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Food production will need to keep increasing substantially to meet the demands 
of the world’s population, which is projected to increase to 8 billion people 
within the next two decades. Current levels of food production will require 
doubling by 2030, not only because of the sheer magnitude of the population 
increase, but also due to increased expectations in many countries as regards 
diet quality and quantity. This required increase in food production will place 
significant pressure on existing food-producing ecosystems as well as on their 
surrounding environments.

Environmental concerns, including conservation of natural ecosystems as 
well as sustainability of managed ecosystems in agriculture, horticulture, for-
estry and similar economic activities, have attracted increasing attention around 
the world in recent decades. A principle that is paramount in ensuring the health 
and sustainability of ecosystems is nutrient cycling in the soil–water–microbe–
plant–animal continuum. Nutrient cycling in the majority of food- and fibre-
producing ecosystems depends on the addition of fertilisers. However, most 
fertilisers are produced from natural minerals, which represent a finite resource. 
While predictions on how much time we have before such resources run out 
differ substantially depending on underlying assumptions, we can conclude that 
for some nutrients (e.g. phosphorus) estimates about longevity of economically 
viable mineral sources are in terms of decades rather than centuries. Hence, a 
knowledge of cycling of nutrients in the environment is essential in our attempts 
to efficiently utilise the finite resources of our planet.

Nutrient Cycling in Terrestrial Ecosystems covers important aspects of nutrient 
cycling at two different scales: (1) on a small scale and more fundamental sci-
entific level, to present the current state of understanding of processes involved 
in cycling of nutrients from organic matter and other sources; and (2) at a large 
(whole-ecosystem) scale, describing cycling of nutrients and relevant impacts in 
situ as well as in the surrounding environment. The first part of the book covers 
cycling of carbon (Chapter 1), nitrogen (Chapter 2), phosphorus and sulphur 
(Chapter 3) and micronutrients (Chapter 4), paying particular attention to the 
role of root exudates (Chapter 5) and rhizosphere microorganisms (Chapter 6)
in facilitating nutrient cycling. In the second part of the book, the authors cover 
nutrient cycling from the standpoint of the complexity of various ecosystems, 
emphasising cropping systems (Chapter 7), pastures (Chapter 8), natural grass-
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lands (Chapter 9), arid lands (Chapter 10), tundras (Chapter 11) and forests 
(Chapter 12). Finally, Chapter 13, on modelling of nutrient cycling, integrates 
available knowledge on fundamental processes as well as on how these processes 
interact at the ecosystem level.

In covering a range of scales, and in emphasising the multidisciplinary ap-
proaches essential to increasing the understanding of the underlying processes 
and devising practical approaches for maintaining healthy nutrient cycling in 
native and sustainable managed ecosystems, this book will support scientists 
and practitioners alike, as well as demonstrating that improving sustainable eco-
nomic output from managed ecosystems and conservation of natural ecosys-
tems are inseperably linked.

All chapters have been reviewed according to the standards of international 
scientific journals. We would like to thank the authors for patiently revising the 
chapters, sometimes repeatedly, to meet these high standards. We would also 
like to express our thanks to the Editor-in-Chief, Prof. Ajit Varma, and to Jutta 
Lindenborn of Springer for their dedication, patience and diligence in the pro-
duction of this book.

Adelaide and Perth Petra Marschner
Australia August, 2006 and Zed Rengel
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1.1
Introduction

Soil organic carbon (SOC) represents a significant reservoir of carbon within 
the global carbon cycle that has been estimated to account for 1,200–1,550 Pg C 
to a depth of 1 m and for 2370–2450 Pg C to a depth of 2 m (Eswaran et al. 
1995; Lal 2004a). Comparative estimates of organic C contained in living bio-
mass (560 Pg) and atmospheric CO2-C (760 Pg) (Lal 2004a) indicate that varia-
tions in the size of the SOC store could significantly alter atmospheric CO2-C
concentrations. A 5% shift in the amount of SOC stored in the 0–2 m soil profile 
has the potential to alter atmospheric CO2-C by up to 16%.

Land-use change can induce emission or sequestration of carbon depending 
on a range of soil and environmental properties and land management prac-
tices. Carbon sequestration in soils is a slow process but may offer the most 
efficient natural strategy for offsetting increased atmospheric CO2-C concentra-
tions induced by fossil fuel burning and conversion of natural terrestrial systems 
to agriculture (Lal 2004a; Metting et al. 1999; Post et al. 1999). It has been sug-
gested that, over the next century, improved land management strategies could 
sequester up to 150 Pg CO2-C (Houghton 1995; Lal 2004b; Lal et al. 1998); how-
ever, considerable uncertainty exists in such estimates because of an inability to 
accurately predict the total carbon sequestration potential of soils. Improving 
our understanding of SOC cycling processes and how these are affected by land 
management practices will be important to defining future opportunities for 
carbon sequestration in soils.

In addition to its importance in the global carbon cycle, SOC contributes 
positively to a range of biological, physical and chemical properties important 
to defining the potential productivity of a soil (Baldock and Skjemstad 1999; 
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Reeves 1997). SOC provides the energy essential to biological processes and, 
when considered in combination with its associated nutrients (N, P and S), can 
contribute to the resilience of soil/plant systems. Soil physical properties influ-
enced by SOC content include soil structural form and stability, water retention, 
and thermal properties. SOC also contributes to defining the cation exchange 
and buffer capacities of soils. The amount and form of SOC required to make 
significant contributions to these soil properties varies with the property being 
considered and the soil type (Baldock and Skjemstad 1999). For example, more 
carbon may be required to maintain the structural stability of a sandy-loam soil 
than in a self-mulching clay, yet in terms of provision of energy or nutrient min-
eralisation, more SOC may be required in the clay-rich soil. Likewise, pieces of 
plant debris with a high C/N ratio (>40) are likely to have a different effect on 
net nutrient mineralisation during decomposition processes than well decom-
posed materials with a low C/N ratio (<40).

Understanding the dynamics of SOC, both in its entirety and its various com-
ponents, and the influence of environmental and soil properties is essential to 
adequately characterise the effects of management and land use on fluxes of 
carbon and soil productivity. In this chapter, the composition of SOC and the 
factors that define the biological stability and cycling of SOC will be examined. 
Given this scope, it would not be possible to present an exhaustive review of all 
relevant studies. Instead, the objective of this chapter was to identify the major 
soil and environmental properties and processes that influence SOC cycling and 
provide references that can act as a starting point for further exploration of the 
concepts presented.

1.2
Composition of Soil Organic Carbon

SOC exists as a heterogeneous mixture of a wide range of organic materials, 
including individual simple molecules (amino acids, monomeric sugars, etc.), 
polymeric molecules (e.g. cellulose, protein, lignin, etc.), and pieces of plant 
and microbial residues composed of a mixture of simple and polymeric mol-
ecules bound together into recognisable cellular structures. Plant and microbial 
residues represent the major parent material from which SOC is formed. The 
chemical composition of these residues has been reviewed by Kögel-Knabner 
(2002). Each molecular form of SOC can exist along a continuum from fresh 
unaltered materials through to materials whose chemical composition has been 
significantly altered by decomposition processes. In this chapter the term SOC 
is hereafter used to refer to the entire organic fraction of soils, and various SOC 
components are defined as delineated by Baldock and Nelson (2000).

Given the compositional variability of SOC, different components of SOC 
will accumulate or be lost at different rates depending on their accessibility to 
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decomposition and/or biological stabilisation. Changes in SOC content with 
time therefore represent the weighted average change in contents of all SOC 
components. Radiocarbon dating (e.g. Anderson and Paul 1984) and isotopic 
labelling (e.g. Ladd et al. 1981) experiments clearly demonstrated that differ-
ent components of SOC turn over at different rates. A variety of chemical and 
physical fractionation procedures has been developed in an attempt to isolate 
and characterise relatively “homogeneous” fractions of SOC that exhibit differ-
ent biological stability.

1.2.1
Chemical Fractionation of SOC

Early attempts at fractionating SOC were chemically based and involved the use 
of alkaline extraction followed by acidic precipitation (Muller 1887). This frac-
tionation scheme continues to be used to partition SOC into fractions referred 
to as humic acids, fulvic acids and humin on the basis of solubility in alkaline 
and then acidic solutions. Radiocarbon dating of SOC in a chernozem revealed 
that humin and humic acid fractions were older and the fulvic acid fraction 
was younger than intact SOC (Campbell et al. 1967). Given the mode of extrac-
tion and isolation of humic materials from soil and the potential for a variety 
of inter- and intra-molecular interactions to occur after acidifying alkaline ex-
traction solutions, the probability of mixing older and younger organic species 
during extraction is high, and complete segregation on an age basis can not be 
expected.

A second form of chemical fractionation uses various extraction or degra-
dative methodologies considered to be “selective” for given molecular compo-
nents. Such methodologies are used to identify fractions of SOC with different 
susceptibilities towards mineralisation based on differences in chemical recalci-
trance. Hydrolysis with 6 M HCl or methanesulfonic acid can be used to quan-
tify the proportion of SOC associated with proteins, amino acids and amino 
sugars (Appuhn et al. 2004; Friedel and Scheller 2002; Martens and Loeffelmann 
2003). Hydrolysis with sulphuric acid has been used to quantify the fraction of 
SOC attributable to carbohydrate structures (Martens and Loeffelmann 2002; 
Rovira and Vallejo 2000). The proportion of lignin in SOC has been quantified 
using a variety of methods that attempt to either isolate the intact lignin mol-
ecule (Tuomela et al. 2000) or quantify the monomeric species released (Chefetz 
et al. 2002; Leifeld and Kögel-Knabner 2005). A range of organic solvent extrac-
tion techniques have been developed to quantify the amount of lipid and lipid-
like carbon in soils (Poulenard et al. 2004; Rumpel et al. 2004). 

Although these molecular extraction or degradation methods are capable of 
identifying relative differences between different samples of SOC, due to incom-
plete extraction and non-selective action, absolute quantities should be consid-
ered as approximate. This issue is well exemplified by the work of Preston et 
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al. (1997), where a combination of extraction and degradation techniques were 
used in a “proximate” analysis procedure to fractionate carbon associated with 
various types of litter. 13C NMR spectroscopy clearly demonstrated that the Kla-
son lignin fraction contained significant amounts of non-lignin carbon.

Chemical fractionation procedures have also been used to allocate SOC to la-
bile and recalcitrant fractions without attempting to define molecular composi-
tion. Two examples are the use of HCl hydrolysis and permanganate oxidation. 
In HCl hydrolysis, carbon retained in the residue after hydrolysis is considered 
recalcitrant, whilst carbon contained in the hydrolysate is considered labile. This 
was substantiated by radiocarbon dating HCl hydrolysis residues of 65 surface 
and subsurface soils (Leavitt et al. 1996). SOC in the hydrolysis residues was 
older than that present in the non-hydrolysed soils by an average of 1,800 years. 
A similar result was obtained by Paul et al. (2001), where hydrolysis residues 
were found to be 1,340 years older on average than total SOC in surface soils 
and 5,584 years older in subsoils. It is important to recognise that different bio-
molecules have different susceptibilities to acid hydrolysis, and the presence of 
acid hydrolysis resistant biomolecules, such as lignin, may lead to hydrolysis 
residues having younger radiocarbon ages.

Quantification of the proportion of SOC oxidised in permanganate solutions 
of increasing concentration has also been used to define fractions of SOC with 
different labilities (Blair et al. 1995). Permanganate concentrations of 0.033, 
0.167 and 0.333 mM have typically been employed under the assumption that 
more labile fractions of SOC are oxidised at lower permanganate concentra-
tions. The existence of strong correlations between the amounts of SOC oxi-
dised at each permanganate concentration and between permanganate-oxidis-
able carbon and total SOC (Lefroy et al. 1993) question the selectivity of this 
approach towards identifying differentially labile SOC components (Blair et al. 
1995; Mendham et al. 2002). It has also been shown that permanganate-oxidis-
able SOC had little relation to the labile pool of SOC respired over a 96-day 
incubation period (Mendham et al. 2002). These results, when considered with 
the absence of a clear definition of the chemical nature of SOC components at-
tacked by each permanganate solution, limit the utility of this technique in help-
ing to delineate biologically labile and recalcitrant fractions of SOC.

1.2.2
Physical Fractionation of SOC

The majority of organic carbon input to soils is in the form of plant residues. As 
these residues decompose and become mixed into mineral soil layers, particle 
size is reduced and the potential for interaction with soil minerals increases. 
Methods that fractionate SOC on the basis of particle size and density can there-
fore be used to isolate components of SOC that have different turnover times 
(Christensen 1996a, 2001). A prerequisite to separating SOC into primary parti-
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cles with different sizes or densities is complete dispersion. To minimise chemi-
cal alteration, inclusion of strong acid, alkali or chemical oxidant pre-treatments 
is avoided, and a combination of sodium saturation and physical dispersion 
methods is used (Skjemstad et al. 2004). Initial approaches to SOC fractionation 
tended to complete the dispersion process first in the fractionation scheme 
(Baldock et al. 1992). However, Golchin et al. (1994a) and Amelung amd Zech 
(1999) showed that recovery of coarse particulate organic matter decreased with 
increasing sonification time or energy and resulted in a redistribution of carbon 
into finer particle size classes.

To avoid a redistribution of coarse SOC into finer size classes, it is now rec-
ommended that a two-step process be followed (Amelung and Zech 1999). In 
the first step, the free particulate SOC is removed either prior to dispersion or 
subsequent to minimal dispersion in which the integrity of soil aggregates is 
maintained. A second more vigorous dispersion treatment is then used to re-
lease pieces of SOC occluded within soil aggregates and SOC adsorbed onto 
mineral surfaces. In its simplest form this approach results in the isolation of 
three forms of SOC: (1) free pieces of organic residue found between soil par-
ticles and aggregates (inter-aggregate SOC), (2) occluded pieces of organic resi-
due found within aggregations of soil particles (intra-aggregate SOC), and (3) 
organic matter strongly bound to mineral particle surfaces (mineral-associated 
SOC).

The rate of turnover of SOC found in different particle size classes has been 
examined using ∆14C measurements. Trumbore and Zheng (1996) determined 
the ∆14C content of 2,000–63 µm, 63–2 µm and <2 µm fractions of soils. After 
normalisation of the ∆14C values to those measured for the 2,000–63 µm frac-
tion (Fig. 1.1a), relative changes associated with decreases in particle size ranged 
from a depletion (in sample BS-7) through to an enrichment (in sample NS-13) 
of 14C, suggesting that the age of SOC can either increase or decrease in progress-
ing from coarse to fine particles. Schöning et al. (2005) measured the percentage 
of modern carbon in the Ah horizons of Luvisols, Leptosols and Phaeozems 
under a European beech (Fagus silvatica L.) forest and found a consistent trend 
of decreasing amounts of modern SOC with decreasing particle size (Fig. 1.1b).

Kahle et al. (2003) used ∆13C and ∆14C measurements to assess the extent 
of decomposition and turnover times of SOC associated with fine (<0.2 µm)
and coarse (0.2–2 µm) clay fractions of illitic soils. Fine clay organic carbon was 
more enriched with 13C and 14C, suggesting a greater extent of microbial pro-
cessing but a shorter turnover time than coarse clay organic carbon. Enrich-
ments in 13C and a decrease in C/N ratio with decreasing particle size were also 
observed by Amelung et al. (1999). The general lack of consistency with respect 
to changes in 13C and 14C enrichment with decreasing particle size suggests that 
different processes of SOC stabilisation operate in different soils and that rela-
tively young SOC may be stabilised against mineralisation.

The application of density fractionation, either independently or combined 
with particle size fractionation methods, has also been used to isolate and char-
acterise SOC fractions with different labilities. Trumbore and Zheng (1996) 
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found that SOC in dense soil fractions (>2.0 g cm–3) was more depleted in 14C
and therefore older than that found in less dense fractions (<2.0 g cm–3). John et 
al. (2005) determined the ∆13C of four density fractions isolated from silty soils 
under maize: (1) free particulate organic matter <1.6 g cm–3 (fSOM<1.6), (2) light 
occluded particulate organic matter <1.6 g cm–3 (oSOM<1.6), (3) dense occluded 
particulate organic matter 1.6–2.0 g cm–3 (oSOM1.6–2.0) and (4) mineral-associ-
ated soil organic matter >2 g cm–3 (mSOM>2.0) and then calculated the mean age 
of the C in each pool (Table 1.1). The decreasing C/N ratio measured in pro-
gressing from the fSOM<1.6 through to the mSOM>2.0 fractions was suggested to 
indicate an increase in the degree of degradation and humification. The mean 
age of SOC in these fractions and the values obtained for percent modern car-
bon (Rethemeyer et al. 2005) did not follow the same trend, suggesting that the 
oldest carbon in a soil may not be the most decomposed.

Fig. 1.1 a Relative change in ∆14C value of organic carbon associated with 2,000-63 µm, 63-2 µm
and <2 µm particle size fractions isolated from eight different soil samples after normalisation 
against the ∆14C value of the 2,000-63 µm fraction (Trumbore and Zheng 1996). Values given above 
bars associated with each soil sample present the ∆14C value obtained for the 2,000-63 µm fractions. 
b Changes in the percentage of modern soil organic carbon (SOC) associated with particle size 
fractions obtained from soil under beech (Fagus sylvatica L.) forests (Schöning et al. 2005)
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Baisden et al. (2002) measured C/N ratios, ∆13C, ∆15N, and 14C/12C of soil or-
ganic matter isolated in free particulate organic matter (fSOM<1.6), three density 
fractions of occluded organic matter (oSOM<1.6, oSOM1.6–1.85, oSCO1.85–2.2) and 
mineral-associated organic matter (mSOM>2.2) from soils of different ages. Gen-
erally, C/N ratios decreased and ∆13C and ∆15N values increased in progressing 
from the fSOM<1.6 through to the mSOM>2.2 fractions irrespective of soil age, 
indicating an increase in extent of decomposition with increasing density. In the 
young soil (<200,000 years), these changes were not associated with an increase 
in ∆14C-derived residence times other than for the fSOM<1.6 fractions that were 
much younger. However, a progressive increase in ∆14C-derived residence times 
with increasing density and extent of decomposition was noted for the oldest 
soil (1–3 million years).

Swanston et al. (2005) used a simpler density fractionation scheme to isolate 
three types of SOC (fSOM<1.7, oSOM<1.7 and mSOM>1.7) from a forest soil receiv-
ing vegetative residues inadvertently labelled with 14C and an unlabelled near-
background site. The occluded fraction of Swanston et al. (2005) represents the 
sum of the occluded fractions differentiated by John et al. (2005) and Baisden et 
al. (2002). Changes in C/N ratio and 14C values at the unlabelled background 
site were consistent with those measured by Baisden et al. (2002), with the ex-
ception of a higher C/N ratio in the occluded SOC fraction. Differences in SOC 
content, C/N ratio and 14C of the fractions isolated from the 14C-labelled soil 
indicated that free particulate SOC was the most active fraction and also most re-
sponsive to C inputs subsequent to the labelling event. The occluded particulate 
SOC fraction appeared to be less dynamic with a minimal entry of 14C since the 
labelling event. Based on 13C NMR analyses (Golchin et al. 1994a; Poirier et al. 
2005; Sohi et al. 2001, 2005), occluded SOC is more degraded compared to free 

Table 1.1 Properties of the organic matter associated with soil density fractions isolated from the 
surface soil of a maize trial at Rotthalmünster (John et al. 2005; Rethemeyer et al. 2005). SOC Soil 
organic carbon

Density 
fractiona

% of SOC C/N ratio ∆13C Mean ageb Modern Cc

(‰) (years) (%)

fSOM<1.6 4.1 19 –17.3 22 103
oSOM<1.6 1.0 19 –23.9 83 98
oSOM1.6–2.0 8.1 13 –22.0 49 103
mSOM>2.0 86.8 7.5 –22.1 63 103

a fPOM<1.6: free particulate organic matter <1.6 g cm–3, oPOM<1.6: light occluded particulate or-
ganic matter <1.6 g cm–3, oPOM1.6–2.0: dense occluded particulate organic matter 1.6–2.0 g cm–3,
mOM>2.0: mineral-associated soil organic matter >2 g cm–3

b Mean ages were calculated from changes in carbon content and ∆13C (John et al. 2005)
c Percent modern carbon data was calculated from 14C/12C ratios with 100 pMC = 1950 AD (Ret-

hemeyer et al. 2005)
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particulate SOC; however, this is not consistent with the higher C/N ratios mea-
sured by Swanston et al. (2005). Such high C/N ratios would be consistent with 
the presence of a significant amount of charcoal C, which could mask the entry 
of new labelled 14C into this pool based on 14C measurements alone. A signifi-
cant movement of new labelled 14C into the dense mineral-associated SOC frac-
tion was also measured. The depleted 14C signature of this dense fraction at the 
near-background control site suggested that, at the 14C labelled site, the dense 
fraction consisted of at least two different pools of SOC: a fast cycling pool and 
an older, more stable, pool. The presence of a labile pool of carbon within the 
dense mineral-associated SOC fraction is supported by the lack of a difference 
in rate of carbon respiration from free particulate and dense mineral-associated 
SOC over the first 120 days of an incubation study (Swanston et al. 2002).

Irrespective of whether fractionations of SOC are completed on the basis of 
particle size, density, or a combination thereof, it is essential that any poten-
tial for redistribution of SOC amongst the fractions is minimised. It is evident 
that, although general trends of increasing extent of decomposition and age are 
associated with decreasing particle size and increasing density, significant per-
turbations to these sequences may occur. Protection of young chemically labile 
organic carbon against biological attack through interactions with soil mineral 
components, and the presence of relatively inert and potentially old charcoal 
may account for at least a portion of these perturbations. Combining assess-
ments of chemical composition with measures of isotopic composition and 
SOC age would be most instructive in elucidating the mechanisms responsible 
for quantifying the cycling of organic carbon in soils.

1.3
Consistency between SOC Fractionation Methods 
and Pools of SOC in Simulation Models

SOC simulation models [e.g. Rothamsted (Jenkinson et al. 1987), Century (Par-
ton et al. 1987) and APSIM (McCown et al. 1996)] are used to predict the influ-
ence of management and climate change on fluxes and stocks of soil carbon. 
Most SOC simulation models are based on a series of conceptual SOC pools 
with rapid (annual), moderate (decadal) and slow (millennial) rates of turnover. 
Although such models have been used successfully to simulate changes in total 
SOC contents, their ability to identify the underlying mechanism(s) accounting 
for SOC change is weak and difficult to test. Developing a capability to replace 
the conceptual pools of SOC found in models with measurable pools offers sev-
eral advantages: (1) internal verification of appropriate allocations of SOC to 
pools, (2) greater mechanistic understanding of the implication of management 
and environment on the components of SOC most affected, and (3) improved 
confidence in simulation outcomes. Most attempts to define measurable frac-
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tions of SOC that can be incorporated into simulation models have focused on 
the use of physical fractionation techniques. A suitable fractionation procedure 
should be capable of isolating and quantifying the allocation of SOC to pools 
that differ significantly in biological availability.

Christensen (1996b) proposed a revised model structure that included mea-
surements of water-soluble SOC (readily decomposable), SOC associated with 
microbial biomass, light-fraction SOC (free pieces of plant residue not asso-
ciated with mineral particles or aggregates), intra-aggregate SOC (particulate 
organic materials contained within aggregates), inert SOC (dominated by char-
coal) and SOC associated with mineral surfaces. Sohi et al. (2001) proposed 
a simpler scheme that isolated only three fractions: free (fSOM<1.7), intra-ag-
gregate (oSOM<1.7) and mineral-associated (mSOM>1.7). In subsequent studies 
(Poirier et al. 2005; Sohi et al. 2005), the 1.7 g cm–3 density solution used in the 
fractionation process was replaced by a 1.8 g cm–3 solution. On the basis of dif-
ferences in chemical composition defined by a range of spectroscopic and wet 
chemical oxidation techniques, Sohi et al. (2005) and Poirier et al. (2005) sug-
gested that the biological reactivity of each SOC density fraction would differ 
and that the proposed method of density fractionation could form a basis for 
measurable SOC fractions in simulation models. However, biological avail-
ability of carbon in each fraction was not assessed. In addition, no attempt was 
made to substitute the measurable pools of C into a working carbon simulation 
model to demonstrate the utility of this proposal.

SOC simulation models often contain an “inert” pool of carbon that does 
not actively cycle. The cross polarisation 13C NMR spectra presented for the oc-
cluded fractions of SOC isolated by density fractionation (Poirier et al. 2005; 
Sohi et al. 2001, 2005) all contained significant signal intensity in the aryl-C 
chemical shift region, especially the occluded intra-aggregate SOC fraction of 
the silty clay loam (Sohi et al. 2001). The distribution of aryl-C signal intensity in 
the occluded SOC fractions was consistent with that noted for charcoal derived 
from wood and for charcoal found in soils (Baldock and Smernik 2002; Skjem-
stad et al. 1999b, 2002), indicating a variable contribution of charcoal carbon to 
these fractions. It is also important to note that 13C NMR spectra acquired using 
a cross polarisation analysis detect <50% of the total charcoal C present in a 
sample (Baldock and Smernik 2002). Actual contributions of charcoal C to the 
density fractions may therefore be much greater than indicated by the presented 
13C NMR spectra.

Skjemstad et al. (1999b) devised a method of estimating the charcoal carbon 
content of soils by correcting cross polarisation 13C NMR spectra obtained after 
a photo-oxidation process for the presence of lignin and low cross polarisation 
NMR observability. A significant amount of charcoal found in soils has a small 
particle size (<53 µm) (Skjemstad et al. 1998). The potential therefore exists for 
charcoal to move vertically and accumulate at certain depths in the soil profile, 
and to move laterally and accumulate in zones of deposition within a landscape. 
Charcoal carbon has been found to account for 0–60% of the SOC found in 
Australian, German and American soils, and no relationship has been found to 
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exist between total SOC content and the proportion of charcoal carbon present 
(Schmidt et al. 1999, 2001; Skjemstad et al. 1996, 1998, 1999a, 1999b, 2002). 
Pieces of charcoal selectively removed from soil and not associated with soil 
minerals have radiocarbon ages equivalent to or greater than soil humin frac-
tions (Pressenda et al. 1996). High recalcitrance of charcoal carbon to biological 
mineralisation has been demonstrated (Baldock and Smernik 2002), although 
priming with glucose has also enhanced mineralisation of a portion of charcoal 
carbon (Hamer et al. 2004). If variable quantities of charcoal exist in density 
fractions, as suggested by the NMR spectra presented by Sohi et al. (Poirier et al. 
2005; Sohi et al. 2001, 2005), the usefulness of these fractions as measured sur-
rogates for inclusion in carbon simulation models will be limited due to varia-
tion in the biological reactivity of the fractions.

Skjemstad et al. (1996) proposed a three-component fractionation scheme to 
identify measurable SOC fractions that avoids issues associated with redistribu-
tion of carbon during dispersion and fractionation and allocation of appropri-
ate proportions of SOC to the most recalcitrant charcoal-rich pool (Fig. 1.2).
The fractions isolated included: free particulate SOC (>53 µm particles), humus 
(<53 µm particles – charcoal carbon) and charcoal carbon (<53 µm particles 
from which non-charcoal carbon was removed using a photo-oxidation proce-

Fig. 1.2 Methodology used to isolate measurable SOC fractions that define the allocation of carbon 
to charcoal and minimise the potential for carbon redistribution during the fractionation process
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dure). By first removing the large pieces of plant residue in the free particulate 
fraction and aggregating all soil particles <53 µm into one single fraction, any 
redistribution of C between soil particles <53 µm has no consequence on alloca-
tion of C to this fraction. Two issues that must be assessed when using this ap-
proach are the inclusion of large pieces of charcoal and organic carbon adsorbed 
to large mineral particles in the >53 µm fraction. The importance of both of 
these issues can be rapidly assessed by examining the >53 µm fraction under 
a light microscope. If a contribution from large particles of charcoal is present, 
this can be accounted for by physical removal or photo-oxidation. Where a sig-
nificant amount of carbon is associated with >53 µm mineral particles, a density 
fractionation process using a solution of 1.6 g cm–3 can be used to separate the 
free particulate material from the mineral-associated humus material (Fig. 1.2).

Skjemstad et al. (2004) assessed the suitability of substituting the fractions 
identified in Fig. 1.2 for several of the conceptual pools included in version 26.3 
of the Rothamsted soil carbon simulation model (RothC). A schematic repre-
sentation of the pools and flows of carbon in the Rothamsted model is presented 
in Fig. 1.3. The resistant plant materials (RPM), humified organic materials 
(HUM) and inert organic materials (IOM) pools in the Rothamsted model were 
substituted with the >53 µm particulate SOC, humus SOC and inert SOC frac-
tions, respectively. Changes in total SOC content and allocation to the pools 
were simulated for soils collected from two long-term field studies. Initial SOC 
content and allocation of C to the fractions was defined by applying the frac-
tionation methodology to archived soil samples collected at the start of the stud-
ies. Model performance was assessed by comparing simulated changes in total 

Fig. 1.3 Pool structure and flows of carbon in the Rothamsted SOC simulation model (modified 
from Jenkinson et al. (1987)
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SOC content and allocation of carbon to the pools with values measured on 
soils archived throughout the duration of the field studies. Without any modi-
fication to RothC, reasonable agreement was obtained for both total SOC and 
allocation of carbon to the fractions; however, improvements in agreement were 
obtained by decreasing the rate of decomposition of the particulate SOC pool 
(RPM in Rothamsted notation) from 0.30 year–1 to 0.15 year–1 (Fig. 1.4). Given 
the variation in environment, soil type, and rotation composition examined, it 
was concluded that, at least for Australian environmental conditions, the con-
ceptual pools of carbon within the RothC soil carbon simulation model could 
be replaced with measurable fractions based on the methodology developed by 
Skjemstad et al. (1996). The potential for “modelling the measurable” (Chris-
tensen 1996b; Magid et al. 1996) appears to be a valid next step in simulating 
SOC dynamics. The challenge is to define the most appropriate set of fractions 
and, while several different procedures have been proposed, only that proposed 
by Skjemstad et al. (2004) has been successfully incorporated into a working 
SOC simulation model.

Fig. 1.4 Comparison of simulated (lines) and measured (points) total SOC contents and allocation 
of carbon to measurable SOC fractions at the (a) Brigalow and (b) Tarlee field sites (modified from 
Skjemstad et al. 2004)


