaisse aucun algorithme polynomial dans ce cas, il existe souvent de
bien meilleures méthodes que 1’énumération complete. De plus, pour de nombreux
problémes (incluant le PROBLEME DE PERCAGE), on peut trouver des solutions ap-
prochées a un certain pourcentage de 1I’optimum en temps polynomial.

1.3 Problemes d’optimisation linéaire

Revenons sur notre deuxiéme exemple, le PROBLEME D’ AFFECTATION DES
TACHES, pour illustrer brigvement un sujet central de ce livre.

Le PROBLEME D’ AFFECTATION DES TACHES est totalement différent du PRO-
BLEME DE PERCAGE puisque chaque instance non triviale a un nombre infini de
solutions. Nous pouvons reformuler ce probleme en introduisant une variable 7" qui
sera le temps nécessaire a I’achevement de toutes les taches :

min T

s.C. Ty =t (te{l,...,n})
JZE; ! (1.1)

0 (ie{l,...,n}, j€S;)
T (je{1,...,m})

Tij
E (Eij

:jE€S;

IN 1V

(s.c. est une abréviation pour «sous les contraintes»)

1. Introduction 9

Les nombres t; et les ensembles S; (¢ = 1,...,n) sont donnés, et nous cher-
chons a calculer les variables x;; et T'. Un probléme d’optimisation de ce type, avec
une fonction objectif linéaire et des contraintes linéaires, est appelé programme
linéaire. L’ensemble des solutions réalisables de (1.1) est un polyedre; cet en-
semble convexe a un nombre fini de points extrémes qui inclut la solution optimale
de ce programme linéaire. Un programme linéaire peut donc, en théorie, se résoudre
par énumération complete, mais de bien meilleures méthodes existent comme nous
le verrons ultérieurement.

Bien que de nombreux algorithmes existent pour résoudre des programmes
linéaires, les techniques générales sont souvent moins performantes que les algo-
rithmes spécifiques qui exploitent la structure du probleme. Dans notre exemple, il
est judicieux de modéliser les ensembles S;, ¢ = 1,...,n, a 'aide d’un graphe :
associons a chaque tache ¢ et a chaque employé j un point (appelé sommet) et re-
lions par une aréte un employé ¢ et une tache j si ¢ peut étre affecté a j (c.-a-d.
si j € 5;). Les graphes constituent une structure combinatoire fondamentale ; de
nombreux problemes d’optimisation combinatoire se décrivent de maniere naturelle
dans le contexte de la théorie des graphes.

Supposons que le temps d’exécution de chaque tache soit de une heure et que
nous voulions savoir si toutes les tAches seront terminées en une heure. Ce probleme
revient a trouver des nombres z;; (i € {1,...,n},j € S;)telsque 0 < z;; < 1 pour
toutietj,» icg @i =1lpouri=1,....nety; cq xjj <lpourj=1,... n
On peut montrer que si ce probleme a une solution, celle-ci peut étre choisie entiere,
les quantités x;; valant alors 0 ou 1. Cela revient a affecter chaque tiche a un seul
employé qui effectuera au plus une seule tiche. Dans le langage de la théorie des
graphes, nous cherchons un couplage couvrant toutes les taches. Le probleme de la
recherche d’un couplage optimal est un des problemes classiques de 1’optimisation
combinatoire.

L’étude et le rappel de notions de base en théorie des graphes et en program-
mation linéaire sera 1’objet des chapitres 2 et 3. Au chapitre 4 nous montrerons
comment résoudre les programmes linéaires en temps polynomial, et au chapitre
5 nous étudierons les polyedres entiers. Les chapitres suivants seront consacrés a
I’étude de probleémes classiques en optimisation combinatoire.

1.4 Tri

Concluons ce chapitre en nous intéressant & un cas particulier du PROBLEME
DE PERCAGE ; plus précisément, nous supposerons que tous les trous doivent étre
percés sur une méme ligne horizontale. Il suffit de connaitre une seule coordonnée
pour chaque point p;, ¢ = 1,...,n. Une solution du probleme de percage est alors
facile a trouver : il s’agit de faire le tri des points selon cette coordonnée, le bras de
la machine se déplacant alors de la gauche vers la droite. Nous n’aurons donc pas
a examiner les n! permutations, pour trouver le chemin optimal : il est en effet trés
facile de trier n nombres dans un ordre non décroissant en un temps O(n?).

10 Optimisation combinatoire — Théorie et algorithmes

Trier n nombres en un temps O(n log n) demande un peu plus de réflexion. Iy a
de nombreux algorithmes ayant cette complexité ; nous présentons ici 1’algorithme
bien connu de TRI-FUSION (en anglais, merge-sort) : la liste initiale est d’abord
divisée en deux sous-listes de méme taille approximative. Puis chaque sous-liste est
triée (récursivement, par le méme algorithme). Enfin, les deux sous-listes triées sont
fusionnées. Cette méthode, appelée «diviser pour régner» (divide and conquer en
anglais) est souvent utilisée. Voir le paragraphe 17.1 pour une autre illustration.

Nous n’avons pas présenté ce qu’on appelle les algorithmes récursifs. Ce ne
sera pas nécessaire ici ; il nous suffira de savoir que tout algorithme récursif peut étre
transformé en un algorithme séquentiel sans accroitre le temps de calcul. Cependant,
certains algorithmes sont plus faciles a formuler (et 2 implémenter) en utilisant la
récursivité, et c’est ce que nous ferons quelquefois dans cet ouvrage.

ALGORITHME TRI-FUSION

Input Une liste a1, . .., a, de nombres réels.

Output Une permutation 7 : {1,...,n} — {1,...,n} telle que
Ur(i) < Agr(ip1) pourtouti =1,...,n—1.

@O Ifn=1then (1) := 1 etstop (return 7).

— |
@) m = |%].
Soit p :=TRI-FUSION(a1, . . . , Gm)-
Soit ¢ :=TRI-FUSION(Gyp41, - - - 5 Gn)-

® k=11:=1
While K <metl<n-—mdo:
Ifap(k) < Umpo() then ’/T(k#*l*].) = p(k) etk:=k+1
elsem(k+1—1):=m+o(l)etl:=1+1.
While k < mdo: m(k+1—1) := p(k) etk := k + 1.
Whilel <n—mdo:nw(k+1—1):=m+o(l)etl:=1+1.

Comme exemple, considérons la liste «69, 32, 56, 75, 43, 99, 28». L’algorithme
divise d’abord cette liste en deux listes, «69, 32, 56» et «75, 43, 99, 28» puis trie
récursivement chacune des deux sous-listes. Nous obtenons les deux permutations
p=1(2,3,1)eto = (4,2,1,3) correspondant aux listes triées «32, 56, 69» et «28,
43,75, 99». Ces deux listes sont alors fusionnées de la maniére suivante :

k=1, [:=1

p(1) =2, o(l)=4, apq)=232, a,q1) =28 =(1):=T1, l:=2
p(1) =2, 0(2)=2, ayn) =32, apo =43, 7(2):=2, k:=2

p(2) =3, 0(2)=2, aye =56, aso =43, w(3):=5, [:=3
p(2) =3, 0(3)=1, ayp =56, ass =75, 7w(4):=3, k:=3
p3) =1, 0(3)=1, ays =69, ams =75, n(5):=1, k:=4

o(3) =1, ag(3) = 75, w(6):=4, l:=4

0(4) = 3, Ag(4) = 99, 7T(7) = 6, l:=5

1. Introduction 11

Théoreme 1.5. L’ALGORITHME TRI-FUSION répond correctement et s’exécute en
un temps O(nlogn).

Preuve. 1l est évident que cet algorithme répond correctement. Si T'(n) est le
temps de calcul (nombre de pas) sur des instances ayant n nombres, observons que
T(1) =1letque T(n) = T(|5]) + T([5]) + 3n + 6. (Les constantes dans 1’ex-
pression 3n + 6 dépendent de la maniére dont est défini un pas de I’algorithme.)

Nous affirmons que cela implique que T'(n) < 12nlogn+1.Le casn = 1 étant
trivial, nous procéderons par induction. Pour n > 2, en supposant que I’inégalité est
vraie pour 1,...,n — 1, nous avons

2 2
T(n) < 12{9J10g “n +1+12[ﬂ1og Zn)+1+3n+6
2 3 2 3
= 12n(logn+1—1log3) +3n+8
1
< 12nlognf?3n+3n+8 < 12nlogn +1,
parce que 10g32§’—1. O

Cet algorithme s’applique aussi au tri d’éléments d’un ensemble totalement
ordonné, pourvu que 1’on puisse comparer deux éléments quelconques en temps
constant. Peut-il exister un algorithme plus rapide, disons linéaire ? Si on ne peut
trouver 1’ordre qu’a la suite de comparaisons successives de deux éléments, il est
possible de montrer que tout algorithme nécessite au moins @(n logn) comparai-
sons dans le pire des cas. En effet, on peut représenter le résultat d’'une comparaison
par zéro ou un. Le résultat de toutes les comparaisons est donc une chaine binaire
(une suite de zéro et de un). Deux ordres différents pour I’input de 1’algorithme pro-
duisent deux chaines binaires différentes (sinon on ne pourrait distinguer ces deux
ordres). Pour un input ayant n éléments, il y a donc n! ordres possibles et n! chaines
binaires susceptibles d’étre produites. Comme le nombre de chaines binaires de

n

longueur plus petite que | 2 log 2 | est olsloss] 1 < o5lst = (2)2 <nlle
nombre nécessaire de comparaisons est au moins % log & = ©(nlogn).

On voit donc que le temps de calcul de I’ALGORITHME TRI-FUSION est optimal
aun facteur constant pres. On peut cependant trier des entiers ou des chaines suivant
un ordre lexicographique grice a des algorithmes linéaires ; voir 1’exercice 7. Han
[2004] a proposé un algorithme pour trier n entiers en O(n loglogn).

Il y a trés peu de problemes pour lesquels des bornes inférieures non triviales de
ce type existent. On aura souvent besoin d’un minorant de 1I’ensemble des opérations

élémentaires pour obtenir une borne inférieure superlinéaire.

Exercices

1. Montrer que pour tout n € N :

n n n n
e <7> <n!<en (f) .
e e

Indication : utiliser la relation 1 + x < e” pour tout x € R.

12 Optimisation combinatoire — Théorie et algorithmes

2. Montrer que log(n!) = ©(nlogn).
3. Montrer que nlogn = O(n!*¢) pour tout € > 0.

4. Montrer que le temps de calcul de I’ ALGORITHME D’ ENUMERATION DES CHE-
MINS est O(n - n!).

5. Soit un algorithme dont le temps de calcul est O (n(t + n'/?)), n étant la taille
de I’input et ¢ un parametre positif arbitraire. Comment choisir ¢ en fonction de
n pour que le temps de calcul qui est une fonction de n ait un taux de croissance
minimum ?

6. Soient s, t deux chaines binaires de longueur m. Nous dirons que s est lexico-
graphiquement plus petite que ¢ s’il existe un indice j € {1,...,m} tel que
s;=t;pouri=1,...,5 — lets; <t;. Soient alors n chaines de longueur m
que nous souhaitons trier suivant un ordre lexicographique. Montrer qu’on peut
résoudre ce probleme en un temps O (nm).

Indication : regrouper les chaines selon leur premier bit et trier chaque groupe.

7. Proposer un algorithme qui trie une liste de nombres naturels a1, . . ., a,, c.-a-d.
qui trouve une permutation 7 telle que ar;)y < ariy1) (0 =1,...,n—1)en
un temps O(log(a; + 1) + - - - + log(ay + 1)).

Indication : trier d’abord les chaines codant les entiers suivant leur longueur.
Appliquer ensuite I’algorithme de I’exercice 6.

Note : I’algorithme étudié ici et dans I’exercice précédent est quelquefois appelé
le tri radix.

Références

Littérature générale :

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. [2001] : Introduction to Algorithms.
Second Edition. MIT Press, Cambridge 2001

Knuth, D.E. [1968] : The Art of Computer Programming ; Vol. 1. Fundamental Algorithms.
Addison-Wesley, Reading 1968 (third edition : 1997)

Références citées :
Aho, A.V., Hopcroft, J.E., Ullman, J.D. [1974] : The Design and Analysis of Computer Al-
gorithms. Addison-Wesley, Reading 1974

Cobham, A. [1964] : The intrinsic computational difficulty of functions. Proceedings of the
1964 Congress for Logic Methodology and Philosophy of Science (Y. Bar-Hillel, ed.),
North-Holland, Amsterdam 1964, pp. 24-30

Edmonds, J. [1965] : Paths, trees, and flowers. Canadian Journal of Mathematics 17 (1965),
449-467

Han, Y. [2004] : Deterministic sorting in O(nloglogn) time and linear space. Journal of
Algorithms 50 (2004), 96-105

Stirling, J. [1730] : Methodus Differentialis, London 1730

Chapitre 2

Graphes

Les graphes seront utilisés tout au long de ce livre. Dans ce chapitre nous don-
nerons les définitions de base et nous préciserons nos notations. Nous présenterons
également quelques théorémes classiques et quelques algorithmes fondamentaux.

Apres les définitions du paragraphe 2.1, nous étudierons quelques structures es-
sentielles souvent rencontrées dans ce livre : les arbres, les cycles, les coupes. Nous
démontrerons quelques propriétés importantes, et nous considérerons des systemes
d’ensembles reliés aux arbres au paragraphe 2.2. L’algorithme de recherche des
composantes connexes ou fortement connexes sera présenté au paragraphe 2.3. Nous
démontrerons le théoreme d’Euler relatif aux parcours fermés qui passent une seule
fois par chaque aréte au paragraphe 2.4. Enfin, nous étudierons les graphes dessi-
nables sur un plan sans que les arétes se croisent aux paragraphes 2.5 et 2.6.

2.1 Définitions fondamentales

Un graphe non orienté est un triplet (V, E, W) constitué de deux ensembles
finis V et E et d’une application ¥ : E — {X C V : |X| = 2}!. Un graphe
orienté est un triplet (V, E,¥), constitué de deux ensembles finis V et E et d’une
application ¥ : E — {(v,w) € VxV : v # w}.V est]’ensemble des sommets du
graphe ; F est ’ensemble de ses arétes si le graphe est non orienté et de ses arcs
s’il est orienté. Suivant un usage assez répandu, nous noterons également une aréte
e ={v,w} pare = (v,w) oue = (w,v).

Deux arétes (arcs) e, €’ seront dites paralleles si ¥(e) = ¥(e’). Un graphe sans
arétes ou arcs paralleles est un graphe simple. Quand un graphe est simple, nous
pouvons identifier e € E avec son image ¥(e) et écrire G = (V(QG), E(G)),
avec E(G) C {X C V(G) : |X| = 2} ou E(G) C V(G) x V(G). Nous
utiliserons souvent cette notation méme en présence d’arétes (d’arcs) paralleles.
Ainsi I’ensemble E(G) pourra contenir plusieurs éléments «identiques». |E(G)|

! Nous utiliserons tout au long de cet ouvrage les notations ensemblistes anglophones (ndr).

14 Optimisation combinatoire — Théorie et algorithmes

est le nombre d’arétes (arcs); si E et I’ sont deux ensembles d’arétes (arcs),
|E U F| = |E| + |F| méme si des arétes (arcs) paralleles apparaissent dans cette
union.

Nous dirons qu’une aréte (resp. un arc) e = (v, w) joint v et w (resp. v & w) et
que v et w sont adjacents ou mutuellement voisins. v et w seront les extrémités de
e et nous dirons que v (resp. ¢) est incident a e (resp. a2 v). si e = (v, w) estun arc, v
est ’origine de e, w est I’extrémité terminale de ¢ ; nous dirons que e est sortant
de v et entrant dans w. Nous dirons aussi que v (resp. w) est le voisin entrant (resp.
voisin sortant) de w (resp. v). Deux arcs ou arétes ayant une extrémité commune
seront dits adjacents.

La terminologie de la théorie des graphes n’est pas completement figée. Par
exemple, les sommets sont parfois appelés nceuds ou points ; en anglais, edge si-
gnifie aréte ou arc. Un graphe avec des arétes ou arcs paralleles est parfois appelé
multigraphe. On peut également autoriser les boucles (extrémités identiques).

Si G est un graphe orienté, nous considérerons parfois son graphe non orienté
associé G’ obtenu en enlevant I’orientation de chaque arc de G. Nous dirons alors
que G est une orientation de G’.

Un sous-graphe de G = (V(G), E(QG)) est un graphe H = (V(H), E(H))
avec V(H) C V(G) et E(H) C E(G). Nous dirons que G contient H. Le graphe
H est un sous-graphe induit de G si H est un sous-graphe de G et si E(H) =
{(z,y) € E(Q) : z,y € V(H)}; H = G[V(H)] est le sous-graphe de G induit
par V(H). Un sous-graphe H de G est appelé couvrant si V(H) = V(G).

Siv € V(G), G — v est le sous-graphe de G induit par V(G) \ {v}. Sie €
E(GQ),G—e:= (V(G),E(G) \ {e}) est le graphe obtenu en supprimant e de E.
G +e:= (V(G), E(G) U {e}) est le graphe obtenu en ajoutant une nouvelle aréte
(un nouvel arc) e a E. Si G et H sont deux graphes, G + H est le graphe tel que
V(G+ H)=V(G)UV(H) ettel que E(G + H) est’'union disjointe de E(G) et

Deux graphes G et H sont appelés isomorphes s’il existe deux bijections @y :
V(G) = V(H)etPg : E(G) — E(H) telles que P ((v,w)) = (Py(v), Py (w))
pour tout (v, w) € E(G). Nous ne distinguerons pas deux graphes isomorphes ;
ainsi nous dirons que G contient H si G a un sous-graphe isomorphe a H.

Soit G un graphe non orienté et soit X C V(G). Le graphe résultant de la
contraction de X, et noté G/ X, s’obtient en supprimant X et les arétes de G[X],
puis en ajoutant un nouveau sommet x et en remplacant enfin chaque aréte (v, w)
avecv € X, w ¢ X par une aréte (x, w) (notons que cette construction pourra créer
des arétes paralleles). Cette définition s’étend naturellement aux graphes orientés.

Soit un graphe G et X,Y C V(G). Nous poserons : E(X,Y) := {(z,y) €
E(G):z e X\Y,y €Y\ X}siGestnonorienté et ET(X,Y) := {(z,y) €
E(G):2€ X\Y,ye€Y\X}siG estorienté. Si G est non orienté et X C V(G)
nous poserons §(X) := E(X,V(G) \ X). L'ensemble des voisins de X est défini
par I'(X) :={v € V(G)\ X : E(X,{v}) # 0}. Si G est orienté et X C V(G)
nous poserons : 67 (X) := ET(X,V(G)\X),6 (X) := 0T (V(G)\X)etd(X) :=

2. Graphes 15

d+(X) U~ (X). Nous utiliserons des indices (par exemple d (X)) pour spécifier
le graphe G, si nécessaire.

Pour les ensembles de sommets ayant un seul élément {v} (v € V(G)), que
nous appellerons aussi singletons, nous écrirons §(v) := §({v}), I'(v) := I'({v}),
dt(v) == 6t ({v}) et 6 (v) := 6 ({v}). Le degré d’'un sommet v est |§(v)],
nombre d’arétes incidentes & v. Dans le cas orienté, le degré entrant est |§— (v)], le
degré sortant est |07 (v)], etle degré est |7 (v)|+ [0~ (v)|. Un sommet v de degré 0
est appelé isolé. Un graphe dont tous les sommets ont degré k est appelé k-régulier.

Si G est quelconque, 3,y () [0(v)| = 2[E(G)|. En particulier le nombre
de sommets de G de degré impair est pair. Si G est orienté, 3 v () [6F(v)| =
>_vev(c) |67 (v)]. Pour montrer ces relations, observons que chaque arc ou aréte est
compté deux fois dans chacun des membres de la premiere équation et que chaque
arc est compté une fois dans chacun des membres de la deuxiéme équation. On peut
aussi démontrer :

Lemme 2.1. Soit G un graphe orienté et soient X, Y C V(G) :

@ [0F(X)[+]6T(V)] = [67(XNY)|+][0F(XUY)[+|[ET(X, V) |+ EF(Y, X)|;
(b) [0~ (X)[+]6= (V)| = |07 (XNY)[+[67 (XUY)[+|EF (X, Y)[+[ET (Y, X)|.
Soit G est un graphe non orienté et soient X, Y C V(QG) :

© [6(X)[+16(Y)] = [6(XNY)[+[6(X UY)[+2[E(X,Y)];

@ [FX)|+ (V)| z [DXNY)|+ |[M(XUY)].

Preuve. Il suffit d’utiliser des arguments de comptage. Soit Z := V(G)\ (X UY).
Pour (a), observons que |67 (X)| + [67(Y)| = |[ET(X,2)| + |ET(X, Y \ X)| +
[EH(Y, 2)|+ |EH(Y, X\ Y)| = |E*(X UY, 2)| +|E+(X Y, 2) |+ [E* (X, \
X)|+[EF(Y, X \Y)| = 6+ (X UY)[+]5* (X NY)|+ [EH(X, V)| +|E+(Y, X)|.
(b) se déduit de (a) en inversant I’orientation de chaque arc (remplacer (v, w) par
(w,v)). (¢) se déduit de (a) en remplagant chaque aréte (v, w) par une paire d’arcs
de directions opposées (v, w) et (w, v).

Pour montrer (d), observons que |[I'(X)|+ [I'(Y)| = [(X UY)|+ | ['(X) N
rM+IrX)nY|+|I'(Y)nX| > | INXUY)|+ |IN(XNY))|. O

Une fonction f : 2V — R (ou U est un ensemble fini et 2V est ’ensemble des
parties de U) est appelée :

e sous-modulairesi f(XNY)+ f(XUY) < f(X)+f(Y) pourtout X,Y C U ;
e supermodulaire si f(XNY)+f(XUY) > f(X)+f(Y)pourtout X,Y C U;
e modulairesi /(X NY)+ f(XUY) = f(X)+ f(Y) pour tout X, Y C U.

Le lemme 2.1 implique que [67|, |67, |§] et |I"| sont sous-modulaires. Cela sera
utile ultérieurement.

Un graphe complet est un graphe simple non orienté tel que toute paire de som-
mets est adjacente. Le graphe complet & n sommets sera noté K,,. Le complément
d’un graphe simple non orienté G est le graphe H tel que G + H est un graphe
complet.

16 Optimisation combinatoire — Théorie et algorithmes

Un couplage d’un graphe non orienté GG est un ensemble d’arétes deux a deux
non adjacentes (c.-a-d. ayant toutes leurs extrémités différentes). Une couverture
par les sommets de GG est un ensemble S C V(G) tel que chaque aréte de G soit
incidente a au moins un sommet dans S. Une couverture par les arétes de G est un
ensemble F' C E(G) d’arétes tel que chaque sommet de G soit incident & au moins
une aréte de F. Un ensemble stable dans GG est un ensemble de sommets deux a
deux non adjacents. Un graphe sans aucune aréte (ou arc) est dit vide. Une clique
est un ensemble de sommets deux a deux adjacents.

Proposition 2.2. Soit un graphe G et X C V(G). Les propositions suivantes sont
équivalentes :

(a) X est une couverture par les sommets dans G.
(b) V(G)\ X est un ensemble stable dans G.

(¢) V(G)\ X est une clique dans le complément de G. =

Si F est une famille d’ensembles ou de graphes, nous dirons que F' est un
élément minimal de F si F contient F', mais aucun sous-ensemble/sous-graphe
propre de F'. De méme, F' est maximal dans F si F' € F et F' n’est pas un sous-
ensemble/sous-graphe propre d’un élément de . Un élément minimum ou maxi-
mum est un élément de cardinalité minimum/maximum.

Une couverture par les sommets minimale n’est pas forcément minimum (voir
par exemple figure 13.1), et un couplage maximal n’est en général pas maximum.
Les problemes de la recherche d’un couplage, d’un ensemble stable ou d’une clique
maximum, de la couverture par les sommets ou par les arétes minimum dans un
graphe non orienté auront une grande importance dans la suite de ce livre.

Le line graph? d’un graphe simple non orienté G est le graphe (E(G), F), tel
que F' = {(e1,e2) : e1,e2 € E(G), |ex Nez] = 1}. Notons que les couplages du
graphe G correspondent aux ensembles stables du line graph de G.

Soit G un graphe orienté ou non. Une suite P = [vy, 1, V2, . . ., Uk, €k, Ug41] €SL
un parcours de v; a v 1 de G si k > 0 et si les deux extrémités de e; sont v; et
vip1 pouri = 1,... k. v1 et vp1 sont les extrémités de P. Si G est orienté, nous
dirons que P est un parcours orienté quand 1’arc e; est sortant de v; et entrant dans
viy1 pouri = 1,... k. vy seral’origine du parcours P et vy, 1 sera son extrémité.
Sie; # e;pour 1 < i < j <k, P estun parcours simple de G. Un parcours
simple P est fermé si v; = viy1. Un parcours simple P tel que v; # v; pour
1 <i < j < k+ 1 estune chaine. Dans ce cas on pourra identifier P avec le sous-
graphe ({v1,...,v511},{€1,...,ex}) de G. Si P est une chaine et z,y € V(P)
Py,) sera I(unique) sous-graphe de P qui est une chaine de x a y. Il est €évident
qu’il existe un parcours d’un sommet v a4 un sommet w #* v si et seulement s’il
existe une chaine de v a w.

2 En francais «graphe représentatif des arétes d’un graphe» ; nous garderons ici I’expression
anglaise, plus concise et plus facile a utiliser (ndr).

2. Graphes 17

Un parcours orienté qui est également une chaine est un chemin. Deux sommets
d’un graphe non orienté sont connectés s’il existe une chaine ayant ces deux som-
mets comme extrémités ; un sommet ¢ est connecté a un sommet s dans un graphe
orienté s’il existe un chemin d’origine s et d’extrémité ¢.

Un graphe ({v1,...,v;}, {e1,...,ex}) tel que vy, e1,09,. .., vk, €k, v1 €St Un
parcours (resp. un parcours orienté) avec v; # v; si 1 < ¢ < j < k est un cycle
(resp. un circuit). Un argument simple d’induction montre que I’ensemble des arétes
(resp. des arcs) d’un parcours fermé (resp. d’un parcours orienté fermé) peut étre
partitionné en ensembles d’arétes de cycles (resp. d’arcs de circuits).

La longueur d’une chaine (resp. d’un chemin) est son nombre d’arétes (resp.
d’arcs). Une chaine qui couvre les sommets d’un graphe non orienté G est appelée
chaine hamiltonienne de GG ; un cycle couvrant les sommets de G est appelé cycle
hamiltonien ou tour de GG. Un graphe contenant un cycle hamiltonien est appelé
graphe hamiltonien. Les chemins et circuits hamiltoniens se définissent de la méme
maniere quand les graphes sont orientés.

Si v et w sont deux sommets de G, la distance de v & w notée dist(v,w) ou
distg (v, w) est la longueur d’un plus court chemin de v & w si G est orienté, et
d’une plus courte chaine de v & w si G est non orienté. S’il n’existe aucune chaine
(ou chemin dans le cas orienté) de v & w, nous poserons dist(v, w) := co. Si G est
non orienté, on a toujours dist (v, w) = dist(w, v) pour toute paire v, w € V(G).

Souvent une fonction cofit ¢ : E(G) — R sera associée aux problémes que
nous étudierons. Si I/ C E(G), nous poserons ¢(F) := 3 . c(e) (et c(0) = 0).
La fonction ¢ : 2P(%) — R est une fonction modulaire. dist(g,c) (v, w) sera le
minimum de ¢(E(P)) pour toutes les chaines (chemins) P de v a w.

2.2 Arbres, cycles, coupes

Un graphe orienté ou non orienté GG sera dit connexe s’il existe une chaine de v
aw pour tous v, w € V(G); sinon G sera non connexe. Les sous-graphes connexes
maximaux de G sont les composantes connexes de GG. Nous identifierons quelque-
fois les composantes connexes avec les ensembles de sommets qu’elles induisent.
Un ensemble de sommets X est connexe si le sous-graphe induit par X est connexe.
v est un sommet d’articulation si G — v a plus de composantes connexes que G ;
e € E(G) estun pont si G — e a plus de composantes connexes que G.

Un graphe non orienté sans cycles est une forét. Une forét connexe est un arbre.
Dans un arbre, une feuille est un sommet de degré 1. Une étoile est un arbre ayant
au plus un sommet qui n’est pas une feuille.

Nous allons maintenant donner quelques propriétés des arbres et des arbores-
cences, leurs analogues dans les graphes orientés. Etablissons le résultat suivant :

18 Optimisation combinatoire — Théorie et algorithmes

Proposition 2.3.
(a) Un graphe orienté ou non orienté G est connexe si et seulement si §(X) # ()

pour tout) # X C V(G).

(b) Soit G un graphe orienté et soit r € V(G). Il existe un chemin de r & tout som-
met v € V(G) si et seulement si 6 (X) # 0 pour tout X C V(G) contenant
T

Preuve. (a):s’ilexiste X C V(G)telquer € X,v € V(G)\ X, et 6(X) =0,
il ne peut exister de chaine de r a v et G n’est pas connexe. Inversement, si G n’est
pas connexe, il existe deux sommets r, v non connectés. Si R est I’ensemble des
sommets connectés a7, r € R, v ¢ Ret§(R) = 0.

(b) : la preuve est analogue. 0

Théoreme 2.4. Soit G un graphe non orienté connexe ayant n. sommets. Les pro-
positions suivantes sont équivalentes :

(a) G estun arbre (G est connexe et sans cycles).

(b) G est sans cycles et an — 1 arétes.

(¢) G est connexe etan — 1 arétes.

(d) G est un graphe connexe minimal (chaque aréte est un pont).

(€) G est un graphe minimal vérifiant la propriété 6(X) # O pour tout) # X C
V(G).

(f) G est un graphe maximal sans cycles (I’addition d’une aréte quelconque crée
un cycle).

(g) Toute paire de sommets de G est connectée par une chaine unique.

Preuve. (a)=-(g),car’union de deux chaines distinctes ayant les mémes extrémités
contient un cycle.

(g)=(e)=-(d) se déduit de la proposition 2.3(a).

(d)=(f) : évident.

(f)=(b)=(c) : cela se déduit du fait que si une forét a n sommets, m arétes et p
composantes connexes, alors n = m + p. (Preuve par induction sur m.)

(c)=(a) : soit G connexe ayant n—1 arétes. Si G a un cycle, on peut le supprimer
en en retirant une aréte. Supposons qu’apres avoir retiré k arétes de cette maniere, le
graphe résultant G’ soit connexe et sans cycles. G’ am = n — 1 — k arétes. Comme
n=m+p=n—1—k+1,onak=0. O

En particulier, (d)=-(a) signifie qu’un graphe est connexe si et seulement s’il
contient un arbre couvrant (un sous-graphe couvrant qui est un arbre).

Un graphe orienté est une ramification si le graphe non orienté associé est une
forét et si chaque sommet v a au plus un arc entrant. Une ramification connexe est
une arborescence. Par le théoréme 2.4, une arborescence ayant n sommets an — 1
arcs et par conséquent il n’existe qu’un sommet r avec 6~ (r) = (). Ce sommet
est appelé la racine de 1’arborescence ; nous dirons aussi que I’arborescence est
enracinée en 7. Les feuilles sont les sommets v qui vérifient 67 (v) =).

