The Essentials in Ophthalmology series represents an unique updating publication on the progress in all subspecialties of ophthalmology.

In a quarterly rhythm, eight issues are published covering clinically relevant achievements in the whole field of ophthalmology. This timely transfer of advancements for the best possible care of our eye patients has proven to be effective. The initial working hypothesis of providing new knowledge immediately following publication in the peer-reviewed journal and not waiting for the textbook appears to be highly workable.

We are now entering the third cycle of the Essentials in Ophthalmology series, having been encouraged by readership acceptance of the first two series, each of eight volumes. This is a success that was made possible predominantly by the numerous opinion-leading authors and the outstanding section editors, as well as with the constructive support of the publisher. There are many good reasons to continue and still improve the dissemination of this didactic and clinically relevant information.

G.K. Krieglstein
R.N. Weinreb
Series Editors
September 2008
This third volume in the series, *Essentials of Ophthalmology*, just like the first, seeks to bring the ophthalmic practitioner up to date in the important new advances or changes in glaucoma diagnosis or management that have occurred over the last ten years. The last decade has seen significant changes in our understanding of the pathophysiology of some glaucomas, in our diagnostic approaches and in our management of them. Toward the goal of providing the most up-to-date information in a readable fashion, we have asked some of the world’s experts to discuss areas to which they have contributed in a way that will be useful for the practicing doctor. For example, one of the pioneers in the imaging of live ganglion cells is Dr. Francesca Cordeiro. Her studies could lead to a potentially significant breakthrough as, in the future, clinicians may be able to determine the health and number of ganglion cells in the retina as both a diagnostic and monitoring test. As the prevalence of glaucoma increases in our aging population, epidemiology has become more important as a methodology to identify risk factors; Drs. Giangiacomo and Coleman discuss what we have recently learned that is relevant to our clinical understanding of glaucoma. Drs. Doshi, Weinreb and colleagues describe the diurnal fluctuation of intraocular pressure, how those fluctuations impact on glaucoma, the relationship of postural change to that fluctuation, and what it means for managing glaucoma. Detecting progression of glaucoma can be tricky. Imaging techniques may be helpful. Strouthidis and Garway-Heath tell us how. Our concepts of and terminology for angle-closure glaucoma have undergone major changes over the last few years. Sharma, Low and Foster describe these changes and introduce the new—now internationally agreed upon—terminology. The association of uveitis and glaucoma has been known and has frustrated those caring for patients with these two concurrent conditions for many years; Drs. Nagpal and Acharya discuss the interrelationship between uveitis and glaucoma, what the doctor should look for, and how to manage these difficult patients. New approaches to glaucoma surgery have been described recently. Drs. Mendrinos and Shaarawy describe the techniques and results of nonpenetrating glaucoma surgery. Drs. Tam and Ahmed describe and discuss several new approaches to glaucoma surgery using special shunts that have appeared in the past few years. As electronic medical record systems gain popularity around the world, Drs. Schargus and Grehn describe the European Glaucoma Society’s electronic glaucoma record and their agreement on what is important to include in such a system. We hope that all the topics and authors that we have selected are helpful in improving the understanding of the many faces of glaucoma and, ultimately, will contribute to reduced visual loss and better care for our patients.

Franz Grehn
Robert L. Stamper
Contents

Chapter 1
Imaging Individual Ganglion Cells in the Human Retina
Nicholas E.H. Wood, Li Guo, M. Francesca Cordeiro

1.1 Introduction .. 1
1.2 Description of the Imaging Techniques 1
1.3 The Imaging Techniques 2
1.3.1 Scanning Laser Polarimetry 2
1.3.2 High-Resolution Reflectance Imaging 2
1.3.3 Optical Coherence Tomography 3
1.3.4 Confocal Scanning Laser Ophthalmoscopy 5
1.3.5 Adaptive Optics ... 6
1.4 Applications to RGC Imaging 7
1.4.1 Retrograde Labelling 7
1.4.2 RGC-Specific Fluorescent Protein Expression 7
1.5 The Future .. 9
References .. 10

Chapter 2
The Epidemiology of Glaucoma
Annette Giangiacomo, Anne Louise Coleman

2.1 Introduction ... 13
2.2 Primary Open-Angle Glaucoma 13
2.2.1 Increased IOP ... 14
2.2.2 Age .. 14
2.2.3 Family History ... 15
2.2.4 Sex ... 15
2.2.5 Ethnicity ... 15
2.2.6 Myopia .. 16
2.2.7 Other Risk Factors .. 17
2.3 Primary Angle-Closure Glaucoma 17
2.3.1 Risk Factors .. 18
2.3.2 Prevalence .. 18
References .. 19

Chapter 3
Circadian Changes in Intraocular Pressure
Amish B. Doshi, John H.K. Liu, Robert N. Weinreb

3.1 Introduction .. 23
3.2 Normal IOP Curve ... 23
3.3 Sources of Circadian Control 24
3.4 Glaucoma and 24-Hour IOP 25
3.5 Medical Management of 24-Hour IOP 26
References .. 27

Chapter 4
Detecting Glaucoma Progression by Imaging
Nicholas G. Strouthidis, David F. Garway-Heath

4.1 Introduction .. 29
4.1.1 The Principles of Progression 29
4.1.2 Historical Perspective: Optic Nerve Head Photography .. 30
4.1.3 The Potential of Optic Nerve Head Imaging Devices 30
4.2 HRT ... 31
4.2.1 HRT Progression: Available Techniques 31
4.2.2 HRT Progression: Stereometric Parameter vs. Pixel-Based Techniques ... 31
4.2.3 HRT Progression: Stereometric Parameter Event Analyses ... 34
4.2.4 HRT Progression: Stereometric Parameter Trend Analyses ... 34
4.2.5 HRT Progression: Pixel-Based Technique 35
4.3 Detecting Progression by GDx-VCC 35
4.4 Detecting Progression by OCT 37
4.5 Frequency of Testing ... 37
4.6 Lack of Concordance .. 38
References .. 39
Chapter 5
The Classification of Primary Angle-Closure Glaucoma
Tarun Sharma, Sancy Low, Paul J. Foster

5.1 Background ... 42
5.2 The Purposes of Disease Classification 42
5.3 The Evolution of Classification Schemes for Angle-Closure Glaucoma .. 43
5.4 Definition of an “Occludable” or Narrow Angle 43
5.5 Primary Open-Angle Glaucoma is a Diagnosis of Exclusion ... 44
5.6 Classification of Angle Closure in Epidemiological Research (ISGEO Scheme) 44
5.7 Trabecular Meshwork Damage in Angle Closure 45
5.8 An Anatomical Basis for the Primary Angle Closure Mechanism ... 45
5.9 Classification System for Angle-Closure Glaucomas 45
5.9.1 Level I: Iris and Pupil 45
5.9.2 Level II: Ciliary Body 46
5.9.3 Level III: Lens-Induced Angle Closure 46
5.9.4 Level IV: Ciliolenticular Block/Aqueous Misdirection/"Malignant Glaucoma"... 46
5.10 Gonioscopy ... 47
5.10.1 References .. 47

Chapter 6
Uveitic Glaucoma
Agnieszka G. Nagpal, Nisha R. Acharya

6.1 Introduction ... 49
6.2 The Epidemiology of Uveitis-Related Ocular Hypertension (OHT) and Secondary Glaucoma 49
6.3 Pathogenesis of Uveitic Glaucoma......................... 50
6.3.1 Aqueous Dynamics in Uveitic Glaucoma 50
6.3.2 Mechanical Causes of Uveitic Glaucoma 50
6.3.3 Steroid-Induced Glaucoma 51
6.4 Common Uveitic Entities Associated with OHT and Secondary Glaucoma .. 51
6.4.1 Glaucotacalyctic Crisis: Posner-Schlossman Syndrome 51
6.4.2 Fuchs' Heterochromic Iridocyclitis 52
6.4.3 Herpetic Disease ... 53
6.4.4 Juvenile Inflammatory Arthritis (JIA)................. 53
6.4.5 Pars Planitis .. 53
6.4.6 Toxoplasmosis ... 54
6.4.7 Sarcoidosis ... 54
6.4.8 Splelis ... 54
6.4.9 Treatment of Uveitic Glaucoma 55
6.4.10 Medical Treatment 55
6.5 Conclusion ... 56
6.5.1 Medical Treatment 56
6.5.2 Surgical Treatment 56
6.6 References .. 56

Chapter 7
Nonpenetrating Glaucoma Surgery
Efstratios Mendrinos, Tarek Shaarawy

7.1 Introduction ... 59
7.2 Deep Sclerectomy ... 59
7.3 Trabecular Meshwork Damage in Angle Closure 59
7.4 The Use of Implants 61
7.5 Viscocanalostomy .. 61
7.6 Mechanisms of Filtration 62
7.7 Flow Through the TDM 62
7.8 Aqueous Humor Resorption 62
7.9 Nd:Yag Gonipuncture 63
7.10 Indications for Nonpenetrating Glaucoma Surgery 64
7.10.1 Primary Open Angle Glaucoma 64
7.10.2 Glaucoma in High Myopia 64
7.10.3 Pseudoexfoliation and Pigmentary Glaucoma 64
7.10.4 Uveitic Glaucoma 64
7.10.5 Glaucoma Associated with Sturge–Weber Syndrome 65
7.10.6 Glaucoma in Aphakia 65
7.11 Contraindications for Nonpenetrating Glaucoma Surgery ... 65
7.11.1 Intraoperative Complications 65
7.11.2 Early Postoperative Complications 66
7.11.3 Late Postoperative Complications 69
7.12 Relative Contraindications 69
7.13 Complications of Nonpenetrating Glaucoma Surgery .. 66
7.13.1 Intraoperative Complications 66
7.13.2 Early Postoperative Complications 67
7.14 Clinical Experience with Nonpenetrating Glaucoma Surgery ... 70
7.14.1 Viscocanalostomy 70
Chapter 8
New Glaucoma Surgical Devices
Diamond Y. Tam, Iqbal Ike K. Ahmed

8.1 Introduction ... 75
8.2 Basic Review of the Anatomy and Physiology of Aqueous Outflow and Drainage Devices 76
8.2.1 Subconjunctival Filtration 77
8.2.2 Schlemm’s Canal Outflow 77
8.3 Subconjunctival Filtration Device: the Ex-PRESS Shunt .. 79
8.4 Schlemm’s Canal Devices: Canaloplasty/iScience, Glaukos Trabecular Micro-Bypass Stent, and the Trabectome .. 81
8.4.1 Ab Externo Schlemm’s Canal Approaches: Nonpenetrating Schlemm’s Canaloplasty 81
8.4.2 Trabecular Micro-Bypass Stent 86
8.4.3 Trabectome ... 89
8.5 Suprachoroidal Filtration Device: The SOLX Gold Microshunt .. 91

8.6 Conclusion ... 94
References ... 96

Chapter 9
Digital Glaucoma Patient Record and Teleconsultation Systems for Glaucoma Specialists: The European Glaucoma Society Glaucocard Project
Marc Schargus, Franz Grehn, The Glaucocard Workgroup

9.1 Introduction ... 99
9.2 History of Telemedicine in Ophthalmology 100
9.3 The Concept of an Electronic Glaucoma Patient Health Record System .. 101
9.3.1 General Issues for Implementation .. 101
9.3.2 Important Classifications for Electronic Glaucoma Medical Record Systems .. 104
9.4 The EGS Glaucocard Project 106
9.5 Future Prospects .. 109
9.6 Conclusion .. 109
Acknowledgments .. 110
References .. 110

Index ... 113
Contributors

Nisha R. Acharya
Francis I. Proctor Foundation
University of California
San Francisco
95 Kirkham St., San Francisco
CA 94143, USA

Annette Giangiacomo
CB 7040, 5109 Bioinformatics Building
Department of Ophthalmology
University of North Carolina-Chapel Hill
Chapel Hill, NC 27599-7040 USA

Iqbal Ike K. Ahmed
University of Toronto
Toronto
Ontario, Canada

Franz Grehn
University Eye Hospital Wuerzburg
Josef Schneider Str. 11
97080 Wuerzburg
Germany

Anne Louise Coleman
Jules Stein Eye Institute/UCLA
100 Stein Plaza
Los Angeles, CA 90095
USA

Li Guo
Glaucoma & Retinal Degeneration Research Group, UCL
Institute of Ophthalmology
Bath Street
London EC1V 9EL, UK

M. Francesca Cordeiro
Glaucoma & Retinal Degeneration Research Group
UCL Institute of Ophthalmology
Bath Street
London EC1V 9EL, UK

John H.K. Liu
Hamilton Glaucoma Center
Department of Ophthalmology
University of California
San Diego
CA, USA

Paul Foster
Department of Epidemiology & International Eye Health
UCL Institute of Ophthalmology
11-43 Bath Street
London EC1V 9EL, UK

Sancy Low
Glaucoma Service
Moorfields Eye Hospital
London, UK
Department of Epidemiology and International Eye Health
UCL Institute of Ophthalmology
Bath Street, EC1V 9EL
London, UK

David F. Garway-Heath
Moorfields Eye Hospital and UCL
Institute of Ophthalmology
NIHR Biomedical Research Centre
162 City Road
London, UK

Efstratios Mendrinos
Department of Ophthalmology
Glaucoma Unit
Geneva University Hospitals
1211 Geneva 14
Switzerland
Agnieszka G. Nagpal
Francis I. Proctor Foundation
University of California, San Francisco
95 Kirkham St.
San Francisco, CA 94143
USA

Marc Schargus
University Eye Hospital Wuerzburg
Josef Schneider Str. 11
97080 Wuerzburg
Germany

Tarek Shaarawy
Glaucoma Unit
Department of Ophthalmology
Geneva University Hospitals
Alcide-Jentzer 22
1211 Geneva 14
Switzerland

Tarun Sharma
Glaucoma Service
Moorfields Eye Hospital
London, UK

Nicholas G. Strouthidis
Moorfields Eye Hospital and
UCL Institute of Ophthalmology
NIHR Biomedical Research Centre
162 City Road
London, UK

Diamond Y. Tam
University of Toronto
Toronto
Ontario, Canada

Robert N. Weinreb
Department of Ophthalmology
University of California
9500 Gilman Drive
La Jolla, CA 92093 USA

Nick Wood
Glaucoma & Retinal Degeneration
Research Group
UCL Institute of Ophthalmology
Bath Street
EC1V 9EL London, UK
Chapter 1

Imaging Individual Ganglion Cells in the Human Retina

Nicholas E.H. Nick Wood, Li Guo, M. Francesca Cordeiro

1.1 Introduction

Glaucoma is a leading cause of blindness worldwide [1] and it is expected that the number of people with the disease will rise dramatically by 2020 [2]. Diagnosis is traditionally from changes in the optic nerve head (ONH) and visual field loss, but these can only detect the disease after significant (25–40%) loss of retinal ganglion cells (RGCs), the key cell implicated in this process [3, 4].

The inner retinal layers, being optical media that are therefore transparent to visible-frequency light, are inherently low contrast. This presents a significant challenge for traditional imaging such as fundus imaging. Modern technologies now use many different properties of light to differentiate between the retinal structures and these technologies are enabling us to observe fine detail, such as the photoreceptor layers, in vivo [5].

Recent advances have allowed unprecedented access to the retinal layers, creating the possibility of potentially visualizing ganglion cells in order to provide a new and early clinical parameter for glaucomatous injury. This chapter aims to cover the current research achievements in RGC imaging and the promising directions they are taking visual science.

1.2 Description of the Imaging Techniques

- **Scanning laser polarimetry (SLP):** A confocal imaging system with a polarimeter to measure the birefringence caused by the retinal nerve fibre layer (RNFL)
- **High-resolution reflectance imaging:** Based around a fundus camera with a high-quality CCD camera, this system can take a sequence of rapid images which can measure wavelength-dependent reflectance changes with very high temporal resolution
- **Optical coherence tomography (OCT):** A low-coherence interferometry-based imaging system where changes in reflectivity are measured in a volume of the retina with very high axial resolution
Confocal scanning laser ophthalmoscopy (cSLO): A confocal imaging system which uses a fine confocal aperture to limit the light detected to that from the focal plane, and therefore achieves high lateral resolutions.

Adaptive optics (AO): An adaption which uses a patterned guide laser to sense errors in the optics of the eye and a deformable mirror to correct for them in real time.

Retrograde labelling of RGCs via direct application of dyes has enabled the analysis of ganglion cell number and morphology in numerous studies with animal models.

RGC-specific fluorescent protein expression has been developed in a number of mouse lines to enable RGC identification and subtype study.

The detection of apoptosing retinal cells (DARC) uses an injection of fluorescently labelled annexin-5 which binds to the membrane of apoptosing cells to act as a marker for RGC disease.

Summary for the Clinician

- Glaucoma is the leading cause of irreversible blindness if left untreated, and current methods will only detect it when significant damage has already been done.
- RGCs are the key cells implicated, and observing them could lead to effective treatment and monitoring regimens.

1.3 The Imaging Techniques

The imaging of cells in living systems poses numerous problems, as (unlike histology) it involves direct exposure of living tissue, and even relatively innocuous staining compounds bind to cell constituents and therefore may interfere with cellular function. Intrinsic cellular properties are therefore sought that allow them to be resolved from the surroundings. The RGCs in particular have proven a challenge to image, but modern techniques taken from other fields such as cell biology and cosmology are beginning to yield some insight into their morphology and behaviour in vivo.

Many techniques have recently been developed to assess the RNFL thickness, as its thinning is associated with glaucomatous progression [10]. In real terms, this thinning process represents the large-scale loss of the RGC axons. However, higher resolutions are needed to gain access to individual cell bodies, and here we discuss the most current methods and some of the promising directions the research is taking.

1.3.1 Scanning Laser Polarimetry

First reported by Weinreb et al. in 1990 [11], the basic layout of this can be seen in Fig. 1.1. This is based on the linear relationship between the birefringence and thickness of the RNFL. Birefringence is a quality of highly ordered optical media such that they exhibit polarising properties and refractive indices that are dependent on the polarisation of the incident light. This can be detected by a system with polarisation-sensitive detectors. The parallel microtubule structures in the RNFL cause birefringence and the degree of birefringence is dependent on the tissue thickness. This measure has been shown to be sensitive and specific and, unlike the cSLO technology (Heidelberg Retinal Tomography (HRTIII), Heidelberg Engineering Vista, CA, USA), it has the advantage of not requiring the operator to provide reference points [12]. The cornea had previously been a problem in SLP imaging, as it also has a degree of birefringence. The current incarnations of the commercially available machine (the GDx, Carl Zeiss Meditec, Inc., Dublin, CA, USA) have overcome this [13] with a variable corneal compensator (VCC-SLP) which uses the macular as a reference point non-birefringent to gain a measure of the corneal birefringence. This was followed by the enhanced variable compensator (ECC-SLP), which avoids problems with low-quality images [14] by using software correction. The machine is still limited to measuring the RNFL thickness though, and is therefore not as versatile as the other devices in terms of RGC cell body assessment.

Summary for the Clinician

- SLP uses the polarisation change imparted on incident light by the RNFL to measure its thickness.
- VCC and ECC have been developed to counter problems with corneal birefringence.
- The machine is limited to RNFL thickness analysis.

1.3.2 High-Resolution Reflectance Imaging

This uses a high-quality, high-speed CCD attached to a fundus camera with a method for the illumination of the retina in time with image detection. The sensitivity of the camera allows for very accurate measurement of reflectivity changes. The stimulation of nervous tissue has been shown to cause reflectivity changes [15–17]. Such changes are most likely due to changes in membrane reflective index or morphology and can be detected with the sensitive camera to give an indication...