C. Esposito · G. Esposito (Eds.)

Pediatric Surgical Diseases
A Radiologic Surgical Case Study Approach
To my mentors, Ettore Ruggieri, Giuseppe Zannini and François D’Allaines, who showed me the way to be a part of the medical world.
With gratitude,
Giovanni Esposito

To my father, the best pediatric surgeon I have ever known,
and the man who instilled in me the thrill, challenge and satisfaction of lifelong learning.
I thank him for his continuous teaching, and for transferring to me his love for the children we care for every day.
With gratitude,
Ciro Esposito
The idea to write this book was born about 3 years ago when we were changing the seat at the Unit of Pediatric Surgery of the University of Naples “Federico II.”

We realized that during the 30-year activity of our unit we had collected a large number of rare and interesting cases of pediatric surgical diseases.

The difficulties met in the diagnosis of many of these cases gave us the idea to publish some of the most important ones, each with a collection of images accompanied by text providing a practical guide to reach the final diagnosis.

Since our idea was welcomed by numerous colleagues and friends, we proposed to Springer to publish this book.

All the authors who accepted to participate in our project (pediatricians, pediatric surgeons, pediatric and adult radiologists) are considered leading world experts in the diagnosis and treatment of pediatric surgical diseases, and we are extremely grateful to them for their contribution and for devoting their time to producing such outstanding reviews.

Thus, with their precious help, we have created an educational text, focusing on more than 200 case reports of pediatric surgical diseases, which will certainly be very useful to all professionals working in pediatrics who need to prepare themselves when approaching a variety of diagnostic and therapeutic problems in conditions affecting infants and children.

We would like to thank in particular our associate editors, Craig T. Albanese, Masayuki Fujioka, Gordon MacKinlay, Nancy Rollins, and Felix Schier, whose great competence and extensive experience in this field helped us in writing, collecting, and organizing this material.

Ciro Esposito, Giovanni Esposito
Editors
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Head and Neck</td>
<td>1-13</td>
</tr>
<tr>
<td>2 Thorax</td>
<td>14-44</td>
</tr>
<tr>
<td>3 Abdomen</td>
<td>45-122</td>
</tr>
<tr>
<td>4 Genitourinary Disorders</td>
<td>123-151</td>
</tr>
<tr>
<td>5 Cardiovascular Disorders</td>
<td>152-167</td>
</tr>
<tr>
<td>6 Musculoskeletal Disorder</td>
<td>168-179</td>
</tr>
<tr>
<td>7 Emergency and Trauma</td>
<td>180-221</td>
</tr>
<tr>
<td>8 Oncology</td>
<td>222-249</td>
</tr>
<tr>
<td>Index</td>
<td>531</td>
</tr>
</tbody>
</table>

Associated Editors

Craig T. Albanese, Prof.
Chief of Pediatric Surgery
Department of Surgery
Stanford University Medical Center
Division of Pediatric Surgery
Lucile Packard Children’s Hospital
780 Welch Road, Suite 206
Stanford, CA 94305-5733
USA

Masayuki Fujioka, Prof.
Stroke Center
Neurology and Neurosurgery
Helios General Hospital Aue
Dresden University of Technology
Gartenstr. 6
08280 Aue
Germany
and
Kansai Medical University
2-3-1 Shinmachi
Hirakata City
573-1191 Osaka
Japan

Gordon MacKinlay, Prof.
Department of Pediatric Surgery
University of Edinburgh
Scotland
UK
and
Royal Hospital for Sick Children
9 Sciennes Road
Edinburgh
Scotland
UK

Nancy Rollins, Prof.
Department of Pediatric Radiology
Children’s Medical Center Dallas
University of Texas
Southwestern Medical Center Dallas
and Holder of the Charles Cameron Sprague Chair in Medical Science
1935 Motor Street
Dallas, TX 75235
USA

Felix Schier, Prof.
Department of Pediatric Surgery
University Medical Center Mainz
Langenbeckstr. 1
55110 Mainz
Germany
List of Contributors

Yves Aigrain, Prof.
Department of Pediatric Surgery and Urology
Hôpital Necker Enfants Malades
149 rue de Sèvres
75015 Paris
France

Craig T. Albanese, Prof.
Chief of Pediatric Surgery
Department of Surgery
Stanford University Medical Center
Division of Pediatric Surgery
Lucile Packard Children's Hospital
780 Welch Road, Suite 206
Stanford, CA 94305-5733
USA

Francesca Alicchio, Dr.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Michele Ametrano, Dr.
Department of Pediatrics
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Brice Antao
Department of Paediatric Surgery
Leeds Teaching Hospitals NHS Trust
Beckett Street
Leeds LS9 7TF
UK

Giuseppe Amici, Prof.
Chair of Pediatric Surgery
University of Ancona
Via Corridoni 11
60123 Ancona
Italy

Giuseppe Ascione, Dr.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Richard A. Barth, Prof.
Chair of Radiology, Department of Radiology
Lucile Packard Children's Hospital at Stanford
Stanford University School of Medicine
725 Welch Road
Stanford, CA 94305-5654
USA

François Becmeur, Prof.
Service de Chirurgie Infantile
Hôpital de Hautepierre
67091 Strasbourg Cedex
France

Sophie Branchereau, Dr.
Service de Chirurgie Pediatrique
Hôpital de Bicêtre
78 Rue de General Leclerc
94275 Le Kremlin Bicêtre Cedex
France

Hervé Brisse, Dr.
Department of Radiology
Curie Institute
26 rue d’Ulm
75248 Paris Cedex 05
France
Luigi Califano, Prof.
Department of Maxillofacial Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Antonella Centonze, Dr.
Pediatic Surgery Unit
Pugliese Hospital
Via Pio X 111
88100 Catanzaro
Italy

Christophe Chardot, Prof.
University of Geneva Children’s Hospital
Paediatric Surgery Unit
Rue Willi Donzè 6
CH 1205 Geneve
Switzerland

Aurelie Chiappinelli, Dr.
Chair of Pediatric Surgery
University of Naples „Federico II”
Via Pansini 5
80131 Naples
Italy

Priscilla Chiu, Dr.
Staff Surgeon, Scientist-Track Investigator
Division of General Surgery
University of Toronto
The Hospital for Sick Children
555 University Avenue
Toronto
Ontario M5G 1X8
Canada

Fabrizio Cigala, Prof.
Department of Orthopedics and Traumatology
School of Medicine
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Bruno Cigliano, Dr.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Alba Cruccetti, Dr.
Pediatic Surgery Unit
Salesi Children’s Hospital
Via Corridoni 11
60123 Ancona
Italy

Anne Dariel, Dr.
Pediatic Surgery Department
Hôpital Mère-Enfant
7 Quai Moncousu
44000 Nantes
France

Carolina De Fazio, Dr.
Gabriele D’Annunzio University
School of Medicine
Via Vestini 150
66100 Chieti
Italy

Luis de la Torre, Prof.
Hospital Angeles Puebla
Unidad de Pediatría
Av. Kepler no. 2143
Col. Unidad Territorial Atlíxcayotl
Puebla CP 72810
Mexico

Concetta De Luca, Dr.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Ugo de Luca, Dr.
Pediatic Surgery Unit
Santobono Children’s Hospital
Via Mario Fiore 15
80129 Naples
Italy

Marianna De Marco, Dr.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy
Vincenzo Di Benedetto, Prof.
Department of Pediatric Surgery
University of Catania
95100 Catania
Italy

Hana Dolezalova, Dr.
Chair of Pediatric Radiology
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Sanjeev Dutta, Prof.
Division of Pediatric Surgery
Department of Surgery
Lucile Packard Children’s Hospital
Stanford Medical Center
Stanford, CA 94305-5733
USA

Alaa El-Ghoneimi, Prof.
Department of Pediatric Surgery and Urology
Hôpital Robert Debré
48 Boulevard Séurier
75935 Paris Cedex 19
France

Ciro Esposito, Prof.
Associate Professor of Pediatric Surgery
Department of Pediatrics
Chair of Pediatric Surgery
Federico II University of Naples
School of Medicine
Via S. Pansini 5
80131 Naples
Italy

Giovanni Esposito, Prof.
Emeritus Professor of Pediatric Surgery
Chair of Pediatric Surgery
Federico II University of Naples
School of Medicine
Via S. Pansini 5
80131 Naples
Italy

Paola Esposito, Dr.
Ss. Annunziata Hospital
Via dei Vestini 150
66100 Chieti
Italy

Vincenzo Farina, Prof.
Department of Pediatrics
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Amedeo Fiorillo, Prof. Dr.
University of Naples Federico II
Department of Pediatrics
Via S. Pansini 5
80131 Naples
Italy

Donald Frush, Prof.
Duke Medical Center
Department of Radiology
1905 McGovern-Davison Children’s Health Center
Box 3808 DUMC
Durham, NC 27710
USA

Masayuki Fujioka, Prof.
Stroke Center
Neurology and Neurosurgery
Helios General Hospital Aue
Dresden University of Technology
Gartenstr. 6
08280 Aue
Germany

Frédéric Gauthier, Prof.
Service de Chirurgie Pédiatrique
Hôpital de Bicêtre
78 Rue de General Leclerc
94275 Le Kremlin Bicêtre Cedex
France

Valerio Gentilino, Dr.
Department of Pediatric Surgery
Gaslini Children Hospital
University of Genoa
Largo Giannina Gaslini 5
16100 Genoa
Italy
Emanuela Giordano, Dr.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Chiara Grimaldi, Dr.
Service de Chirurgie Pediatrique
Hôpital de Bicêtre
78 Rue de General Leclerc
94275 Le Kremlin Bicêtre
France

Sylviane Hanquinet, Prof.
University of Geneva Children's Hospital
Paediatric Radiology Unit
Rue Willi Donzé 6
CH 1205 Genève
Switzerland

Yves Heloury, Prof.
Department of Pediatric Surgery
Hôpital Mère-Enfant
7 Quai Moncousu
44000 Nantes
France

Salvatore Iacobelli, Dr.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Vincenzo Jasonni, Prof.
Department of Pediatric Surgery
Gaslini Children Hospital
University of Genoa
Largo Giannina Gaslini 5
16100 Genoa
Italy

Nadia Khan, Dr.
Department of Neurosurgery
University of Zurich
Frauenklinikstrasse 10
8091 Zurich
Switzerland

Korgun Koral, Prof.
Department of Radiology
University of Texas Southwestern Medical Center at Dallas and Children’s Medical Center
1935 Motor Street
Dallas, TX 75235
USA

Jacob C. Langer, Prof.
Department of Surgery
University of Toronto
The Hospital for Sick Children
555 University Avenue
Toronto
Ontario M5G 1X8
Canada

Marc-David Leclair, Dr.
Pediatic Surgery Department
Hospital Mère-Enfant
7 Quai Moncousu
44000 Nantes
France

Selvaggia Lenta, Dr.
Department of Pediatrics
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Mario Lima, Prof.
Chair of Pediatric Surgery
University of Bologna
Department of Pediatric Surgery
Policlinico S. Orsola
Via Massarenti 11
40138 Bologna
Italy

Francesco Longo, Dr.
Department of Maxillofacial and ENT Surgery
National Cancer Institute of Naples
“Fondazione Pascale”
Via Semmola
80131 Naples
Italy

François I. Luks, Prof.
Division of Pediatric Surgery
Alpert Medical School of Brown University
Hasbro Children's Hospital
2, Dudley Street, Suite 180
Providence, RI 02905
USA
Marcelo Martinez-Ferro, Prof.
Professor of Surgery and Pediatrics
Department of Surgery
"Fundacion Hospitalaria" Private Children's Hospital
Cramer 4601, 3rd Floor
C1429AKK
Buenos Aires
Argentina

Gordon A. MacKinlay, Prof.
The University of Edinburgh
The Royal Hospital for Sick Children
Sciennes Road
Edinburgh EH9 1LF
Scotland
UK

Luigi Mansi, Prof.
Department of Radiology
University of Naples "SUN"
Via Pansini 5
80131 Naples
Italy

Antonio Marte, Prof.
Associate Professor of Pediatric Surgery
Second University of Naples
Via Pansini 5
80131 Naples
Italy

Luciano Mastroianni, Dr.
Pediatric Surgery Unit
Salesi Children Hospital
Via Corridoni 11
60123 Ancona
Italy

Girolamo Mattioli, Prof.
Department of Pediatric Surgery
Gaslini Children Hospital
University of Genoa
Largo Giannina Gaslini 5
16100 Genoa
Italy

Mongi Mekki, Prof.
Service de Chirurgie Pédiatrique
University of Monastir
CHU Monastir 5000
Tunisia

Carl Muroi, Dr.
Department of Neurosurgery
University of Zurich
Frauenklinikstrasse 10
8091 Zurich
Switzerland

Azad Najmaldin, Prof.
Department of Paediatric Surgery
Leeds Teaching Hospital NHS Trust
St. James's University Hospital
Beckett Street
Leeds LS9 7TF
UK

Deepika Nehra, Dr.
Division of Pediatric Surgery
Department of Surgery
Lucile Packard Children's Hospital
Stanford Medical Center
Stanford, CA 94305-5733
USA

Abdellatif Nouri, Prof.
Service de Chirurgie Pédiatrique
University of Monastir
CHU Monastir 5000
Tunisia

Francesco Onorati, Dr.
Cardiac Surgery Unit
Policlinico di Germaneto
Università Magna Grecia
Via Europa
Germaneto
88100 Catanzaro
Italy

Daniel Orbach, Dr.
Department of Pediatric Oncology
Curie Institute
26 rue d’Ulm
75248 Paris Cedex 05
France

Alfonso Papparella, Prof.
Second University of Naples
Pediatric Surgery, Department of Pediatrics
Via Pansini 5
80131 Naples
Italy
List of Contributors

Pio Parmeggiani, Prof.
Professor of Pediatric Surgery and Chief
Second University of Naples
Pediatric Surgery, Department of Pediatrics
Via Pansini 5
80131 Naples
Italy

Annalisa Passariello, Dr.
Department of Pediatrics
Federico II University of Naples
Via S. Pansini 5
80129 Naples
Italy

Flavio Perricone, Dr.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Pascale Philippe-Chomette, Dr.
Department of Pediatric Surgery and Urology
Hôpital Robert Debré
48 Boulevard Séruier
75935 Paris Cedex 19
France

Alessio Pini Prato, Dr.
Department of Pediatric Surgery
Gaslini Children Hospital
Largo Giannina Gaslini 5
16100 Genoa
Italy

Guillaume Podevin, Dr.
Pediatric Surgery Department
Hôpital Mère-Enfant
7 Quai Moncousu
44000 Nantes
France

Pier Francesco Rambaldi, Dr.
Department of Radiology and Nuclear Medicine
Second University of Naples
Piazza Miraglia 3
80138 Naples
Italy

Attilio Renzulli, Prof.
Cardiac Surgery Unit
Policlinico di Germaneto
Università Magna Grecia
Via Europa
Germaneto
88100 Catanzaro
Italy

Samuel Rice-Townsend, Dr.
Division of Pediatric Surgery
Department of Surgery
Lucile Packard Children's Hospital
Stanford Medical Center
Stanford, CA 94305-5733
USA

Corrado Rispoli, Dr.
General Surgery Unit
Ascalesi Hospital
80143 Naples
Italy

Nancy Rollins, Prof.
Department of Pediatric Radiology
Children’s Medical Center Dallas
University of Texas
Southwestern Medical Center Dallas
and Holder of the Charles Cameron Sprague Chair in Medical Science
1935 Motor Street
Dallas, TX 75235
USA

Mercedes Romano, Dr.
Second University of Naples
Pediatric Surgery, Department of Pediatrics
Via Pansini 5
80131 Naples
Italy

Carmelo Romeo, Prof.
Department of Pediatric Surgery
University of Messina
Viale Gazzi Padiglione NI
98124 Messina
Italy
Giovanni Ruggeri, Dr.
Chair of Pediatric Surgery
University of Bologna
Policlinico S. Orsola
Via Massarenti 11
40138 Bologna
Italy

Maria Domenica Sabatino, Dr.
Chair of Pediatric Surgery
Second University of Naples
Via Pansini 5
80131 Naples
Italy

Francesco Sadile, Prof.
Department of Orthopedics and Traumatology
School of Medicine
University of Naples "Federico II"
Via Pansini 5
80131 Naples
Italy

Sabine Sarnacki, Prof.
Department of Pediatric Surgery and U 793
Hôpital Necker Enfants Malades
149 rue de Sèvres
75015 Paris
France

Antonio Savanelli, Dr.
Chair of Pediatric Surgery
University of Naples "Federico II"
Via Pansini 5
80131 Naples
Italy

Cristina Savanelli, Dr.
Department of Endocrinology
University of Naples “Federico II”
Via Pansini 5
80129 Naples
Italy

Felix Schier, Prof.
Department of Pediatric Surgery
University Medical Center Mainz
Langenbeckstr. 1
55110 Mainz
Germany

Jürgen Schleef, Dr.
Department of Paediatric Surgery
IRCCS Burlo Garofolo
Via dell’Istria 65/1
34100 Trieste
Italy

Françoise Schmitt, Dr.
Department of Pediatric Surgery
44000 Nantes
France

Reinhard Schumacher, Prof.
Department of Pediatric Radiology
University Medical Center Mainz
Langenbeckstr. 1
55110 Mainz
Germany

Luigi Scippa, Dr.
Department of Pediatrics
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Alessandro Settimi, Prof.
Chair of Pediatric Surgery
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Carla Settimi, Dr.
Department of Pediatrics
University of Naples “Federico II”
Via Pansini 5
80129 Naples
Italy

Giacomo Sica, Dr.
Cardiac Surgery Unit
Policlinico di Germaneto
Università Magna Grecia
Via Europa
Germaneto
88100 Catanzaro
Italy

Etienne Suply, Dr.
Department of Pediatric Surgery
44000 Nantes
France
List of Contributors

Gianluca Terrin, Dr.
Department of Pediatrics
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Claudia Tiano, Dr.
Department of Pediatrics
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Juan A. Tovar, Prof. Dr.
Departamento de Cirugía Pediátrica
Hospital Universitario La Paz
P. Castellana 261
28046 Madrid
Spain

Antonino Tramontano, Dr.
Pediatric Surgery Unit
Santobono Children Hospital
Via Mario Fiore 15
80129 Naples
Italy

Jean Stephane Valla, Prof.
Department of Pediatric Surgery and Urology
Fondation Hôpital Lenval
Avenue de Californie 55
06200 Nice
France

Gianfranco Vallone, Dr.
Department of Radiology
University of Naples “Federico II”
Via Pansini 5
80131 Naples
Italy

Isabelle Vidal, Dr.
Pediatric Surgery Department
Hôpital Mère-Enfant
7 Quai Moncousu
44000 Nantes
France

Salam Yazbeck, Prof.
Department of Pediatric Surgery
San Justine Children Hospital
Montreal
Canada

Yasuhiro Yonekawa, Prof. emeritus
Dept. of Neurosurgery
University of Zurich
Haldenbachstrasse 12
8091 Zurich
Switzerland
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Anteroposterior</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>CE</td>
<td>Contrast enhanced</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>DMSA</td>
<td>Dimercaptosuccinic acid</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>ERCP</td>
<td>Endoscopic retrograde cholangiopancreatography</td>
</tr>
<tr>
<td>EXIT</td>
<td>Ex utero intrapartum treatment</td>
</tr>
<tr>
<td>FDG</td>
<td>[(18)F]-fluorodeoxyglucose</td>
</tr>
<tr>
<td>FLAIR</td>
<td>Fluid attenuated inversion recovery</td>
</tr>
<tr>
<td>FNAB</td>
<td>Fine-needle aspiration biopsy</td>
</tr>
<tr>
<td>Gd</td>
<td>Gadolinium</td>
</tr>
<tr>
<td>Gd-DTPA</td>
<td>Gadolinium-diethylenetriamine pentaacetic acid</td>
</tr>
<tr>
<td>GER</td>
<td>Gastroesophageal reflux</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>HCG</td>
<td>Human chorionic gonadotropin</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive care unit</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>IVU</td>
<td>Intravenous urogram</td>
</tr>
<tr>
<td>MCDK</td>
<td>Multicystic dysplastic kidney</td>
</tr>
<tr>
<td>MIBG</td>
<td>Metaiodobenzylguanidine</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetic resonance</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NPO</td>
<td>Nil per os</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>SIOP</td>
<td>International Society of Pediatric Oncology</td>
</tr>
<tr>
<td>STIR</td>
<td>Short tau inversion recovery</td>
</tr>
<tr>
<td>US</td>
<td>Ultrasonography</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td>VATS</td>
<td>Video-assisted thoracoscopic surgery</td>
</tr>
<tr>
<td>VCE</td>
<td>Video capsule endoscopy</td>
</tr>
<tr>
<td>VUR</td>
<td>Vesicoureteral reflux</td>
</tr>
</tbody>
</table>
We think that a quick introduction is necessary to explain how this book is organized and how it should be read.

The book is divided into eight sections, six of them focusing on different parts of the human body and two sections dedicated to emergency, trauma, and tumors.

The book is easy to read and includes more than 200 case reports of different pathological conditions. Each radiological surgical case comprises no more than two printed pages.

The question page (Q) is a right-hand page; the answer page (A) is found overleaf.

The Q page contains radiological images (radiography, CT, MRI, scintigraphy, ultrasonography etc.), focusing on a specific case. Accompanying the figures is the clinical history of the patient along with some questions on the interpretation of the images for the diagnosis and management of the case presented.

The A page contains the interpretation of the images shown on the Q page, and possibly other figures of diagnostic procedures performed in the same case in order to obtain a clear diagnosis. The A page also includes information about the particular condition affecting the patient and the management of the case shown, including therapy and follow-up. Most case reports end with a short “Suggested Reading” list.

Introduction
1

Head and Neck
The patient of pediatric neurosurgery ranges from the preterm infant to the adolescent. The diseases addressed in pediatric neurosurgery include congenital disorders such as hydrocephalus, spina bifida, and craniosynostosis, particular types of tumors of the central nervous system, cerebrovascular diseases including vascular malformations and moyamoya disease, intractable epilepsy, and traumatic brain injury or acquired disorders. Pediatric neurosurgery requires team work that involves pediatric specialists from various fields including pediatric anesthesia, neurology, neuro-oncology, plastic surgery, psychology, and neuroradiology.

In this section, 13 pediatric cases of head or neck diseases are presented. These include brain tumors and cerebrovascular diseases. The imaging studies performed for the diagnosis of these pathological conditions are computed tomography, magnetic resonance imaging, cerebral angiography, and single photon emission computed tomography. The brain tumors discussed in this section are craniopharyngioma, ganglioglioma, medulloblastoma, choroid plexus papilloma, pilocytic astrocytoma, dysembryoplastic neuroepithelial tumor, anaplastic astrocytoma, and atypical meningioma. Cerebral arterial aneurysm, moyamoya disease, and moyamoya syndrome are also presented.

All patients underwent neurosurgical operations and had a good recovery after the surgery. We hope the readers will enjoy learning the characteristics of diagnostic imaging in these surgical cases.
A 4-year-old boy presented with a soft, slowly enlarging, right cervical soft-tissue mass (Fig. 1).

- What is the differential diagnosis?
- What is the best imaging strategy?
- What does the MR image show (Fig. 2)?
- Should the lesion be biopsied or resected?
- Is there a nonsurgical alternative for treatment?
The differential diagnosis includes a low-flow vascular malformation, neuroblastoma or nerve-sheath tumor, or possibly a rhabdomyosarcoma. Contrast-enhanced MR imaging is used to define the internal architecture of the lesion, e.g., solid vs. cystic, slow flow vs. high flow, and the extent of the lesion proximity to vital structures such as the carotid sheath. Lymphatic malformations are usually low signal on T1 images; however, the signal intensity on the T1 images may be similar to or higher than that of regional muscle if bleeding has occurred into the lymphatic malformation or if the fluid has a high protein content. The presence of fluid-fluid levels is almost pathognomonic of a lymphatic malformation. On T2 images and STIR sequences (Fig. 2), the fluid shows very bright signal although blood products may decrease in signal intensity. Ultrasonography may show a cyst(s) with absence of echoes or medium levels of echoes in high proteinaceous or hemorrhagic fluid (Fig. 3). The MR image shows a large, fluid-filled, unilocular cyst extending from the skull base to the supraclavicular region anterior to the sternocleidomastoid muscle. The imaging findings are classic for a macrocystic lymphatic malformation and biopsy is not indicated. The lesion is best treated with sclerotherapy.

Lymphatic malformations are composed of dysplastic vesicles or pouches filled with lymphatic fluid. The pouches of fluid may be large (macrocytic) or microcytic. Lymphatic malformations are often admixed with a venous malformation, e.g., venolymphatic malformations. Macrocystic lymphatic malformations and mixed venolymphatic malformations are amenable to sclerotherapy, whereas microcystic lesions and microcystic components of lymphatic malformations are usually not. Sclerotherapy is usually performed under fluoroscopic guidance, although ultrasonography is useful in puncturing nonpalpable lesions. The cyst should be emptied of fluid as much as possible. Contrast medium is injected to document correct intralesional positioning of the needle and lack of extravasation of contrast and of the sclerosing agent (Fig. 4). Effective sclerosing agents include OK-432, absolute alcohol, and doxycycline. OK 432 (picibinal) is a lyophilized mixture of a low-virulence strain of Streptococcus pyogenes mixed with benzypenicillin. Intralesional hemorrhage may complicate sclerotherapy, which is seen as an abrupt increase in the size of the lymphatic malformation and change from a soft spongy lesion to a tense slightly painful one. Intral- esional hemorrhage does not, as a rule, require drainage since the hemorrhage will slowly resolve. Figure 5 shows the patient 2 weeks after sclerotherapy.
Q 2

Nancy Rollins

A 3-year-old girl presented with a large disfiguring facial mass that failed to involute with high-dose pulsed steroids and alpha interferon. Figure 1 shows the patient at presentation. Figure 2 is a cross-sectional image of the face.

- What is the differential diagnosis?
- Should this lesion be biopsied?
- What are the options for medical management?
- What does the MR imaging show?
MR imaging (Fig. 2) shows a large nonlipomatous mass which enhances and which has extensive involvement of the parotid glands and muscles of mastication as well as the infratemporal fossa. Branches of the external carotid arteries are dilated as are the internal jugular veins indicating a high-flow lesion.

The patient underwent sequential arterial embolizations using particles and coils with considerable decrease in the size of the lesion. Figure 3 shows the patient 1 year later. There is residual facial deformity due to residual fibro-adipose tissue that will be corrected surgically. Laser therapy will be used to treat the remaining cutaneous component.

Hemangiomas usually appear within 2 weeks after birth as a small red blemish or bump, which grows rapidly. The lesion may spontaneously regress, usually between 12–18 months of age. Complete regression results in the lesion being inapparent by age 3–5 years of age, with no or only minor residual scaring. In other patients, involution may take longer; 50% will involute by age 5, 70% by age 7, and 90% by the age of 9. Lesions which regress slowly are often associated with scaring, atrophoderma, stria, and cutaneous discoloration. Hemangiomas that require early aggressive treatment include those that are cosmetically deforming, growing rapidly, or obstructing vision, hearing, breathing, eating or, any other body function.

Systemic corticosteroids 2–3 mg/kg, given for 4–8 weeks comprise the first-line therapy for complicated hemangiomas; regression rates of up to 90% have been reported. Intralesional corticosteroid injections may be used for lesions that are smaller than 3 cm in diameter and well-defined and for lesions that show ulceration. Three to five intralesional injections are usually given at 6-week intervals; each dose should not exceed 3 mg/kg.

Hemangioma not responsive to corticosteroid therapy may be treated with both alpha and the 2α form of alpha interferon. However, treatment with interferon is associated with the development of irreversible spastic diplegia in about 20% of children. Vincristine is now recommended for hemangiomas with airway, eyelid, and orbital involvement, disseminated neonatal hemangiomatosis of the skin, liver, kidney, and cardiac failure. A weekly dosage of 1 mg/m² is injected intravenously. The dose is tapered depending on the clinical response. The reported range of injections is 5–25 with a length of treatment of 1.5–8 months. Dramatic response may be observed within 1 month of treatment, although a slow protracted response may also occur.

Superficial hemangiomas may be treated with pulsed dye laser, but deeper lesions are not treatable with this modality as the depth of laser penetration is only 1–2 mm. For large multicompartamental facial lesions, arterial embolization is usually effective at accelerating the regression of the hemangiomas. The procedure involves superselective catherization of branches of the external carotid arteries and occlusion of arteries supplying the hemangiomas using particulate material and small endovascular coils. The internal carotid arteries should also be studied to assess what, if any, contributions to the hemangiomas arise from the internal carotid arteries and to exclude carotid stenosis in patients with PHACE syndrome (posterior fossa brain malformations, hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities).

Sequential embolizations are needed to devascularize the lesions because arterial collaterals form rapidly. Potential complications of embolization include inadvertent embolization of the central retinal artery causing blindness as well as stroke and damage to the femoral arteries resulting in leg length discrepancy. If surgical removal or reconstruction is needed, preoperative superselective embolization is recommended to minimize intraoperative blood loss.
On routine prenatal ultrasound at 22 weeks, a complex cystic mass was found in the cervical region of an otherwise normal-appearing fetus. On subsequent examinations at 24 and 26 weeks, the mass was seen to increase dramatically in size. At 26 weeks, moderate polyhydramnios was noted. The remainder of the examination was normal. MR imaging was performed to better characterize the mass (Fig. 1). At that time, the total size of the mass was larger than the fetal head. Again, polyhydramnios was noted.

- What is the most likely diagnosis, and what is the differential diagnosis?
- How should the expecting couple be counseled?
- Is intervention before birth indicated?
- How should the pregnancy be further monitored, and what might prompt early intervention? Should time, place, and/or mode of delivery be altered?
- Is neonatal intervention required? If so, how soon after delivery?
- What is the prognosis for a fetus with this condition?
The size of the lesion and its complex, cystic/solid and heterogeneous appearance are typical of a cervical teratoma. If predominantly cystic, the only other possible diagnosis would be a cystic hygroma.

Head and neck teratomas are far less frequent than pelvic and sacrococcygeal ones, and are less likely than sacrococcygeal teratomas to cause significant vascular steal, fetal hydrops, or mirror syndrome (concomitant maternal preeclampsia). However, the size and location of this lesion are likely to cause some degree of respiratory obstruction at birth. The presence of polyhydramnios suggests that fetal swallowing is impaired, causing further concern about neonatal respiratory distress.

In the past, the mortality rate of large cervical teratomas exceeded 50% because of airway obstruction at birth. In addition, the presence of polyhydramnios increases the risk of premature rupture of membranes and preterm delivery.

Because of the rapid growth of the lesion, several multidisciplinary meetings were held to plan an EXIT procedure: ex-utero, intrapartum treatment of the upper airway obstruction. This approach requires a planned and controlled C-section whereby uterine contractions are suppressed, preventing separation of the placenta. Only the head and neck of the fetus are delivered, leaving the umbilical cord in utero. Thus, an airway can be obtained while the infant remains on placental support.

Once the airway is secured, the cord can be clamped and the infant delivered. This approach requires a very high level of control and collaboration between maternal-fetal medicine specialists (perinatologists), maternal anesthesiologists, pediatric surgical specialists, and neonatologists. Obtaining an airway can range from simple orotracheal intubation to rigid bronchoscopy as a temporary airway and tracheostomy or even (partial) resection of the obstructing mass. EXIT procedures of up to 60–90 min have been described, although the average duration of this procedure is about 20 min.

Because of the polyhydramnios and the risk of preterm labor, it is important to choose the time of delivery by EXIT carefully: in the present case, the mother experienced some contractions at 29 weeks, and an EXIT was performed at 32 weeks. Several days before the planned procedure, glucocorticoids were administered to the mother to accelerate lung maturation.

At delivery, the diagnosis of cervical teratoma was confirmed (Fig. 2). Intubation proved impossible, and a tracheostomy was performed.

MR imaging was performed in the ensuing days (Fig. 3), and semi-elective resection of the entire mass was performed at 8 days of life. Despite the massive distortion of normal structures, these lesions are not invasive, and symmetry is usually restored postoperatively (Fig. 4).
A 4-year-old child without previous medical problems, apart from an episode of bilateral parotitis at the age of 3 months, was admitted to hospital after the mother noticed a swelling on the child’s left cheek. After objective examination a painless mass was found with indistinct margins in the left parotid region. An ultrasound study (Fig. 1) and other examinations were performed, indicating the need for surgical intervention.

- What does the ultrasound demonstrate?
- What other examinations were performed?
- What was the suspected diagnosis?
- What was the surgical treatment?
- What was the definitive diagnosis?
- What was the follow-up?
The ultrasound shows a small hypoechogenic lesion in the left parotid region.
A fine-needle aspiration biopsy (FNAB) was carried out, which demonstrated the presence of adipocytes mixed with acinic cells at histologic examination.

The diagnosis was a lipoma of the parotid gland. The surgical treatment comprised superficial parotidectomy with conservation of the facial nerve. On the basis of a histologic examination of the removed specimen (Fig. 2), demonstrating the presence of mature adipocytes with abnormal mature and multilobular adipose tissue combined with inflammatory cells (Fig. 3), the definitive diagnosis was that of parotid lipomatosis.

The postoperative course was uneventful and the child was discharged from hospital 6 days after the operation. At the 5-year follow-up, the child had recovered completely.

Suggested Reading
A 13-year-old girl presented with a history of parotid swelling from 15 months, which was not related to eating. During this period she did not experience fever or pain.
When the girl presented to our department, she had already undergone many cycles of antibiotic therapy, without any result. The results of blood examinations were normal.
The surgeon asked for a CT scan with iodine medium.
- What does Fig. 1 show?
- Why did the surgeon perform this examination?
- Are there further examinations to be performed in this case?
- What pathological condition is affecting this girl?
- What is the best way to manage this condition?
This girl was affected by a parotid acinic cell neoplasm. The history and clinical examination already pointed to a parotid tumor. A CT scan with iodine medium allows one to gain more information about the precise location of the neoplasm and to define its borders and its relationships with closer structures.

Figure 1 shows a roundish, inhomogeneous lesion of 10-mm diameter, without peripheral anomalies compatible with pleomorphic adenoma or noninfiltrating neoplasms, localized in the superficial part of the parotid gland. There was no involvement of the neck lymph nodes.

For a preoperative diagnosis to be made, it is necessary to perform fine-needle aspiration biopsy (FNAB), which has very good accuracy with very little discomfort for the patient. Obtaining an almost-certain diagnosis allows one to plan the intervention with better accuracy and to prepare the patient for the surgical procedure. The FNAB in this case showed a solid proliferation of acinic cells arranged in solid blocks, suggesting an acinic cell tumor.

The patient underwent total parotidectomy under general anesthesia. A face lift approach was used on this young patient to minimize the effect of scars (Fig. 2). Moreover, in an attempt to avoid the risk of Frey syndrome, a temporalis fascia flap was used to cover the nerve and to reduce the gap left by the parotid gland excision (Figs. 3–4). No sign of facial nerve damage was evident after intervention. Histological examination of the surgical specimen confirmed the preoperative diagnosis of acinic cell tumor.

The patient was followed up every 3 months with ultrasonography and twice a year with CT in the first year, and then with ultrasonography twice a year and CT once a year. Four years after the intervention, the patient was free of disease.

Suggested Reading

A 3-year-old girl presented with mandibular swelling that had appeared 6 months earlier.

The girl had growth hormone deficit and psychomotor retardation, facial dysmorphism (telecanthus), and an arachnoid cyst in the adenohypophyseal region. The child had the clinical picture of an atypical facial-cardiocutaneous syndrome.

After the girl's mother noted swelling of the mandible, a pediatrician performed CT (Figs. 1, 2) and referred the child to a maxillofacial surgeon.

- What do Figs. 1 and 2 show?
- What other diagnostic examinations can be performed?
- What is the diagnosis?
- What is the appropriate treatment?
- What is the prognosis for this young patient?