The Rationale of Operative Fracture Care

Third Edition

With Contributions by T.S. Axelrod, R. Hu, and D.J.G. Stephen

With 571 Figures in 1718 Separate Illustrations, 321 in Color and 38 Tables
Dedication

This third edition of our book is dedicated to our families for their patience, devotion, and understanding.

From Joseph Schatzker
To my late mother, Helene Schatzker Schleifer
To my wife, Valerie
To my sons, Erik, Susan and Isabelle and Natalie
 Adam, Elora and Joseph
 Mark and Laura.

From Marvin Tile
To my wife Esther
To my family: Gary, Rosemary, Katy, Sari, and Noah Tile
Stephen, Christine, David, Rachel, and Abby Tile
Steven, Deborah, Ian, and Annie Cass
Andrew Tile and Candy Ramberansingh.
Since its initial publication in 1987, our Rationale of Operative Fracture Care has enjoyed tremendous popularity. Many surgeons have commented repeatedly on how useful they have found the book, particularly when faced with a difficult problem, often in the middle of the night. All have felt that it is a book written by surgeons for surgeons. It explains in clear terms the logical progression of problem-solving while evolving a treatment rationale. Identify the problem first, then logically outline the different possibilities of solving it to decide which is best from a technical perspective, and which will lead to the best outcome for the patient. Then choose from the available armamentarium the most suitable surgical technique and implant.

Since our second revision was published in 1995, little has changed in the process of decision-making, but there has been a further thrust to biologic reduction techniques, and an explosion of new technology.

We delayed our third edition in order to be able to comment on the new technology once it had been in use for some time, which makes an objective appraisal possible. The most dramatic changes have been in the area of minimally invasive techniques and in the introduction of a radically new plate stabilization system, the angularly stable locked plating system.

Minimally invasive surgery has become the driving force of new technology. With the recognition that a fracture is not just a broken bone but a zone of injury which extends to the skin, minimally invasive techniques have come to play a major role not only in surgical exposure, but also in the implants employed. Locked intramedullary nails are the best example of a minimally invasive stabilization system, but nails have their limitations, particularly in metaphyseal and articular areas. This has given rise to the “internal fixators”, the angularly stable LCP which, when combined with minimally invasive techniques of insertion and fixation, have given the surgeon the ability to offer all the advantages of closed minimally invasive stabilization surgery, faster healing, and a lower complication rate in the treatment of fractures in articular and peri-articular areas. They have also improved our ability to achieve stability in osteoporotic bone, now so frequent in our aging population.

All of the chapters of the book have been carefully revised to reflect all the advances in biology, in biomechanics, in understanding of the biology of injuries and surgical wounds, and all the advances in stabilization systems. The book should continue to serve the surgical community well, in the most advanced teaching environments as well as in the forefront of care, the surgeons of the community hospitals.

Toronto, January 2005

Joseph Schatzker
Marvin Tile
Acknowledgements

To the new generation of the Springer-Verlag team, Gabriele Schröder, Irmela Bohn, Neil Solomon, and Kurt Teichmann, for their professionalism, dedication, cooperation, and help in the publication of the third edition.

To our research assistant Shirley Fitzgerald for her continued attention to detail in reading and editing the text.
Foreword to the Second Edition

Eight years have passed since the publication of the first edition of *The Rationale of Operative Fracture Care*. During this time, as I predicted, it has become the standard reference work for all concerned with the treatment of fractures: practicing surgeons, residents, and directors of academic units alike.

The second edition has been greatly expanded in scope. The original chapters have been completely reworked. Once again, Dr. Schatzker and Dr. Tile reveal their consummate understanding and mastery of the problems of trauma. They have included detailed discussions of all the conceptual changes in fracture treatment which have taken place since the publication of the original edition. Thus, indirect reduction, biological plating, indications for absolute and relative stability, as well as information on new implants, such as low contact plates, first and second generation reamed intramedullary nails, and the new unreamed nails and external fixation devices, are critically discussed in appropriate sections of the book.

To fill the gaps in the first publication, Dr. Schatzker and Dr. Tile have turned to their colleagues and close collaborators at Sunnybrook Health Science Centre. Fractures of the wrist and hand, spine, and hip are now included and discussed in great detail in this new edition.

Although three new authors have contributed to this book, the second edition of *The Rationale of Operative Fracture Care* offers a uniformity of approach and method rarely encountered in similar efforts. The close collaboration and collegial scholarship which exists at Sunnybrook’s famous trauma and orthopedic unit has produced this remarkable unity of thought and practice. This second edition will, I believe, be as popular as the first and provide a useful and inspiring reference to trauma surgeons throughout the world.

Berne, December 1995

Maurice E. Müller
Preface to the Second Edition

As Professor Müller predicted in the foreword to the first edition, our book, which dealt with the challenging subject of surgical indications, rapidly filled the void left by the AO Manual which discussed mainly the surgical techniques of internal fixation and the associated instruments and implants. Thus, the *Rationale of Operative Fracture Care*, in dealing critically with the issues of surgical indications in addition to many other important aspects of fracture treatment, quickly became the standard reference for those involved in the treatment of musculoskeletal trauma – resident and practicing surgeon alike.

Eight years have passed since the publication of the first edition. During this time many changes have occurred in surgical philosophy and technique and in implants and instruments. Thus, in the preparation of our second edition, we have found it necessary to completely rework all the original chapters. We have dealt in great detail with the conceptual changes which have occurred in the principles of internal fixation and have made certain that the reader would see the relationship of these changes to the biological and biomechanical properties of the diaphyseal and end segments of bone. The reader will also rapidly become aware of the complexities of stable internal fixation achieved by means of compression and those of relatively stable fixation achieved by splintage and how these two diverse methods of internal fixation must be carefully adapted to the physiological and mechanical requirements of diaphyseal and intraarticular fractures. The new concepts, such as indirect reduction, biological plating, absolutely stable and relatively stable fixation and their respective indications, as well as the new implants such as the low contact plates, the first and second generation reamed intramedullary nails and the new unreamed nails for the tibia and femur as well as the new designs of external fixateurs, are critically discussed in the appropriate segments of the book.

The second edition has also been greatly expanded in its scope. Voids which were left in the first edition have been carefully filled in the second. We have turned to our colleagues and close collaborators at Sunnybrook Health Science Centre to provide us with chapters which were omitted from the first edition. Thus T. Axelrod has written the chapter on the wrist, R. Hu the chapter on the spine, and D. Stephen the chapter on the foot. J. Schatzker has contributed a new chapter on fractures about the hip and M. Tile a chapter on the calcaneus. The close collaboration and unity of thought which exists between the members of the orthopedic unit at Sunnybrook has produced a remarkable unanimity of approach and execution rarely encountered in volumes written by more than one or two authors.

The second edition is thus an expanded and much more comprehensive treatise on the complexities of decision-making and surgical execution of fracture care. We are confident that it will once again enjoy popularity and bring guidance to the surgeons confronted with the difficult problems of their surgical practice.

Toronto, December 1995

Joseph Schatzker

Marvin Tile
Acknowledgements

To the new generation of the Springer-Verlag team, Udo Schiller, Gabriele Schröder, Sherryl Sundell, and Ute Pfaff, for their professionalism, dedication, cooperation, and help in the publication of the second edition.

To our secretaries Shirley McGovern and Carol Young for their continued support and help with this project.

To our research assistant Shirley Fitzgerald for her continued attention to detail in reading and editing the text.

To Maurice Müller for the Foreword and continuing support.
After the publication of the AO book *Technique of Internal Fixation of Fractures* (Müller, Allgöwer and Willenegger, Springer-Verlag, 1965), the authors decided after considerable discussion amongst themselves and other members of the Swiss AO that the next edition would appear in three volumes. In 1969, the first volume was published (the English edition, *Manual of Internal Fixation*, appeared in 1970). This was a manual of surgical technique which discussed implants and instruments and in which the problems of internal fixation were presented schematically without radiological illustrations. The second volume was to be a treatise on the biomechanical basis of internal fixation as elucidated by the work done in the laboratory for experimental surgery in Davos. The third volume was planned as the culminating effort based upon the first two volumes, treating the problems of specific fractures and richly illustrated with clinical and radiological examples. It was also to discuss results of treatment, comparing the results obtained with the AO method with other methods. The second and third volumes were never published.

The second edition of the AO *Manual* appeared in 1977. It dealt in greater detail with the problems discussed in the first edition, although it still lacked clinical examples and any discussion of indications for surgery. Like the first edition, it was translated into many languages and was well received.

Finally, after 22 years, the much discussed and much needed third volume has appeared. Two Canadian surgeons have successfully undertaken the challenging task of filling this gap in the AO literature.

Joseph Schatzker and Marvin Tile first came into contact with AO methods of internal fixation in 1965. Impressed by the results of the method, they set themselves to learn it in minute detail and before long became masters of the technique and strong exponents of its effectiveness. They appeared often as lecturers and instructors in AO courses in Switzerland, and North America. Their numerous publications and lectures have greatly contributed to the wide acceptance of the operative method of fracture care.

Joseph Schatzker translated the first and second editions of the *Manual* from German into English, and has, in addition to these excellent translations, achieved distinction as a teacher of the AO method. Both he and Marvin Tile participate annually as instructors in the instructional courses at the American Academy of Orthopedic Surgeons.

With their long association with AO techniques and tremendous clinical experience, these two distinguished surgeons were eminently qualified to undertake the monumental task of defining the specific indications for operative fracture care. In this book they present not only their own views but also a synthesis of the thoughts and writings of other AO members. The book is outstanding and far exceeds the goals originally envisaged for the projected third volume.

The authors have been careful in choosing examples and the appropriate radiological illustrations to delineate the mechanism of injury, the biomechanical problems, the indications for treatment, and the actual execution of surgical procedures. They always guide the reader to the essence of the problem, clearly emphasizing the principles of fracture treatment, a deductive approach through analysis to the clinical decision.

Schatzker and Tile speak of fractures having a “personality.” This “personality” is a key concept requiring careful definition: it includes not only a careful analysis of the fracture...
and all of its soft tissue components, but also a thoughtful assessment of the patient, his or her age, occupation, health, and expectations of treatment, as well as a critical appraisal of the skill of the surgeon and the supporting surgical team and environment. This analysis, combined with the knowledge of what constitutes a reasonable result, allows the authors to formulate a guide to treatment. They also provide useful advice about avoiding technical difficulties and pitfalls, about planning correct postoperative care, and about the treatment of complications which may arise.

The book is superbly illustrated with many drawings skillfully employed to clarify and emphasize essential techniques. The style is easy to understand, clear and unambiguous, giving a lucid presentation of complex and difficult concepts. It will certainly become a standard reference work for everyone involved in the treatment of fractures.

Berne, July 1987

Maurice E. Müller
The purpose of this book is to describe our philosophy of fracture care, which reconciles both the closed and open methods of fracture treatment. We do not regard these two methods as representing opposing points of view, but as complementary to each other. Some surgeons, who tend to treat fractures by closed methods, often imply that the open method is dangerous. By “conservative treatment” they imply a nonoperative method and suggest that it is well thought out, tried, and safe, and will yield results equal to if not superior to those achieved by surgery. “Conservative” as defined by the Oxford dictionary means “characterized by a tendency to persevere or keep intact and unchanged.” The surgeons who continue to view the open method of fracture treatment as the last resort, and who will do anything, no matter how extreme, to avoid opening a fracture, are indeed characterized by a tendency to keep unchanged an attitude whose prevalence was justified when the methods of internal fixation were inadequate and the results of surgical treatment often worse than those of nonoperative care.

However, the founding of the Swiss AO, an association for the study of problems in internal fixation, by Müller, Allgöwer, Willenegger and Schneider in 1958 ushered in a new era in fracture treatment. These pioneer surgeons developed new principles of stable internal fixation along with new implants. Their methods of open reduction and internal fixation, performed by atraumatic techniques, produced sufficient stability to allow early functional rehabilitation without an increase in the rate of malunion or nonunion. The results of treatment changed so dramatically that new standards of care and assessment had to be adopted. Nowadays, an excellent result means the full recovery of function, a painless extremity, a normal mechanical axis, and full joint stability with a normal range of motion. Anything less can no longer be considered excellent, as it has been in reports in the past. Operative fracture care has become safe, scientific, and predictable. It is now based on a firm foundation of biomechanical and clinical data.

Although it has become clear from clinical reviews that open fracture care in certain fractures gives far better results than closed treatment of that same fracture, we emphasize again and again that the indication for surgery for a particular patient must be based on a clear definition of the “personality of the fracture”. The personality of a fracture depends upon many factors, including the age, medical condition, and expectations of the patient, the nature of the injury, and the skill of the health care team and surgical environment in which the fracture is to be treated.

Once the decision has been made that open reduction and stable fixation will afford the patient the best end result, we progress to the execution of the surgical procedure. We describe fully the methods of treatment that are best for each particular fracture based on the principles of stable internal fixation. The details of preoperative investigation and planning so essential to successful surgery are stressed. Technical details are also described, including the surgical approach, the selection of the best implant, the methods of inserting the implant, and the common pitfalls the surgeon may encounter.

Since the operative treatment of fractures demands so-called functional aftertreatment, the details of postoperative care have become as important as the steps of the operative procedure. We therefore describe not only the details of postoperative treatment, but also the danger signals of common complications and their treatment.
We hope that this book will become a guide for all surgeons treating fractures in this era of advanced technology, and that inadequate internal fixation, once so commonly encountered, will become history. Internal fixation should no longer be viewed as a last resort or as a more dangerous form of treatment, but as safe, scientific and predictable, and as the best form of treatment for those cases in which it is indicated.

Toronto, June 1987

Joseph Schatzker
Marvin Tile

Acknowledgements

This book, a labor of love, could not have been completed without the unselfish support and hard work of many individuals. We are especially grateful to:

Our families for their patient understanding during this period
Valerie Schatzker for her help in the English editing
Our orthopedic teachers at the University of Toronto, who roused our interest in orthopedic trauma and have encouraged us to complete the task
Our orthopedic colleagues at Sunnybrook Medical Centre, Stanley Gertzbein, Jim Kellam, and Bob McMurtry, for contributing cases and helpful suggestions, and especially to Gordon Hunter, who read most of the manuscript, for his helpful criticism
The founding members of the AO-ASIF for recognition and support of our efforts
Maurice Müller for reading the manuscript and for his kind remarks in the Foreword
Instructional Media Services at the Wellesley Hospital and Sunnybrook Medical Centre in Toronto for their contribution, especially to Patsy Cunningham who did some of the artwork, and to Jim Atkinson and his staff in Medical Photography
The staff of Springer-Verlag, Heidelberg, for their efficiency and expertise in producing and publishing this volume
Mr. Pupp of Springer-Verlag, Heidelberg, to whom we are indebted for many of the new drawings in this book
Our secretaries, Shirley McGovern and Joan Kennedy, for their constant support
Jan King and Ronda Klapp for typing the manuscript
Carol Young for typing the manuscript and helping with the index
Shirley Fitzgerald for her devotion to detail in both the editing and the completion of the index
Contents

Part I General Aspects of Internal Fixation

1 Principles of Internal Fixation
 J. Schatzker 3
1.1 Introduction 3
1.1.1 Mechanical Properties of Bone 3
1.1.2 Types of Load and Fracture Patterns 4
1.1.3 Classification of Fractures 4
1.1.4 Effects of Fracture 8
1.1.5 Soft Tissue Component and Classification of Soft Tissue Injuries 8
1.2 Aims of Treatment 9
1.3 Previous Experience with Internal Fixation 10
1.4 Rigidity and Stability 10
1.5 Methods of Absolutely Stable Fixation 11
1.5.1 Lag Screw 11
1.5.2 Lag Screw, Neutralization, and Buttressing 12
1.5.3 Tension Band Plate and Compression Plate 12
1.6 Methods of Relative Stability or Splinting 14
1.6.1 External Skeletal Fixation 14
1.6.2 Intramedullary Nailing 15
1.6.3 Bridge Plating 16
1.6.4 Methods of Reduction 17
1.7 Changes to the Early Concepts in Internal Fixation 18
1.7.1 Articular Fractures 21
1.7.2 Diaphyseal Fractures 22
1.7.2.1 Locked Intramedullary Nailing 22
1.7.2.2 Reaming 22
1.7.2.3 Bridge Plating 23
1.7.2.4 Blood Supply to Bone and Implants 23
1.7.2.5 The Limited Contact-Dynamic Compression Plate (LC-DCP) 23
1.7.2.6 The PC Fix or the Point Contact Plate (PCP) and Angularly Stable Fixation 24
1.7.2.7 The Advantages of Locked Fixation and Its Angular Stability 25
1.8 Biological Plating and Minimally Invasive Plate Osteosynthesis (MIPO) 27
1.9 Implant Failure and Bone Grafting 29
1.10 Implant Removal 30
References 30

2 Intra-articular Fractures
 J. Schatzker 33
2.1 Introduction 33
2.2 Clinical Aspects 35
2.2.1 Physical Examination 35
2.2.2 Radiological Evaluation 35
2.3 Surgery 36
2.3.1 Timing 36
2.3.2 Approach and Technique 38
2.4 Postoperative Care 39
2.5 Late Intra-articular Reconstructions 39
References 43

3 Open Fractures
 J. Schatzker and M. Tile 45
3.1 Introduction 45
3.2 Assessment of the Soft Tissue Wound 45
3.3 Classification 45
3.4 Management 46
3.4.1 Decision-Making 46
3.4.2 Immediate Treatment 46
3.4.3 Operative Treatment 47
3.4.3.1 Limb Salvage 47
3.4.3.2 Cleansing 47
3.4.3.3 Débridement 47
3.4.3.4 Choice of Fixation 48
3.4.3.5 Implant Selection 48
3.4.3.6 Care of the Soft Tissue Wound 50
3.4.3.7 Secondary Fracture Care 51
3.4.3.8 Open Joint Injuries 52
3.5 Summary 53
References 54

Part II Fractures of the Upper Extremity

4 Fractures of the Proximal Humerus
 M. Tile 57
4.1 Introduction 57
4.1.1 General Considerations 57
4.1.2 Anatomy 57
4.1.3 Vascular Anatomy 58
4.1.4 Four-Segment Classification 58
4.1.5 Stability 58
4.1.6 Surgical Difficulties 59
4.2 Classification 59
4.3 Natural History and Surgical Indications 60
4.3.1 Stable Fractures 60
4.3.2 Unstable Fractures 60
4.3.2.1 Minimal Displacement 60
4.3.2.2 Major Displacement 62
4.3.3 Articular Fractures 68
4.3.3.1 Impacted (Hill-Sachs) 68
4.3.3.2 Humeral Head 69
4.3.3.3 Glenoid Labrum 69
4.4 Management 74
4.4.1 Assessment 74
4.4.1.1 Clinical 74
4.4.1.2 Radiological 75
4.4.1.3 Examination Under Anesthesia 75
4.4.2 Decision-Making 75
4.4.2.1 Stable Fractures 75
4.4.2.2 Unstable Fractures 75
4.4.3 Surgical Technique 80
4.4.3.1 Timing 80
4.4.3.2 Approaches 81
4.4.3.3 Reduction 82
4.4.3.4 Methods of Internal Fixation 83
4.4.3.5 Wound Closure 86
4.4.3.6 Postoperative Care 87

References 88

5 Fractures of the Humerus (12-A, B, and C)

J. Schatzker 91
5.1 Introduction 91
5.2 Indications for Surgery 91
5.2.1 Failure to Obtain a Satisfactory Reduction 91
5.2.2 Failure to Maintain Reduction 93
5.2.3 Injuries to the Chest Wall 93
5.2.4 Bilateral Humeral Fractures 93
5.2.5 Multiple Injuries 94
5.2.6 Vascular Lesions 94
5.2.7 Neurological Lesions 94
5.2.8 Fractures of the Shaft Associated with Intra-articular Fractures or Articular Extensions of the Fracture 95
5.2.9 Open Fractures of the Humerus 95
5.2.10 Pathological Fractures of the Humerus 95
5.3 Surgical Approaches 96
5.4 Surgical Methods of Stable Fixation 96
5.4.1 Biomechanical Considerations 96
5.5 Postoperative Regimen 102
5.6 Removal of Internal Fixation 102
References 102

6 Fractures of the Distal End of the Humerus (13-A, B, and C)

J. Schatzker 103
6.1 Introduction 103
6.2 Fractures with a Good Prognosis 103
6.2.1 Fractures of the Epicondyles 103
6.2.1.1 Fractures of the Lateral Epicondyle (13-A.1.1) 103
6.2.1.2 Fractures of the Medial Epicondyle (13-A.1.2) 103
6.2.1.3 Fractures of the Lateral Condyle (B1) 105
6.2.1.4 Fractures of the Capitellum (13-B.3.1) 105
6.3 Fractures with a Poor Prognosis: The Extra-Articular Group A2 and A3 and Complete Articular Type C 106
6.3.1 Supracondylar Fractures 106
6.3.1.1 Natural History 106
6.3.1.2 Factors Influencing Decisions in Treatment 108
6.3.1.3 Indications for Surgery 110
6.3.1.4 Surgical Treatment 110
References 120

7 Fractures of the Olecranon (12-B1)

J. Schatzker 123
7.1 Introduction 123
7.2 Methods of Evaluation and Guides to Treatment 124
7.3 Classification 124
7.3.1 Intra-articular Fractures 124
7.3.1.1 Transverse (21-B1.1) 124
7.3.1.2 Oblique (21–B1.1) 125
7.3.1.3 Comminuted Fractures and Associated Injuries 125
7.3.2 Extra-articular Fractures 126
7.4 Surgical Treatment 126
7.4.1 Positioning the Patient 126
7.4.2 Draping 126
7.4.3 Tourniquet 126
7.4.4 Surgical Exposure 127
7.4.5 Techniques of Reduction and Internal Fixation 127
7.4.5.1 Transverse Fractures 127
7.4.5.2 Transverse Fractures with Joint Depression 128
7.4.5.3 Oblique Fractures 128
7.4.5.4 Comminuted Fractures 129
7.5 Postoperative Care 129
References 129

8 Fractures of the Radial Head
(21-A2.2, 21-B2.1, 21-B2.2, and 21-B2.3)

J. Schatzker 131
8.1 Introduction 131
8.2 Mechanism of Injury 131
8.3 Guides to Treatment 131
8.4 Surgical Treatment 132
8.4.1 Classification 132
8.4.2 Positioning and Draping the Patient 133
8.4.3 Surgical Exposure 133
8.4.4 Techniques of Reduction and Internal Fixation 133
8.4.4.1 Comminuted Fractures 133
8.4.4.2 Split-Wedge Fractures 134
8.4.4.3 Impaction Fractures 134
8.4.5 Postoperative Care 135
References 135
9 Fractures of the Radius and Ulna
M. Tile 137

9.1 Introduction 137
9.2 Natural History 137
9.2.1 Closed Treatment 137
9.2.2 Open Treatment 137
9.2.3 AO/ASIF Techniques 137
9.3 Management 138
9.3.1 Principles 138
9.3.2 Indications for Surgery 138
9.3.2.1 Fractures of Both Bones 138
9.3.2.2 Fracture of One Bone 139
9.3.2.3 Open Fracture of the Forearm 140
9.3.3 Timing of Surgery 140
9.3.4 Surgical Technique 142
9.3.4.1 Preliminary Considerations 142
9.3.4.2 Surgical Approaches 142
9.3.4.3 Reduction Techniques 144
9.3.4.4 Technique of Fracture Fixation 147
9.4 Special Considerations 154
9.4.1 Fractures of Both Bones of the Forearm 154
9.4.2 Fractures of One Bone 155
9.4.2.1 Fractures of the Radius with Distal Radioulnar Subluxation (Galeazzi) 155
9.4.2.2 Fractures of the Ulna 156
9.4.3 Fractures of the Forearm in Adolescents 159
9.4.4 Open Fractures of the Forearm 162
9.5 Complications 164
9.5.1 Radioulnar Synostosis 164
9.5.2 Stress Fracture 164
9.5.3 Refracture and Plate Removal 165
9.6 References 166

10 Fractures of the Distal Radius
T. S. Axelrod 167

10.1 Distal Radius Fractures 167
10.1.1 Classification 168
10.1.2 Imaging 168
10.2 Overview of Treatment Options Based on Fracture Configuration 170
10.3 Closed Treatment 171
10.4 Operative Management of Distal Radius Fractures 171
10.4.1 Percutaneous Pinning 171
10.4.2 Pins and Plaster 171
10.4.3 External Skeletal Fixation 172
10.4.4 Limited Open Reduction 172
10.4.5 Open Reduction and Internal Fixation 173
10.5 Algorithm for Treatment 173
10.6 Surgical Technique 174
10.6.1 External Fixation Application 174
10.6.2 Limited Open Reduction 178
10.6.3 Open Reduction and Internal Fixation 178
10.6.3.1 Open Reduction and Internal Fixation of Shear Fractures (Volar Barton’s, Radial Styloid) 178
10.6.3.2 Open Reduction and Internal Fixation of Joint Compression Fractures (Die-Punch Fractures) 180
10.6.3.3 Shear Plus Compression 180
10.6.3.4 Multifragmentary Combined Fractures 181
10.7 The Distal Radioulnar Joint 183
10.8 Postoperative Care 187
10.9 Complications 187
10.9.1 Pin Site Infection 187
10.9.2 Median Nerve Compression 187
10.9.3 Reflex Sympathetic Dystrophy 187
10.9.4 Malunion of the Distal Radius 187
10.9.5 Nonunion of the Distal Radius 187
10.9.6 Posttraumatic Osteoarthritis of the Radiocarpal Joint 188
10.10 Conclusions 188

Part III Fractures of the Spine, Pelvis, and Acetabulum

11 Fractures of the Spine
R. Hu 193

11.1 Introduction 193
11.2 History 193
11.2.1 Internal Fixation and Fusion 193
11.2.2 Distraction Rod Fixation 194
11.2.3 Segmental Sublaminar Wires 194
11.2.4 Short-Segment Fixation 194
11.3 Initial Assessment and Management 195
11.3.1 Physical Examination 195
11.3.1.1 Neurological Examination 195
11.3.1.2 Sacral Reflexes 196
11.3.1.3 Corticosteroids 196
11.3.2 Initial Radiological Assessment 197
11.3.2.1 Plain Films and Tomography 197
11.3.2.2 Computed Tomography Scan 200
11.3.2.3 Myelography 200
11.3.2.4 Magnetic Resonance Imaging 201
11.4 Classification 203
11.5 Operative Decision-Making with Neurological and Biomechanical Goals 205
11.5.1 Indications 205
11.5.1.1 Does the Patient Have a Neurological Deficit? If so, to What Degree? 205
11.5.1.2 Are the Anterior Elements Intact? 206
11.5.1.3 Are the Posterior Elements Intact? 206
11.5.1.4 What Information to Assess with Imaging? 206
11.5.1.5 Will the Patient Tolerate Operative or Nonoperative Treatment? 206
11.6 Preparation for Surgery 207
11.6.1 Timing of Surgery 207
11.6.2 Patient Positioning 207
11.6.3 Intraoperative Blood Loss 208
11.7 Anatomy as Related to Surgical Approaches 208
11.7.1 Posterior Approach 208
11.7.1.1 Cervical Spine Posterior Approach 208
11.7.1.2 Cervical Spine Decompression 209
11.7.1.3 Thoracic Spine Posterior Approach 209

References 188
Part IV Fractures of the Lower Extremity

14 Subcapital and Intertrochanteric Fractures

J. Schatzker 343

14.1 Anatomy and Blood Supply 343
14.1.1 Cross-Sectional Anatomy of the Head 343
14.1.1.1 Neck Shaft Angle 343
14.1.2 Greater Trochanter 343
14.2 Blood Supply 344

14.2 Classification 344

14.3 Subcapital Fractures 345
14.3.1 Classification 345
14.3.2 History and Physical Examination 347
14.3.3 Imaging Techniques 347
14.3.3.1 X-Rays 347
14.3.3.2 Bone Scan 348
14.3.3.3 Computerized Axial Tomography 348
14.3.3.4 Magnetic Resonance Imaging 348
14.3.4 Surgical Treatment 348
14.3.4.1 Method of Reduction 348
14.3.4.2 Methods of Internal Fixation 350
14.3.4.3 Methods of Joint Replacement 352
14.3.5 Decision-Making 353
14.3.5.1 Undisplaced Fractures 353
14.3.5.2 Displaced Fractures 353
14.3.5.3 Special Fracture Situations 355
14.3.6 Postoperative Management 355
14.3.7 Complications 355
14.3.7.1 Nonunion 355
14.3.7.2 Avascular Necrosis and Loss of Fixation 356

14.4 Intertrochanteric Fractures 357
14.4.1 Surgical Anatomy and Classification 357
14.4.2 History and Physical Examination 358
14.4.3 Surgical Treatment 358
14.4.3.1 Reduction 359
14.4.3.2 Internal Fixation 359
14.4.4 Postoperative Management 361
14.4.5 Common Early and Late Postoperative Complications 362

References 365

15 Subtrochanteric Fractures of the Femur

J. Schatzker 367

15.1 Biomechanical Considerations 367
15.1.1 Mechanical Forces 367
15.1.2 Degree of Comminution 367
15.1.3 Level of the Fracture 368
15.1.4 Pattern of the Fracture 368
15.1.5 Deformity 368
15.2 Natural History 368
15.3 Indications for Open Reduction and Internal Fixation 369
15.4 Surgical Techniques 370
15.4.1 Diagnosis 370
15.4.2 Classification 370
15.4.3 Planning the Surgical Procedure 370
15.4.3.1 Implants 370
15.4.3.2 Preoperative Planning 376
15.4.4 Surgery 379
15.4.4.1 The Operating Table 379
15.4.4.2 Positioning the Patient 379
15.4.4.3 Surgical Approach for Plating 380
15.4.4.4 Technique of Insertion of Guide Wires and Insertion of the Fixation Devices 381
15.4.4.5 Bone Grafting 383
15.4.5 Postoperative Care 383
15.4.5.1 Signs of Instability 383
15.4.5.2 Infection 383

References 384

16 Fractures of the Femur

J. Schatzker 385

16.1 Introduction 385
16.2 Factors Important in Evaluating the Mode of Treatment 385
16.3 Surgical Treatment 386
16.3.1 Timing of Surgery 386
16.3.1.1 Multiple System Injuries 386
16.3.1.2 Head Injury 387
16.3.1.3 Open Fractures 388
16.3.1.4 Vascular Injury 388
16.3.1.5 Ipsilateral Neck Fracture or Dislocation of the Hip 388
16.3.1.6 Ipsilateral Fracture of the Femoral Shaft and Ligamentous Disruption of the Knee 388
16.3.1.7 Floating Knee Syndrome 389
16.3.1.8 Isolated Fractures of the Femoral Shaft 389
16.3.2 Surgical Technique 389
16.3.2.1 Positioning the Patient, Skin Preparation, and Draping 389
16.3.2.2 Surgical Approach 389
16.3.2.3 Technique of Open Reduction 390
16.3.2.4 Technique of Fracture Fixation 392
16.3.2.5 Bone Grafting 405
16.3.2.6 Wound Closure 405
16.3.3 Postoperative Care 405
16.4 Special Considerations: Open Fractures of the Femur 405

References 406

17 Supracondylar Fractures of the Femur (33-A, B, and C)

J. Schatzker 409

17.1 Introduction 409
17.2 Guides to Treatment and Indications for Surgery 411
17.2.1 Absolute Indications 412
17.2.1.1 Intra-articular Fractures in Which Adequate Joint Congruity Cannot Be Restored by Manipulation 412
17.2.1.2 Open Intra-articular Fractures 413
17.2.1.3 Associated Neurovascular Injuries 413
17.2.1.4 Ipsilateral Fracture of the Tibial Plateau or Patellar Fracture 414
17.2.1.5 Ipsilateral Fracture of the Tibia (the Floating Knee) 414
17.2.1.6 Multiple Injuries 414
17.2.1.7 Pathological Fractures 414
17.2.2 Relative Indications 414
17.3 Surgical Treatment 414
17.3.1 Timing of Surgery 414
17.3.2 History and Physical Examination 415
17.3.3 Radiological Examination 415
17.3.4 Classification 415
17.3.5 Planning the Surgical Procedure 416
17.3.6 Surgical Anatomy of the Distal Femur 417
17.3.7 Positioning and Draping the Patient 419
17.3.8 Surgical Exposure 419
17.3.8.1 Lateral Exposure 419
17.3.8.2 Anterior Exposure 420
17.3.9 Techniques of Reduction and Internal Fixation 421
17.3.9.1 Type A Fractures 421
17.3.9.2 Type B Fractures 426
17.3.9.3 Type C Fractures 427
17.3.9.4 Minimally Invasive Plate Osteosynthesis, the Condylar LCP and LISS 429
17.3.9.5 The Open Supracondylar Fracture 434
17.3.10 Bone Grafting 436
17.3.11 Methyl Methacrylate 436
17.4 Postoperative Care 437
17.5 Complications 437
17.6 Conclusions 438
References 439

18 Fractures of the Patella
J. Schatzker 441
18.1 Introduction 441
18.2 Methods of Evaluation and Guides to Treatment 441
18.3 Classification 441
18.3.1 Osteochondral Fractures 441
18.3.2 Stellate Fractures 441
18.3.3 Transverse Fractures 442
18.3.4 Multifragmentary Displaced Fractures 442
18.4 Surgical Treatment 442
18.4.1 Undisplaced Fractures 442
18.4.2 Displaced Fractures 442
18.4.2.1 Surgical Approaches 443
18.4.2.2 Biomechanical Considerations 443
18.4.2.3 Techniques of Internal Fixation 443
18.5 Postoperative Care 444
References 445

19 Fractures of the Tibial Plateau
J. Schatzker 447
19.1 Introduction 447
19.2 Classification and Guides to Treatment 448
19.2.1 Type I (41-B1) 448
19.2.2 Type II (41-B3.1) 449
19.2.3 Type III (41-B.2) 450
19.2.4 Type IV (41-B1, 41-B2, and 41-B3) 451
19.2.5 Type V (41-C1) 453
19.2.6 Type VI 454
19.2.7 Relationship of the Comprehensive Classification to the Six Fracture Types 455
19.2.8 Absolute Indications for Surgery 455
19.2.8.1 Open Fractures 455
19.2.8.2 Acute Compartment Syndrome 455
19.2.8.3 Associated Vascular or Neurological Injury 455
19.3 Methods of Assessment 456
19.3.1 History 456
19.3.2 Physical Examination 457
19.3.3 Radiological Examination 457
19.4 Surgical Treatment 458
19.4.1 Planning the Surgical Procedure 458
19.4.2 Approaches 458
19.4.3 Positioning the Patient 461
19.4.4 Timing the Surgical Procedure 461
19.4.5 Methods of Open Reduction and Internal Fixation 462
19.4.6 Internal Fixation of Different Fracture Types 465
19.4.6.1 Type I 465
19.4.6.2 Type II 465
19.4.6.3 Type III 465
19.4.6.4 Type IV 465
19.4.6.5 Type V 466
19.4.6.6 Type VI 466
19.4.7 Ligament and Meniscal Repair 467
19.4.8 Postoperative Care 467
19.5 Summary and Conclusions 468
References 469

20 Fractures of the Tibia
M. Tile 471
20.1 Introduction 471
20.2 Natural History 471
20.2.1 Nonoperative School 472
20.2.2 Operative School 473
20.2.3 Plaster Disease 474
20.2.3.1 Compartment Syndromes 474
20.2.3.2 Reflex Sympathetic Dystrophy 475
20.2.3.3 Thromboembolic Disease 475
20.2.3.4 Severe Soft Tissue Injury 476
20.2.4 Factors Influencing the Natural History 476
20.2.4.1 Pathoanatomy of the Fracture 476
20.2.4.2 Soft Tissue Injury 478
20.2.4.3 Other Injuries to the Limb 478
20.2.4.4 Patient Factors 478
20.2.4.5 The Health Care Team 479
20.2.5 Summary 479
20.3 Assessment 479
20.3.1 Clinical Assessment 479
20.3.1.1 History 479
20.3.1.2 Physical Assessment 479
20.3.2 Radiological Assessment 481
20.4 Management 482
20.4.1 Decision-Making 482
20.4.2 Postoperative Treatment 482
20.4.3 Indications for Surgery 483
20.4.3.1 Primary Indications 484

References 469

D. Stephen 523

21.1 Introduction 523

21.2 Overview 523
21.2.1 Nature of the Injury 523
21.2.1.1 Axial Compression 523
21.2.1.2 Shear (Tension) 524
21.2.1.3 Combined 525
21.2.2 State of the Bone 526
21.2.3 State of the Soft Tissues 526
21.2.4 Technical Difficulties 527
21.2.5 The Dilemma 526
21.2.6 Summary 528

21.3 Classification 529
21.3.1 Comprehensive Classification 529
21.3.2 Use of Classification in Decision-Making 529
21.3.2.1 Fibula 529
21.3.2.2 Articular Surface of the Tibia 529
21.3.2.3 Distal Tibial Metaphysis 529
21.3.3 Personality of the Fracture 531

21.4 Assessment 534
21.4.1 Clinical 534
21.4.2 Radiological 534

21.5 Indications for Surgery 534
21.5.1 Minimal Displacement 534
21.5.2 Significant Displacement 535
21.5.2.1 Operable 536

21.6 Surgical Technique 537
21.6.1 Timing 537
21.6.2 Approach 539
21.6.2.1 Soft Tissue 539
21.6.2.2 Skeletal Tissue 539
21.6.3 Technique of Internal Fixation 540
21.6.3.1 Without Fibular Fracture 540
21.6.3.2 With Fibular Fracture 540
21.6.4 Wound Closure 545
21.6.5 Postoperative Care 546
21.6.5.1 Early 546
21.6.5.2 Late 547

21.7 Common Pitfalls of Treatment 547
21.7.1 Poor Decision-Making 547
21.7.2 Operating Through Poor Skin 547
21.7.3 Technical Difficulties with the Fibula 547

21.8 Late Reconstruction: Malunion 548

References 550

22. Fractures of the Ankle

M. Tile 551

22.1 Introduction 551

22.1.1 Basic Principles 551
22.1.2 Anatomical Considerations 551
22.1.2.1 Stability 551
22.1.2.2 Congruity 551
22.1.2.3 Physiology 552
22.1.2.4 Pathoanatomy 552
22.1.3 Natural History 554
22.1.4 Mechanism of Injury 557
22.1.4.1 Supination–Adduction 557
22.1.4.2 Eversion–Abduction 558

22.2 Classification 559
22.2.1 Introduction 559
22.2.2 Comprehensive Classification (Fig. 22.14) 561
22.2.2.1 Type A 562
22.2.2.2 Type B 562
22.2.2.3 Type C 563
22.2.2.4 Isolated Medial Malleolar Fracture 564

22.3 Assessment of Stability 564

22.3.1 Clinical Assessment 564
22.3.1.1 History 564
22.3.1.2 Physical Examination 565
22.3.2 Radiological Assessment 565
22.3.2.1 Lateral Complex: Fibula and Tibiofibular Syndesmosis 566
22.3.2.2 Talus 568
22.3.2.3 Posterior Tibial Process 568
22.3.2.4 Medial Complex 568

22.4 Management 569
22.4.1 Decision-Making 569
22.4.1.1 Type A 569
22.4.1.2 Types B and C 570
22.4.1.3 Isolated Medial Malleolar Fracture 571
22.4.2 Surgical Technique 571
22.4.2.1 Tourniquet 571
22.4.2.2 Timing 573
22.4.2.3 Incisions 573
22.4.2.4 Open Reduction and Internal Fixation 574
22.4.3 Wound Closure 584
22.4.4 Postoperative Program 584
22.4.4.1 Immediate Management 584
22.4.4.2 Early Motion 584

22.5 Special Problems in Ankle Fractures 584
22.5.1 Open Ankle Fractures 584
22.5.2 Ankle Fractures in the Elderly 585
22.5.3 Primary Ankle Arthrodesis 586
22.5.4 Fibular Lengthening for Malunion 586
22.5.5 Supramalleolar Osteotomy 587
22.5.6 Ankle Fractures in Adolescents 587

References 589
Part I

General Aspects of Internal Fixation
1 Principles of Internal Fixation

J. Schatzker

1.1 Introduction

1.1.1 Mechanical Properties of Bone

The principal mechanical function of bone is to act as a supporting structure and transmit load. The loads which bone has to withstand are those of pure compression, those of bending, which result in one cortex being loaded in tension and the other in compression, and those of torque, or twisting. Bone is strongest in compression and weakest in tension. Fractures as a result of pure compression are therefore rare and occur only in areas of cancellous bone with a thin cortical shell. Thus, we find pure compression fractures in such areas as the metaphyses, vertebral bodies, and the calcaneus. Transverse, oblique, and spiral are the fracture patterns commonly seen in tubular bone.

Transverse fractures are the result of a bending force (Fig. 1.1). They are associated with a small extrusion wedge that is always found on the compression side of the bone. If this extrusion wedge comprises less than 10% of the circumference, the fracture is considered a simple transverse fracture. If the extruded fragment is larger, the fracture is considered a wedge fracture, and the fragment a bending or extrusion wedge. Because it is extruded from bone under load, it retains little of its soft tissue attachment and has therefore, at best, a precarious blood supply. This must be kept in mind when planning an internal fixation. Attempts to secure fixation with lag screws of such extruded fragments may result in their being rendered totally avascular. If the extruded wedge is very small, as in fractures of the radius and ulna, they may be ignored. If larger, as in fractures of larger tubular bones, it is best to leave them alone and use indirect reduction techniques to preserve whatever blood supply remains, and either use a locked intramedullary nail for fixation, or if this is not possible, a bridge plate.

Oblique fractures are also the result of a bending force. The extrusion wedge remains attached to one of the main fragments. The fissure between it and the main fragment is not visible on X-ray. If looked for at the time of an open reduction, it can often be found. During closed intramedullary nailing this undisplaced extrusion wedge is often dislodged and becomes apparent on X-ray.

Spiral fractures are the result of an indirect twisting force (Fig. 1.1). They often occur in combination with spiral wedge fragments of corresponding configuration. These fragments are larger and retain their soft tissue attachment. It is frequently possible to secure them with lag screws without disrupting their blood supply.
supply. These differences in the degree of soft tissue attachment and preserved blood supply are important to consider in the choice of internal fixation. If one is dealing with a spiral wedge or a very large extrusion wedge, then their soft tissue attachment and blood supply will likely be preserved, and an attempt at absolutely stable fixation with lag screws would not render them avascular. If on the other hand the extrusion wedge is small or if the wedge is fragmented or if one is dealing with a complex fracture, it is best not to attempt absolutely stable fixation but resort to splinting and secure the fracture with a bridge plate. These remarks apply, of course, to fractures in metaphyseal areas. Diaphyseal fractures are nailed by preference except in the forearm and humerus.

1.1.2 Types of Load and Fracture Patterns

Bone is a viscoelastic material. Fractures are therefore related not only to the force but also to the rate of force application. Much less force is required to break the bone if the force is applied slowly and over a long period of time than if it is applied rapidly: bone is better able to withstand the rapid application of a much greater force. This force is stored, however, and when the bone can no longer withstand it and finally breaks, it is dissipated in an explosive and implosive fashion, causing considerable damage to the soft tissue envelope. A good example of this is the skier who walks away from a spectacular tumble, only to break his leg in a slow, twisting fall. The amount of energy and the rate of force application are important factors since they determine the degree of associated damage to the soft tissue envelope. We therefore distinguish between low- and high-velocity injuries.

Low-velocity injuries have a better prognosis. They are more commonly the result of an indirect force application such as a twist, and the associated fractures are spiral and the comminution is rarely excessive. In high-velocity injuries the fractures are not only more fragmented but also associated with a much greater damage to the enveloping soft tissues, because of the higher energy dissipation and because of the direct application of force.

1.1.3 Classification of Fractures

The classification of fractures followed in this book is based on the *Comprehensive Classification of Fractures of Long Bones* (Müller et al. 1990). The unique feature of this system of classification is that the principles of the classification and the classification itself are not based on the regional features of a bone and its fracture patterns nor are they bound by convention of usage or the popularity of an eponym. They are generic and apply to the whole skeleton. The philosophy guiding the classification is that a classification is worthwhile only if it helps in evolving the rationale of treatment and if it helps in the evaluation of the outcome of the treatment (Müller et al. 1990). Therefore the classification must indicate the severity of the fracture, which in this classification indicates the morphological complexity of the fracture, the difficulties to be anticipated in treatment, and its prognosis. This has been accomplished by formulating the classification on the basis of repeating triads of fracture types, their groups and subgroups, and by arranging the triads and the fractures in each triad in an ascending order of severity. Thus there are three fracture types A, B, and C in ascending order of severity. Each fracture type has three groups, A1, A2, and A3, B1, B2, and B3, and C1, C2, and C3, and each group three subgroups, A1.1, A1.2, etc. The groups and the subgroups are also organized in an ascending order of severity (please see Fig. 1.2). This organization of fractures in the classification in an ascending order of severity has introduced great clinical significance to the recognition of a fracture type. The identification of the Type indicates immediately the severity.

The classification considers a long bone to have a diaphyseal segment and two end segments (Figs. 1.3, 1.4). Because the distinction between the diaphysis and the metaphysis is rarely well defined anatomically, the classification makes use of the rule of squares to define the end segments with great precision (Fig. 1.4). The location of the fracture has also been simplified by noting the relationship that the center of the fracture bears to the segment.

The authors of the *Comprehensive Classification of Fractures of Long Bones* have also developed a new terminology that is so precise that it is now possible to describe a fracture verbally with such accuracy that its pictorial representation is superfluous. The new precise terminology divides fractures into simple and multifragmentary (Fig. 1.5). The multifragmentary fractures are further subdivided into wedge and complex fractures, not on the basis of the number of fragments, but rather on the key issue of whether after reduction the main fragments have retained contact or not. In treatment this is, indeed, the essence of severity. Thus, a multifragmentary fracture with some contact between the main frag-
ments is considered a wedge fracture. It has a recognizable length and rotational alignment. This is lost in a complex fracture where contact between the main fragments cannot be established after reduction (Fig. 1.6). Articular fractures are defined as those that involve the articular surface regardless of whether the fracture is intracapsular or not. A further distinction exists between partial and complete articular fractures (Fig. 1.7).

The diagnosis of a fracture is given by coupling the location of the fracture with its morphologic complexity. To facilitate computer entry and retrieval of the cases, an alphanumeric code has been created. Computers deal with numbers and letters better than with words. The bones of the skeleton have been assigned numbers (Fig. 1.8). The segments are numbered from one to three proceeding from proximal to distal. Thus it is possible to express the location of a fracture by combining the number of the bone with the number expressing the involved segment: for instance, a fracture of the proximal segment of the humerus would be 11- and a fracture of the distal femur would be 33-. The morphological nature of the fracture is expressed by the combination of the letters

\[\text{Fig. 1.2.} \text{ The scheme of the classification of fractures for each bone segment or each bone. Types: } A, B, C; \text{ Groups: } A1, A2, A3, B1, B2, B3, C1, C2, C3; \text{ Subgroups: } .1, .2, .3. \text{ The darkening of the arrows indicates the increasing severity of the fracture. Small squares: The first two give the location, the next three the morphological characteristics of the fracture. (From Müller et al. 1990)} \]

\[\text{Fig. 1.3.} \text{ The long bone. 1, Humerus; 2, radius/ulna; 3, femur; 4, tibia/fibula. The blackened square indicates the portion of the alphanumeric code being illustrated. (From Müller et al. 1990)} \]
1.1 Introduction

A, B, and C, which denote the Type; with the numbers 1, 2, and 3, such as A1, A2, A3, B1, B2, etc., to denote the Groups, and A1.1, A1.2, A1.3, B1.1, B1.2, etc., to denote the Subgroups. The diagnosis can be coded using an alphanumeric code (Fig. 1.9). As stated, this alphanumeric code is intended strictly for computer entry and retrieval and not for use in verbal communication. In verbal communication the clinician should use the terminology which is so precise that it describes the full essence of the fracture, making a pictorial representation of the fracture no longer necessary.

We have validated this fracture classification in two separate clinical studies (J. J. Schatzker and P. Lichtenhahn, unpublished data; J. Schatzker and H. Tornkvist, unpublished data). The inter- and intraobserver concordance has been evaluated for fracture types, groups, and subgroups. Concordance for fracture types was close to 100%, for fracture groups between 80% and 85%, but for fracture subgroups only between 50% and 60%. We feel, therefore, that the clinician should rely principally on the recognition of the fracture types and groups. Classification into fracture subgroups should be reserved only for research studies.

The issue of intra- and interpersonal reliability of classification systems has received a great deal of attention in the recent literature. The authors of these articles fail to discern the essence of the cause of the high discordance. The discordance is either the result of the classifier not knowing the classification system or because the classifier lacked essential data, or relied on pictorial representation of the different fractures, and had no method available to check whether all the essential information was available at the time the fracture was being classified. In order to provide the classifier with a check list of essential data which must be available before a fracture can be classified, the authors of the Comprehensive Classification System have developed a system of binary questions which allow the classifier to determine with precision whether all the essential data necessary to classify a fracture are available. If not, further imaging may be necessary before the classification can be attempted. At times essential information, for instance the damage to the articular cartilage of the femoral head in an acetabular fracture, may not be available until the surgery has been completed.

The Comprehensive Classification System has been adopted by both the Arbeitsgemeinschaft für Osteo-

![Fig. 1.4. The determination of the segments of long bones. The different squares are parallel to the long axis of the body and correspond to the end segments. The malleolar segment (44-) is not represented here as it cannot be compared with the other end segments: 11-, 12-, 13-, 21-, 22-, 23-, 31-, 32-, 33-, 41-, 42-, 43-. (From Müller et al. 1990)
Synthesefragen/Association for the Study of Internal Fixation (AO/ASIF) and Orthopaedic Trauma Association (OTA) as their classification systems. Currently these groups are attempting to complete the classification of fractures and dislocations not included in the published version of the Comprehensive Classification System and to subject their efforts to clinical validation.

The classification of the soft tissue injury associated with open fractures continues to be a problem requiring further elaboration. Many observers have attempted to grade open fractures (Allgöwer 1971; Gustilo and Andersson 1976; Tscherne and Gotzen 1984; Lange et al. 1985). A further classification of the soft tissue component of an injury was presented in the third edition of the Manual of Internal Fixation (Müller et al. 1991). In this most recent attempt a code for the injury is assigned to each of the elements of the soft tissue envelope rather than using an existing classification system. A new classification scheme which would characterize the morphological components of the soft tissue injury, identify its severity, and indicate the potential functional loss in a simple and comprehensive manner, and which could be expressed in a simple code, would be of great value clinically and in research.

Fig. 1.5. The diaphyseal fracture types. A, simple fracture; B, wedge fracture; C, complex fracture. (From Müller et al. 1990)

Fig. 1.6. The groups of the diaphyseal fractures of the numberus, femur, and tibia/fibula. A1, simple fracture, spiral; A2, simple fracture, oblique (L30°); A3, simple fracture, transverse (<30°); B1, wedge fracture, spiral wedge; B2, wedge fracture, bending wedge; B3, wedge fracture, fragmented wedge; C1, complex fracture, spiral; C2, complex fracture, segmental; C3, complex fracture, irregular. (From Müller et al. 1990)
1.1.4 Effects of Fracture

When a bone is fractured, it loses its structural continuity. The loss of the structural continuity renders it mechanically useless because it is unable to bear any load.

1.1.5 Soft Tissue Component and Classification of Soft Tissue Injuries

We have alluded to the poorer prognosis of high-velocity injuries because of the greater damage to the soft tissue envelope and to the greater devitalization of the involved bone. Long-term disability following a fracture is almost never the result of damage to the bone itself; it is the result of damage to the soft tissues and of stiffness of neighboring joints.

In a closed fracture the injury to the surrounding tissue evokes an acute inflammatory response, which is associated with an outpouring of fibrinous and proteinaceous fluid. If, after the injury, the tendons and muscles are not encouraged to glide upon one another, inflammation may develop and lead to the obliteration of tissue planes and to the matting of the soft tissue envelope into a functionless mass.

In an open fracture, in addition to the possible scarring from immobilization, there is direct injury to the muscles and tendons and in such cases the effects of infection must be reckoned with. Indeed, infection is the most serious complication of trauma because, in addition to the scarring related to the
Principles of Internal Fixation

1.2 Aims of Treatment

The loss of function of the soft tissue envelope due to scarring and secondary joint stiffness can only be prevented by early mobilization. Thus, modern fracture treatment does not focus on bone union at the expense of function but addresses itself principally to the restoration of function of the soft tissues and adjacent joints. A deformity or a pseudarthrosis is relatively easy to correct in the presence of good soft tissue function, while scarring, obliteration of the soft tissue gliding planes, and joint stiffness are often permanent. The modern fracture surgeon will therefore direct treatment to the early return of function and motion, with bone union being considered of secondary importance.

Modern functional fracture treatment does not denote only operative fracture care. It makes use of specialized splinting of the bone in special braces that allow an early return of function and motion. There are, however, limitations to the nonoperative system, which we will address as we discuss the different frac-
tures. It can be applied to fractures where angulation, rotation, and shortening can be controlled. Thus, it is limited only to certain long bone fractures. Its application to intra-articular and periarticular fractures is very limited.

Early return of full function following fracture can be achieved only by sufficiently stable internal fixation which will abolish fracture pain and which will allow early resumption of motion with partial loading without the risk of failure of the fixation and resultant malunion or nonunion. With non-functional methods full return of function is rarely achieved, and then only after a prolonged rehabilitation period.

1.3 Previous Experience with Internal Fixation

Internal fixation is not a new science. The first half of the twentieth century has provided us with ample documentation of the results of unstable internal fixation. Surgery has frequently proved to be the worst form of treatment. It destroyed the soft tissue hinges, interfered with biological factors such as the blood supply and the periosteum, and was never sufficiently strong or stable to permit active mobilization of the limbs with partial loading. Supplemental external plaster fixation was often necessary. The emphasis was on bone healing and not on soft tissue rehabilitation. Healing became evident when callus appeared. Unfortunately, unstable internal fixation was unpredictable and uncertain, and it frequently resulted in delayed union, nonunion, or deformity. When union did occur, instead of signifying the end of treatment it merely signaled the beginning of a prolonged phase of rehabilitation designed to regain motion in the soft tissue envelope and in the stiff joints. The ravages of this prolonged nonfunctional form of treatment were such that open reduction and internal fixation were looked upon as the last resort in the treatment of a fracture.

1.4 Rigidity and Stability

It is important to distinguish between rigidity and stability. Rigidity is the physical property of an implant. It refers to its ability to withstand deformation. Thus, in an internal fixation the fixation devices employed may be rigid but the fixation of the fragments may be unstable.

The introduction of compression introduced stability. Stability was achieved not by rigidity of the implant, but rather by impaction of the fragments. The intimate contact of the fragments brought about by compression restored structural continuity and stability and permitted the direct transfer of forces from fragment to fragment rather than via the implant. Stable fixation restores load-bearing capacity to bone. This greatly diminishes the stresses borne by the implant and protects the implant from mechanical overload or fatigue failure.

Key (1932) and Charnley (1953) were the first to make use of compression in order to achieve stable fixation. Both applied it to broad cancellous surfaces by means of an external compression clamp. Similar attempts to achieve union of the cortex failed. The resorption around the pins of the external fixator employed to stabilize the cortical fragments was thought to be due to pressure necrosis of the cortex. Cancellous surfaces under compression united rapidly, and it was thought initially that compression provided an osteogenic stimulus to bone. The failure of the cortex to unite led to general acceptance of the thesis that cancellous and cortical bone behaved differently and that they probably united by different mechanisms.

Since then it has been demonstrated that, under conditions of absolute stability, both cancellous and cortical fragments heal by what has been referred to as primary direct or vascular bone union (primary bone healing). The simple external fixator of Charnley, applied closely to broad, flat cancellous surfaces of an arthrodesis, was able to achieve absolute stability. The same system applied to diaphyseal bone, where tubular fragments rather than broad, flat surfaces were in contact, resulted in a system of relative instability with micromotion between the fragments. The resorption around the pins and at the fracture was due to motion and not due to pressure necrosis.

Danis in 1949 (Müller et al. 1970) was the first to demonstrate that cortical fragments stabilized by a special plate, which was able to exert axial compression and bring about absolute stability at the fracture, united without any radiologically visible callus. Danis referred to this type of union as “primary bone healing.” Studies on experimental models of healing under conditions of absolute stability by Schenk and Willenegger (1963) revealed a different type of union than that commonly associated with the healing of fractures. Union seemed to occur by direct formation of bone rather than by callus and endochondral ossi-