Editors
Berger, Engelhardt, Henß, Mertelsmann

Co-Editors
Andreeff, Koziner, Messner, Thatcher

Concise Manual
of Hematology and Oncology
Editors
Dietmar P. Berger
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Monika Engelhardt
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Hartmut Henß
Tumorzentrum Ludwig-Heilmeyer
Comprehensive Cancer Center
University Medical Center
Hugstetter Strasse 55
79106 Freiburg, Germany

Roland Mertelsmann
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Co-Editors
Michael Andreeff
MD Anderson Cancer Center
1515 Holcombe Boulevard 081
Houston, TX 77030-4095, USA

Benjamin Koziner
Unitad de Investigaciones
Oncohematologicas
Laboratorio 'Nelly Arrieta de Blaquier'
Akrelo 3038
Buenos Aires C.P. 1221, Argentina

Hans A. Messner
Princess Margaret Hospital
5th Floor, Room 107
610 University Avenue
Toronto, ON M5G 2M9, Canada

Nick Thatcher
Department of Medical Oncology
Christie Hospital NHS Trust
Wilmslow Road
Manchester M20 4BX, United Kingdom

We would like to thank Dr. Milena Pantic and Dr. Ralph Wäsch for kindly providing the figures used for the cover.

Dietmar P. Berger is an employee of Amgen Inc., USA.

Library of Congress Control Number: 2007934266

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Editor: Ute Heilmann, Heidelberg, Germany
Desk Editor: Meike Stoeck, Heidelberg, Germany
Cover design: Frido Steinen-Broo, eStudio Calamar, Spain
Typesetting and Production: le-tex publishing oHG, Leipzig, Germany

Printed on acid-free paper 24/3180/YL 5 4 3 2 1 0
How Do We Treat?

Hematology and Oncology have seen rapid progress and advances during recent years. Increased knowledge of tumor biology, epidemiology, molecular genetics, growth regulation, and cellular functions has led to novel therapeutic paradigms. Targeted treatment approaches, antibodies, immunotherapy, and other new techniques complement classic chemotherapy, radiotherapy, and surgery. Patients are increasingly well educated as web-based information on diagnostic and therapeutic options as well as quality management and tumor outcome data are readily available.

In this dynamic and fast-paced environment, it is of central importance to base clinical decisions and medical practice on the best available evidence. Continuous quality management, with clinical process documentation, standardization, and evaluation, leads to improved patient care and long-term outcomes. For these reasons, we have started to systematically capture and evaluate data on diagnosis, treatment, and outcomes of patients with solid tumors and hematological neoplasms at the Freiburg University Medical Center. We have developed standard operating procedures, clinical pathways, and diagnostic and therapeutic processes, following the principles of “Good Clinical Practice.” These processes (e.g., detailed protocols for chemotherapy application, treatment flowcharts, clinical pathways) are continuously tested and validated in clinical practice. National and international guidelines, new clinical study data, and international expert advice are incorporated into a framework of clinical standards. Based on this work, the Freiburg University Medical Center and the Comprehensive Cancer Center Freiburg have been recognized as one of the centers of excellence in hematology and oncology in Germany and Europe.

The Concise Manual of Hematology and Oncology is the result of this continuous process. It offers a specific view based on the daily practice at a large European academic medical center, and we welcome any comments and discussion. Several German language editions of the manual have been published since 1998, and we are thankful for all the positive feedback and constructive criticism we received. With the first English edition, we again want to support practicing physicians and healthcare providers in their daily interaction with patients in hematology and oncology. Treatment of patients with malignant diseases is always a challenge, in curative, supportive, and palliative settings, and each patient—in his or her unique situation—deserves the best available therapy and care.

The Editors
March 2008
Contents

1 Principles of Medical Oncology
1.1 Epidemiology ... 1
1.2 Carcinogenesis, Molecular Tumor Biology 3
1.3 Hematopoiesis and Development of Hematological Neoplasia 7
1.4 Prevention and Screening ... 10
1.5 Classification of Diseases and ICD System 14
1.6 Tumor Classification and TNM System 17
1.7 Indications for Tumor Therapy 19
1.8 Performance Status of Tumor Patients (“Performance Status Scales”) 21
1.9 Response Evaluation in Solid Tumors 22
1.10 Common Toxicity Criteria (NCI) 25
1.11 Assessing the Quality of Life of Tumor Patients 30
1.12 Evidence-based Medicine (EBM), Guidelines and Quality Management ... 32
1.13 Electronic Media .. 35

2 Special Diagnostics
2.1 Cytogenetics and Fluorescence In Situ Hybridization (FISH) 39
2.2 Molecular Diagnosis .. 42
2.3 Gene Expression Analysis using Microarrays 45
2.4 Tumor Markers ... 47
2.5 CD Antigens and Immunocytological Diagnosis 51
2.6 HLA System and MHC .. 62

3 Pharmacology and Pharmacotherapy
3.1 Basic Principles of Chemotherapy 65
3.2 Cytostatic Drugs ... 69
3.2.1 Characteristics of Clinically Used Cytostatic Drugs 71
3.2.2 Check List Cytostatic Treatment 131
3.2.3 Drug Dosage Calculation Based on Body Surface Area (BSA) 132
3.2.4 Dose Adjustment of Cytostatic Drugs 134
3.2.5 Chemotherapy During Pregnancy and Lactation 141
3.2.6 Selected Cytostatic Drug Incompatibilities 143
3.2.7 Preparation and Stability of Cytostatics 146
3.3 Hormone Therapy ... 153
3.3.1 Characterization of Hormone Treatments in Oncology 156
3.4 Cytokines ... 170
3.5 Monoclonal Antibodies ... 178
3.6 Specific Protein Kinase Inhibitors (“Targeted Therapies”) 188
3.7 Drug Development and Clinical Studies 198
3.8 Pharmacogenetics and Pharmacogenomics 201

4 Supportive Treatment
4.1 Antiemetic Prophylaxis and Therapy 204
4.2 Antibiotic Treatment and Neutropenic Fever 211
Contents

4.3 Growth Factors .. 218
4.4 Nutrition in Cancer Patients 225
4.4.1 Malnutrition in Cancer Patients 225
4.4.2 Parenteral Nutrition .. 232
4.5 Pain Control .. 235
4.6 Fatigue .. 241
4.7 Bisphosphonates ... 243
4.8 Malignant Effusions .. 249
4.8.1 Malignant Pleural Effusion 250
4.8.2 Malignant Pericardial Effusion 254
4.8.3 Malignant Ascites .. 257
4.9 Transfusion Therapy ... 261
4.9.1 Cellular Blood Products 261
4.9.2 Non-cellular Blood Products 267
4.10 Human Sperm Cryopreservation 271
4.11 Cryopreservation of Human Pronuclear Oocytes 274
4.12 Sexual Dysfunction .. 276
4.13 Physiotherapy and Sports Medicine 278
4.14 Principles of Oncology Nursing Care 281
4.15 Psycho-oncological Care 286
4.16 Rehabilitation .. 289

5 Particular Treatment Procedures
5.1 Hematopoietic Stem Cell Technology (Harvesting, Culture, Purging) .. 293
5.2 Autologous Hematopoietic Stem Cell Transplantation ... 296
5.3 Allogeneic Hematopoietic Stem Cell Transplantation .. 302
5.4 Granulocyte Transfusion 309
5.5 Immunotherapy ... 311
5.6 Gene Therapy ... 315
5.7 Inhibition of Angiogenesis 319
5.8 Developmental Therapeutics 322

6 Hematology and Hemostasis
6.1 Aplastic Anemia ... 327
6.2 Neutropenia and Agranulocytosis 332
6.3 Thrombocytopenia ... 336
6.3.1 Immune (Idiopathic) Thrombocytopenic Purpura (ITP, Werlhof’s Disease) 339
6.3.2 Heparin-induced Thrombocytopenia (HIT) 343
6.3.3 Thrombotic Microangiopathies (TTP-HUS) 345
6.4 Anemia .. 348
6.4.1 Hypochromic Anemia 351
6.4.2 Megaloblastic Anemia 355
6.4.3 Hemolytic Anemia .. 359
6.4.4 Normochromic Anemia 369
6.5 Coagulation Disorders .. 371
6.5.1 Acquired Coagulation Disorders 376
6.5.2 Factor VIII Deficiency (Hemophilia A) 381
Contents

6.5.3 Factor IX Deficiency (Hemophilia B) ... 384
6.5.4 Von Willebrand's Disease (VWD) ... 386
6.5.5 Disseminated Intravascular Coagulation (DIC) 389
6.6 Thromboembolism and Thrombophilia ... 393

7 Hematological Neoplasia
7.1 Acute Leukemias ... 400
7.1.1 Acute Lymphoblastic Leukemia (ALL) .. 400
7.1.2 Acute Myeloid Leukemia (AML) .. 415
7.2 Myelodysplastic Syndrome (MDS) ... 423
7.3 Myeloproliferative Disorders (MPD) ... 429
7.3.1 Chronic Myeloid Leukemia (CML) .. 431
7.3.2 Polycythemia Vera .. 439
7.3.3 Essential Thrombocythemia .. 443
7.3.4 Chronic Idiopathic Myelofibrosis (CIMF) 447
7.4 Hodgkin's Disease (Hodgkin's Lymphoma) 450
7.5 Non-Hodgkin's Lymphomas (NHL) ... 458
7.5.1 High-grade Non-Hodgkin's Lymphoma 463
7.5.2 Chronic Lymphocytic Leukemia (CLL) .. 470
7.5.3 Prolymphocytic Leukemia (PLL) .. 477
7.5.4 Hairy Cell Leukemia (HCL) .. 480
7.5.5 Follicular Lymphoma (FL) .. 483
7.5.6 Mantle Cell Lymphoma (MCL) .. 488
7.5.7 Primary Cutaneous T-cell Lymphoma (CTCL) 492
7.5.8 Primary Lymphoma of the Central Nervous System (CNS) 498
7.5.9 Marginal Zone Lymphoma (MZL) ... 502
7.5.10 Multiple Myeloma .. 506
7.5.11 Immunocytophoresis (Waldenström's Macroglobulinemia) 515
7.6 Langerhans Cell Histiocytosis (LCH) ... 518
7.7 Mastocytosis ... 522

8 Medical Oncology
8.1 Head and Neck Tumors .. 528
8.2 Tumors of the Respiratory System .. 535
8.2.1 Lung Cancer .. 535
8.2.2 Mesotheliomas .. 546
8.2.3 Mediastinal Tumors .. 550
8.3 Gastrointestinal Tumors ... 555
8.3.1 Esophageal Carcinoma ... 555
8.3.2 Gastric Cancer .. 560
8.3.3 Cancer of the Small Intestine ... 566
8.3.4 Colorectal Cancer .. 570
8.3.5 Anal Carcinoma .. 577
8.3.6 Pancreatic Carcinoma ... 581
8.3.7 Hepatocellular Carcinoma (HCC) .. 587
8.3.8 Tumors of the Gallbladder and Bile Duct 593
8.4 Tumors of the Female Reproductive System 597
8.4.1 Breast Cancer .. 597
Contents

8.4.2 Malignant Ovarian Tumors ... 611
8.4.3 Malignant Germ Cell Tumors in Women 619
8.4.4 Granulosa Cell Tumors of the Ovary .. 623
8.4.5 Sertoli-Leydig Cell Tumors .. 626
8.4.6 Malignant Trophoblastic Tumors ... 628
8.4.7 Cervical Cancer ... 633
8.4.8 Endometrial Carcinoma .. 640
8.4.9 Uterine Sarcoma ... 646
8.4.10 Vaginal Cancer ... 649
8.4.11 Vulvar Cancer .. 652
8.5 Tumors of the Male Reproductive System 656
8.5.1 Testicular Tumors ... 656
8.5.2 Extragonadal Germ Cell Tumors ... 665
8.5.3 Prostate Cancer ... 669
8.5.4 Penile Cancer .. 678
8.6 Tumors of the Urinary Tract .. 682
8.6.1 Renal Cell Carcinoma .. 682
8.6.2 Tumors of the Renal Pelvis, Ureter, and Bladder 688
8.7 Tumors of the Endocrine System .. 696
8.7.1 Thyroid Cancer .. 696
8.7.2 Neuroendocrine Tumors (NET) ... 702
8.7.3 Malignant Pheochromocytoma and MEN 709
8.7.4 Tumors of the Adrenal Cortex .. 713
8.7.5 Pituitary Gland Tumors ... 716
8.8 Malignant Tumors of the Skin .. 719
8.8.1 Melanoma .. 719
8.8.2 Basal Cell Carcinoma .. 727
8.8.3 Squamous Cell Carcinoma ... 729
8.8.4 Merkel Cell Carcinoma .. 732
8.9 Sarcomas ... 735
8.9.1 Soft Tissue Sarcoma .. 735
8.9.2 Gastrointestinal Stromal Tumor (GIST) 740
8.9.3 Primitive Neuroectodermal Tumors (PNET) and Ewing’s Sarcoma ... 742
8.9.4 Osteosarcoma ... 746
8.10 CNS Tumors .. 751
8.11 Cancer of Unknown Primary (CUP) .. 756
8.12 Metastasis ... 760
8.12.1 Brain Metastases .. 762
8.12.2 Carcinomatous Meningitis (Leptomeningeal Metastases) 764
8.12.3 Lung Metastases ... 768
8.12.4 Liver Metastases ... 770
8.12.5 Bone Metastases ... 772
8.13 Paraneoplastic Syndromes .. 774

9 Hematological and Oncological Emergencies
9.1 Neutropenic Sepsis ... 781
9.2 Superior Vena Cava Syndrome (SVCS) .. 783
9.3 Spinal Cord Compression / Cauda Equina Syndrome 785
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Malignant Cardiac Tamponade</td>
<td>787</td>
</tr>
<tr>
<td>9.5</td>
<td>Malignant Hypercalcemia</td>
<td>789</td>
</tr>
<tr>
<td>9.6</td>
<td>Tumor Lysis Syndrome</td>
<td>791</td>
</tr>
<tr>
<td>9.7</td>
<td>Hemorrhagic Complications / Malignant Vascular Erosion</td>
<td>793</td>
</tr>
<tr>
<td>9.8</td>
<td>Transfusion Reactions</td>
<td>795</td>
</tr>
<tr>
<td>9.9</td>
<td>Extravasation of Cytostatic Drugs</td>
<td>799</td>
</tr>
<tr>
<td>10.1</td>
<td>Thoracentesis</td>
<td>802</td>
</tr>
<tr>
<td>10.2</td>
<td>Pleurodesis</td>
<td>804</td>
</tr>
<tr>
<td>10.3</td>
<td>Abdominal Paracentesis</td>
<td>806</td>
</tr>
<tr>
<td>10.4</td>
<td>Bone Marrow Aspiration and Biopsy</td>
<td>808</td>
</tr>
<tr>
<td>10.5</td>
<td>Basic Hematological Diagnostics</td>
<td>811</td>
</tr>
<tr>
<td>10.6</td>
<td>Lumbar Puncture (Spinal Tap) and Intrathecal Instillation of Cytostatic Drugs</td>
<td>816</td>
</tr>
<tr>
<td>10.7</td>
<td>Central Venous Access (CVA), Central Venous Catheter (CVC)</td>
<td>818</td>
</tr>
<tr>
<td>10.8</td>
<td>Blood Cultures</td>
<td>821</td>
</tr>
<tr>
<td>11</td>
<td>Standardized Treatment Protocols</td>
<td>823</td>
</tr>
<tr>
<td></td>
<td>Subject Index</td>
<td>991</td>
</tr>
</tbody>
</table>
Abbreviations

A. Arteria
Aa. Arteriae
Ab. Antibody
abs. absolute (ly)
Ad Adresses
Ag Antigen
AIDS Aquired Immune Deficiency Syndrome
AIHA Autoimmune Hemolytic Anemia
AJCC American Joint Committee on Cancer
ALL Acute lymphoblastic Leukemia
AML Acute myeloid Leukemia
ANA Antinuclear Antibodies
a.o. among others
ARDS Acute Respiratory Distress Syndrome
ATIII Antithrombin III
ATTN Attention, be careful,
B Bolus injection
BC Blood Count
BCh Biochemistry
BM Bone marrow
BW Body weight
BSA Body surface area
°C Degree Celsius
Ca²⁺ Calcium
CD Cluster of Differentiation
CFU Colony Forming Units
Chap. Chapter
Chem Chemistry
Ci. Contraindication
c.i.v. continuous intravenous
CI Chloride
Class Classifikation
CLL Chronic lymphatic Leukemia
CML Chronische myeloid Leukemia
CMV Cytomegalie Virus
CNS Central nervous system
Co Complications
CRP C-reactive Protein
CSF CerebroSpinal Fluid
CT Computed tomography
CVC Central Venous Catheter
CVL Central Venous Line
CVP Central Venous Pressure
d day(s) (dies)
DLCBL Diffuse Large B-Cell Lymphoma
Dd Differential diagnosis
Ddi Drug drug interaction

DDAVP Desamino-D-Arginin-Vasopressin (Desmopressin)
Def Definition
DFS Disease free survival
DFI Disease free interval
Dg Diagnostic
DIC Disseminated intravascular Coagulation
dl Deciliter (100 ml)
DNA Deoxyribonucleic Acid
Dos Dosing
EBV Epstein Barr Virus
ECOG Eastern Cooperative Oncology Group (ECOG Performance Scale)
ECG Elektrocardiogram
E.g. for instance
EORTC European Organisation for Research and Treatment of Cancer
Ep Epidemiology
ES Extrasystoles
ESR Erythrocyte Sedimentation Rate
Et Etiology
e.tc. et cetera
F Factor (Clotting factors F1 to FXIII)
FBC Full Blood Count
FIGO International Federation of Gynecology and Obstetrics
F/U Follow Up
g Gram
GFR Glomerular Filtration Rate
GvHD Graft versus Host Disease
GvL Graft versus Leukemia
h hour(s) (hora)
HAV Hepatitis A Virus
Hb Hemoglobin
HBV Hepatitis B Virus
HCV Hepatitis C Virus
hd high dose
HIT Heparin-induced Thrombopenia
HIV Human Immunodeficiency Virus
Hkt Hematocrit
HSV Herpes Simplex Virus
HUS Hemolytic-uremic Syndrome
i.a. Intraarterial
i.m. Intramuscular
i.p. intraperitoneal
i.th. Intrathecal
i.v. Intravenous
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases (10. edition)</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin(e)</td>
</tr>
<tr>
<td>Ind</td>
<td>Indication</td>
</tr>
<tr>
<td>ITP</td>
<td>Idiopathic thrombocytopenic Purpura</td>
</tr>
<tr>
<td>IU</td>
<td>International Units</td>
</tr>
<tr>
<td>K+</td>
<td>Potassium</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate dehydrogenase</td>
</tr>
<tr>
<td>LFT</td>
<td>Liver Function Tests</td>
</tr>
<tr>
<td>Lit</td>
<td>Literature</td>
</tr>
<tr>
<td>LMWH</td>
<td>Low Molecular Weight Heparin</td>
</tr>
<tr>
<td>Ln</td>
<td>Lymph nodes</td>
</tr>
<tr>
<td>LPHD</td>
<td>Lymphocyte Predominant Hodgkin's Disease</td>
</tr>
<tr>
<td>M.</td>
<td>Morbus</td>
</tr>
<tr>
<td>MALT</td>
<td>mucosa associated lymphoid tissue</td>
</tr>
<tr>
<td>MDS</td>
<td>Myelodysplastic Syndrome(s)</td>
</tr>
<tr>
<td>Meth</td>
<td>Methods</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>Mg2+</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MGUS</td>
<td>Monoclonal Gammapathy of Unknown Significance</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>MOA</td>
<td>Mechanism of Action</td>
</tr>
<tr>
<td>MPS</td>
<td>Myeloproliferative Syndrome(s)</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>Na+</td>
<td>Sodium</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NHL</td>
<td>Non-Hodgkin's Lymphoma</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance Tomography</td>
</tr>
<tr>
<td>Path</td>
<td>Pathology</td>
</tr>
<tr>
<td>PBCh</td>
<td>Pathobiochemistry</td>
</tr>
<tr>
<td>PBSCT</td>
<td>Peripheral Blood Stem Cell Transplantation</td>
</tr>
<tr>
<td>PCP</td>
<td>Pneumocystis Carinii Pneumonia</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>Persp.</td>
<td>Perspective</td>
</tr>
<tr>
<td>Pg</td>
<td>Pathogenesis</td>
</tr>
<tr>
<td>Pharm</td>
<td>Pharmacology</td>
</tr>
<tr>
<td>Phys</td>
<td>Physiology</td>
</tr>
<tr>
<td>PKin</td>
<td>Pharmacokinetics</td>
</tr>
<tr>
<td>Phys</td>
<td>Physiology</td>
</tr>
<tr>
<td>PNH</td>
<td>Paroxysmal Nocturnal Hemoglobinuria</td>
</tr>
<tr>
<td>PPhys</td>
<td>Pathophysiology</td>
</tr>
<tr>
<td>PPSB</td>
<td>Prothrombin Complex Concentrate</td>
</tr>
<tr>
<td>Prg</td>
<td>Prognosis</td>
</tr>
<tr>
<td>PT</td>
<td>Prothrombin Time</td>
</tr>
<tr>
<td>PTT</td>
<td>Partial Prothrombin Time</td>
</tr>
<tr>
<td>Px</td>
<td>Prophylaxis</td>
</tr>
<tr>
<td>®</td>
<td>registered trade mark</td>
</tr>
<tr>
<td>RFA</td>
<td>Radio frequency ablation</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>Ref</td>
<td>references</td>
</tr>
<tr>
<td>RT</td>
<td>Radiotherapy</td>
</tr>
<tr>
<td>s</td>
<td>seconds</td>
</tr>
<tr>
<td>s.c.</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SCC</td>
<td>Squamous Cell Cancer</td>
</tr>
<tr>
<td>Se</td>
<td>Side effects</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic Lupus erythematodes</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>Stag</td>
<td>Staging</td>
</tr>
<tr>
<td>SVES</td>
<td>Supraventricular Extrastyles</td>
</tr>
<tr>
<td>Sy</td>
<td>Symptoms</td>
</tr>
<tr>
<td>t½</td>
<td>Half life time</td>
</tr>
<tr>
<td>TBI</td>
<td>Total Body Irradiation</td>
</tr>
<tr>
<td>TBC</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>Th</td>
<td>Treatment, Therapy</td>
</tr>
<tr>
<td>TNM</td>
<td>TNM-System, Tumor classification (defines T = Tumor, N = Lymph nodes and M = Metastases)</td>
</tr>
<tr>
<td>TRALI</td>
<td>Transfusion Associated Lung Injury</td>
</tr>
<tr>
<td>TTP</td>
<td>Thrombotic-thrombozytopenic Purpura</td>
</tr>
<tr>
<td>U</td>
<td>Units</td>
</tr>
<tr>
<td>U&E</td>
<td>Urine and Electrolytes</td>
</tr>
<tr>
<td>UICC</td>
<td>Union Internationale Contre le Cancer</td>
</tr>
<tr>
<td>UFH</td>
<td>Unfractionated Heparin</td>
</tr>
<tr>
<td>V.</td>
<td>Vena</td>
</tr>
<tr>
<td>VES</td>
<td>Ventricular Extrastyles</td>
</tr>
<tr>
<td>Vv.</td>
<td>Venae</td>
</tr>
<tr>
<td>VZV</td>
<td>Varicella Zoster Virus</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>Web</td>
<td>Internet adresses</td>
</tr>
</tbody>
</table>
Special symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>δ</td>
<td>Delta</td>
</tr>
<tr>
<td>κ</td>
<td>Kappa</td>
</tr>
<tr>
<td>λ</td>
<td>Lambda</td>
</tr>
<tr>
<td>μ</td>
<td>Mu, Micro</td>
</tr>
<tr>
<td>→</td>
<td>leading to</td>
</tr>
<tr>
<td>↑</td>
<td>increased</td>
</tr>
<tr>
<td>↓</td>
<td>lowered, decreased</td>
</tr>
<tr>
<td>></td>
<td>larger than, more frequent than</td>
</tr>
<tr>
<td><</td>
<td>smaller than, less frequent as</td>
</tr>
<tr>
<td>≥</td>
<td>larger or equal</td>
</tr>
<tr>
<td>≤</td>
<td>smaller or equal</td>
</tr>
<tr>
<td>≈</td>
<td>about</td>
</tr>
<tr>
<td>♀</td>
<td>women, female</td>
</tr>
<tr>
<td>♂</td>
<td>men, male</td>
</tr>
<tr>
<td>►</td>
<td>see (refers to other chapter)</td>
</tr>
<tr>
<td>♀♂</td>
<td>phone</td>
</tr>
</tbody>
</table>

Additional Abbreviations are explained in the respective chapters.
Contributors

Adam, Gerhard
Aklepios Klinik Triberg
Fachklinik f. Innere Medizin
Hematologie/Onkologie
Ludwigstrasse 1-2
78098 Triberg, Germany

Allgaier, H.-P.
Deaconness Hospital
Wirthstrasse 11
79110 Freiburg, Germany

Andreeff, Michael
MD Anderson Cancer Center
1515 Holcombe Boulevard 081
Houston, TX 77030-4095, USA

Behringer, D.
Augusta-Kranken-Anstalt
Hematology, Oncology
Bergstrasse 26
44791 Bochum, Germany

Berger, Dietmar P.
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Bertz, Hartmut
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Blattmann, Ursula
University Medical Center
Central Physiotherapy
Department of Internal Medicine
Hugstetter Strasse 55
79106 Freiburg, Germany

Burger, Jan
MD Anderson Cancer Center
PO Box 301402
Houston, TX 77230-1402, USA

Burger, Meike
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Daskalakis, Michael
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Deschler, Barbara
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Digel, Werner
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Engelhardt, Andrea
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Engelhardt, Monika
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Department</th>
<th>Address</th>
<th>City, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engelhardt, Rupert</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Fetscher, Sebastian</td>
<td>Sana Kliniken Lübeck</td>
<td>Klinik für Hämatologie/Onkologie</td>
<td>Städt. Krankenhaus Süd</td>
<td>23560 Lübeck, Germany</td>
</tr>
<tr>
<td>Finke, Jürgen</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Frank, Uwe</td>
<td>University Medical Center</td>
<td>Department of Environmental Medicine and Hygiene</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Gärtner, Frank</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Göbel, Alexandra</td>
<td>University Medical Center</td>
<td>Hospital Pharmacy</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Götz, Tanja</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Grüllich, Carsten</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Harder, Jan</td>
<td>University Medical Center</td>
<td>Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Heeskens, Katrin</td>
<td>Sana Kliniken Lübeck</td>
<td>Klinik für Hämatologie/Onkologie</td>
<td>Städt. Krankenhaus Süd</td>
<td>23560 Lübeck, Germany</td>
</tr>
<tr>
<td>Heining-Mikesch, Kristina</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Heinz, Jürgen</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Henne, Karl</td>
<td>University Medical Center</td>
<td>Department of Radiation Therapy</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Henß, Hartmut</td>
<td>Tumorzentrum Ludwig-Heilmeyer</td>
<td>Comprehensive Cancer Center</td>
<td>University Medical Center</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Houet, Leonora</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
<tr>
<td>Illerhaus, Gerald</td>
<td>University Medical Center</td>
<td>Department of Hematology and Oncology</td>
<td>Hugstetter Strasse 55</td>
<td>79106 Freiburg, Germany</td>
</tr>
</tbody>
</table>
Jüttner, Eva
University Medical Center
Department of Pathology
Breisacher Strasse 115a
79106 Freiburg, Germany

Kaskel, Anna-Katharina
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Kiani, Alexander
Medizinische Klinik und Poliklinik I
Universitätsklinikum Carl Gustav Carus
Technical University Dresden
Fetscherstrasse 74
01307 Dresden, Germany

Koziner, Benjamin
Unitat de Investigaciones
Oncohematologicas
Laboratorio 'Nelly Arrieta de Blaquier'
Agrelo 3038
Buenos Aires C.P. 1221, Argentinia

Kunzmann, Regina
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Leo, Albrecht
Ruprecht-Karls University Heidelberg
Institute of Immunology, Serology and Transfusion Medicine
Im Neuenheimer Feld 305
69120 Heidelberg, Germany

Leo, Eugen
Johnson & Johnson
Turnhoutseweg 30b
2340 Beerse, Belgium

Lubrich, Beate
University Medical Center
Hospital Pharmacy
Hugstetter Strasse 55
79106 Freiburg, Germany

Luebbert, Michael
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Maier-Lenz, Herbert
University Medical Center
Center of Clinical Trials
Elsässer Strasse 2
79106 Freiburg, Germany

Marks, Reinhart
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Martens, Uwe
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Messner, Hans A.
Princess Margaret Hospital
5th Floor, Room 107
610 University Avenue
Toronto, ON M5G 2M9, Canada

Mertelmann, Roland
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Mielke, Stephan
Medizinische Klinik und Poliklinik I
Universitätsklinikum Carl Gustav Carus
Technical University Dresden
Fetscherstrasse 74
01307 Dresden, Germany

Müller, Antonia
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany
Müller, Claudia I.
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Neumann, Hartmut
University Medical Center
Department of Nephrology
Hugstetter Strasse 55
79106 Freiburg, Germany

Otto, Florian
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Potthoff, Karin
National Center for Tumor Diseases
Heidelberg (NCT)
Department of Translational Oncology
German Cancer Research Center (DKFZ)
Im Neuenheimer Feld 350
69120 Heidelberg, Germany

Reincke, Martin
Klinikum der Universität München
Medizinische Klinik – Innenstadt
Ziemssenstrasse 1
80336 München, Germany

Reinert, Elke
Tumorzentrum Ludwig Heilmeyer
Comprehensive Cancer Center Freiburg
Hugstetter Strasse 55
79106 Freiburg, Germany

Rosenthal, F. M.
CellGenix Technologie Transfer GmbH
Am Flughafen 16
79108 Freiburg, Germany

Runnebaum, Ingo
Department of Gynecology
Jena University Medical Center
Bachstrasse 18
07743 Jena, Germany

Rüter, Björn-Hans
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Rüter, Simone
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Scheele, Jürgen
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Schmah, Oliver
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Schmoor, Claudia
University Medical Center
Center of Clinical Trials
Elsässer Strasse 2
79106 Freiburg, Germany

Schultze-Seemann, Wolfgang
University Medical Center
Department of Urology
Hugstetter Strasse 55
79106 Freiburg, Germany

Schwabe, Michael
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Seufert, Jochen
University Medical Center
Department of Gastroenterology
Hepatology, Endocrinology and Infectious Diseases
Hugstetter Strasse 55
79106 Freiburg, Germany
Spyridonidis, Alexandros
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Stockschläder, Marcus
Institute of Hemostaseology and Transfusion Medicine
Düsseldorf University Hospital
Moorenstrasse 5
40227 Düsseldorf, Germany

Thatcher, Nick
Department of Medical Oncology
Christie Hospital NHS Trust
Wilmslow Road
Manchester M20 4BX, United Kingdom

Thierry, Veronique
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Trepel, Martin
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Veelken, Hendrik
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Waesch, Ralph
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Waller, Cornelius
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Weissenberger, Christian
University Medical Center
Department of Radiation Therapy
Hugstetter Strasse 55
79106 Freiburg, Germany

Wetterauer, Ulrich
University Medical Center
Department of Urology
Hugstetter Strasse 55
79106 Freiburg, Germany

Wünsch, Alexander
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany

Zahradnik, Hans-Peter
University Medical Center
Department of Gynecology
Hugstetter Strasse 55
79106 Freiburg, Germany

Zeller, Christoph
Asklepios Klinik Triberg
Fachklinik für Innere Medizin
Hematologie/Oncologie
Ludwigstrasse 1–2
78098 Triberg, Germany

Zürcher, Gudrun
University Medical Center
Department of Hematology and Oncology
Hugstetter Strasse 55
79106 Freiburg, Germany
1.1 Epidemiology

D.P. Berger, H. Henß

Def: Describes the frequency with which a disease occurs and examines possible links between disease occurrence and risk factors.

Meth: Terms
- **Incidence**: total number of new cases of a given disease occurring in a population during a defined time interval (e.g., new cases per year)
- **Incidence Rate**: incidence within a given population (e.g., incidence per 100,000 people)
- **Prevalence**: total number of affected members of the population at a set point in time
- **Prevalence Rate**: prevalence within a given population (e.g., prevalence per 100,000 people)
- **Mortality**: total number of disease-related deaths occurring during a defined time interval (e.g., disease-related deaths per year)
- **Mortality Rate**: mortality within a given population (e.g., disease-related deaths per 100,000 people per year)

Risk
Describes the likelihood of an event occurring within a defined time interval, e.g., risk of developing a particular tumor (incidence risk) or risk of dying of a disease (mortality risk).

Risk Factors
Factors contributing to a specific risk. Risk factors for malignant diseases include demographical data (age, sex), geographical distribution, socio-economic factors, environmental factors, and biological parameters ("molecular epidemiology").

Relative Risk (RR)
Epidemiological term which compares the risk (e.g., of disease occurrence) within a specific sub-population ("high-risk group," e.g., smokers) with the average population. A factor > 1.0 represents an increased RR, factors < 1.0 constitute a reduced RR.

Average Age at Which a Disease Occurs
Maximum of the age-specific distribution of cases of a disease.

Incidence, age distribution, and gender distribution of each entity are shown in the disease-related chapters (Chaps. 6.1–8.13). Recent research suggests that 70–80% of all malignant diseases are triggered by certain lifestyle habits or environmental carcinogens. In addition, hereditary factors are of particular importance (Chap. 1.2).
Development of mortality rates of female patients with solid tumors (USA, 1930–2003, age-adjusted mortality rate per 100,000)

Source: American Cancer Society, Cancer Facts and Figures 2003

Development of mortality rates of male patients with solid tumors (USA, 1930–2003, age-adjusted mortality rate per 100,000)

Ref:

Web:
1. http://www.cancer.org/ American Cancer Society
1.2 Carcinogenesis, Molecular Tumor Biology

D.P. Berger, U. Martens

Def: Development of malignant diseases is a result of multiple exogenic and endogenic factors. Of pivotal importance is the accumulation of genetic and epigenetic changes leading to the selection of a cell population with malignant phenotype. Characteristics are:

- Unlimited proliferation, immortalization
- Loss of antiproliferative feedback mechanisms, autonomous growth, not dependent on proliferation signals (e.g., autocrine stimulation)
- Loss of ability to induce apoptosis
- Neovascularization
- Metastatic and invasive properties

Pg: The development of a malignant tumor requires several steps (see model of multistep carcinogenesis). Point mutations (single nucleotide changes) or cytogenetic aberrations (e.g., translocation / inversion / deletion) lead to altered activity of genes (e.g., p53, pRB) impacting tumor growth regulation and biology of malignant cells. These can be hereditary (“germline mutation”) or spontaneous (“somatic mutation”) as a result of multiple factors (“carcinogens” or carcinogenic defects).

Exogenous Carcinogens:
- Chemicals, drugs
- Ionizing radiation
- Infections (viruses, bacteria, protozoa, particularly chronic infections)

Endogenous Carcinogens:
- Defective DNA repair mechanisms
- Defective regulation of epigenetic events
- Genetic instability

Model of multistep carcinogenesis

![Model of multistep carcinogenesis](image)
Carcinogens and associated human neoplasias

<table>
<thead>
<tr>
<th>Carcinogen / group</th>
<th>Associated diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol / Tobacco:</td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>Hepatic carcinoma, head and neck tumors, gastrointestinal tumors</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Lung cancer, head and neck tumors, esophageal carcinoma, pancreatic carcinoma, renal cell carcinoma, carcinoma of renal pelvis, bladder carcinoma</td>
</tr>
<tr>
<td>Industrial substances and environmental pollutants:</td>
<td></td>
</tr>
</tbody>
</table>
Carcinogens and associated human neoplasias (continued)

<table>
<thead>
<tr>
<th>Carcinogen / group</th>
<th>Associated diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drugs:</td>
<td></td>
</tr>
<tr>
<td>Alkylating agents</td>
<td>Acute myeloid leukemia, bladder carcinoma</td>
</tr>
<tr>
<td>Androgenic steroids</td>
<td>Hepatic carcinoma</td>
</tr>
<tr>
<td>Diethy stilbestrol (prenatal)</td>
<td>Vaginal adenocarcinoma</td>
</tr>
<tr>
<td>Epipodophyllotoxin derivates</td>
<td>Acute myeloid leukemia</td>
</tr>
<tr>
<td>Immunosuppressants (azathioprine, cyclosporine)</td>
<td>Non-Hodgkin's lymphomas, skin tumors, sarcomas</td>
</tr>
<tr>
<td>Phenacetine</td>
<td>Carcinoma of renal pelvis, bladder carcinoma</td>
</tr>
<tr>
<td>Synthetic estrogens</td>
<td>Endometrial carcinoma</td>
</tr>
<tr>
<td>Bacteria, viruses, fungi:</td>
<td></td>
</tr>
<tr>
<td>Aflatoxins</td>
<td>Hepatic carcinoma</td>
</tr>
<tr>
<td>Chronic hepatitis B, C (HBV, HCV)</td>
<td>Hepatic carcinoma</td>
</tr>
<tr>
<td>Epstein-Barr virus (EBV)</td>
<td>Burkitt's lymphoma, nasopharyngeal carcinoma</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Gastric cancer, MALT-lymphoma of the stomach</td>
</tr>
<tr>
<td>HIV</td>
<td>Lymphomas, Kaposi's sarcoma</td>
</tr>
<tr>
<td>HTLV-1</td>
<td>Adult T-cell leukemia / lymphomas</td>
</tr>
<tr>
<td>Human papillomaviruses (HPV)</td>
<td>Cervical / vulvar / anal / penile carcinoma</td>
</tr>
<tr>
<td>KSHV / HHV-8</td>
<td>Kaposi's sarcoma, multiple myeloma (?)</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>Bladder carcinoma</td>
</tr>
</tbody>
</table>

Ref:

Web:
8. http://www.nature.com/nrc/poster/subpathways/index.html | A subway map to cancer
<table>
<thead>
<tr>
<th>Hereditary syndrome</th>
<th>Gene</th>
<th>Locus</th>
<th>Primary tumor</th>
<th>Associated disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Fraumeni syndrome</td>
<td>TP53</td>
<td>17p13.1</td>
<td>Breast cancer, sarcomas</td>
<td>CNS tumors, leukemias, lymphomas</td>
</tr>
<tr>
<td>Familial adenomatous polyposis (FAP, Gardner's syndrome)</td>
<td>APC, MYH</td>
<td>5q21</td>
<td>Colorectal cancer</td>
<td>Gastric cancer, pancreatic carcinoma, osteomas, medulloblastoma</td>
</tr>
<tr>
<td>Hereditary non-polyposis colorectal cancer (HNPCC, Lynch's syndrome)</td>
<td>MSH2, MLH1, PMS1, PMS2, MSH6</td>
<td>2p16, 3p21, 2q32, 7p22</td>
<td>Colorectal cancer</td>
<td>Endometrial / ovarian / hepatic carcinoma, renal carcinoma, glioblastoma</td>
</tr>
<tr>
<td>Hereditary diffuse gastric carcinoma</td>
<td>CDH1</td>
<td>16q21-22</td>
<td>Gastric cancer</td>
<td>Breast cancer, colorectal tumors?</td>
</tr>
<tr>
<td>Neurofibromatosis type 1</td>
<td>NF1</td>
<td>17q11.2</td>
<td>Neurofibromas</td>
<td>Neurofibrosarcoma, AML, CNS tumors</td>
</tr>
<tr>
<td>Neurofibromatosis type 2</td>
<td>NF2</td>
<td>22q12.2</td>
<td>Acoustic neurinoma, meningioma</td>
<td>Gliomas, ependymomas</td>
</tr>
<tr>
<td>Wilms’ tumor</td>
<td>WT1, WT2</td>
<td>11p13, 11p15</td>
<td>Wilms’ tumor (nephroblastoma)</td>
<td>Aniridia, urogenital defects, mental retardation</td>
</tr>
<tr>
<td>Hereditary breast cancer type 1, 2</td>
<td>BRCA1, BRCA2</td>
<td>17q21, 13q12</td>
<td>Breast cancer</td>
<td>Ovarian carcinoma, pancreatic carcinoma</td>
</tr>
<tr>
<td>Bloom’s syndrome</td>
<td>BLM</td>
<td>15q26</td>
<td>Leukemias, lymphomas</td>
<td>Diverse solid tumors, immunodeficiencies</td>
</tr>
<tr>
<td>von Hippel-Lindau’s (VHL) syndrome</td>
<td>VHL</td>
<td>3p12</td>
<td>Hypernephroid carcinoma</td>
<td>Pheochromocytoma, retinal angiomas, cerebellar hemangiomas</td>
</tr>
<tr>
<td>Hereditary papillary renal carcinoma</td>
<td>MeT</td>
<td>7q31</td>
<td>Papillary renal carcinoma</td>
<td>Other solid tumors</td>
</tr>
<tr>
<td>Familial melanoma</td>
<td>CDKN2A(p16), CDK4</td>
<td>9p21, 12q13</td>
<td>Melanoma</td>
<td>Pancreatic carcinoma, dysplastic moles</td>
</tr>
<tr>
<td>Multiple endocrine neoplasia 1 (MEN 1)</td>
<td>MEN 1</td>
<td>11q13</td>
<td>Islet carcinoma</td>
<td>Parathyroid adenomas</td>
</tr>
<tr>
<td>Multiple endocrine neoplasia 2 (MEN 2)</td>
<td>MEN 2 (RET)</td>
<td>10q11.2</td>
<td>Medullary thyroid carcinoma</td>
<td>Pheochromocytomas, hamartomas, parathyroid adenomas</td>
</tr>
<tr>
<td>Cowden’s syndrome</td>
<td>PTEN, MMAC1</td>
<td>10q23</td>
<td>Breast cancer, follicular thyroid carcinoma</td>
<td>Hamartomas, intestinal polyps, cutaneous lesions</td>
</tr>
<tr>
<td>Ataxia telangiectasia (Louis-Bar)</td>
<td>ATM</td>
<td>11q22</td>
<td>Lymphomas</td>
<td>Ataxia, immunodeficiency, breast cancer</td>
</tr>
<tr>
<td>Xeroderma pigmentosum</td>
<td>XBD, XPD, XPA</td>
<td>Variable</td>
<td>Skin tumors</td>
<td>Abnormal pigmentation, hypogonadism</td>
</tr>
<tr>
<td>Fanconi’s anemia</td>
<td>FACC, FACA</td>
<td>9q22, 16q24</td>
<td>AML</td>
<td>Pancytopenia, skeletal defects</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>RB</td>
<td>13q14</td>
<td>Retinoblastoma</td>
<td>Osteosarcomas</td>
</tr>
<tr>
<td>Tuberous sclerosis</td>
<td>TSC1, TSC2</td>
<td>9q34, 16p13</td>
<td>Cutaneous fibroadenomas</td>
<td>Astrocytomas, skin tumors</td>
</tr>
</tbody>
</table>
1.3 **Hematopoiesis and Development of Hematological Neoplasia**

C.I. Müller, D.P. Berger, M. Engelhardt

Def: Hematopoiesis is the formation of effector cells of the peripheral blood and bone marrow. In the bone marrow, approximately 1×10^{12} cells are formed daily.

Differentiation:
- **Myelopoiesis:** formation of myeloid effector cells (granulocytes, monocytes, macrophages)
- **Lymphopoiesis:** formation of lymphocytic effector cells (T lymphocytes, B lymphocytes)
- **Erythropoiesis:** formation of erythrocytes
- **Thrombopoiesis:** formation of thrombocytes (platelets)
- **Granulopoiesis:** formation of granulocytes (eosinophils, basophils, neutrophils)

Phys:

Location of Hematopoiesis
- Embryogenesis: hematopoiesis in liver → spleen → bone marrow
- Adulthood: bone marrow. In case of medullary insufficiency, liver and spleen can take over hematopoietic function (“extramedullary hematopoiesis”)

Regulation of Hematopoiesis
Proliferation and differentiation of stem cells, progenitor cells and effector cells are regulated by hematopoietic growth factors (HGF):
- Stem and progenitor cells: Flt-2 / flk-3 ligand, stem cell factor (SCF)
- Erythropoiesis: erythropoietin, SCF, interleukin-3 (IL-3)
- Thrombopoiesis: thrombopoietin, SCF, IL-3, IL-6, IL-11
- Granulopoiesis: IL-3, granulocyte colony-stimulating factor (G-CSF), GM-CSF
- Lymphopoiesis: Flt-2 / flk-3 ligand, SCF, IL-2, IL-6, IL-7

Effector Cell Characteristics
- **Erythrocytes:** carry oxygen and hemoglobin, diameter 8 µm, biconcave, akaryotic, development period 7 days, life span 120 days
- **Thrombocytes:** “platelets,” essential for coagulation, size 1–2 µm, granular, basophilic, development period 10–12 days, life span of circulating thrombocytes 7–8 days
- **Neutrophil granulocytes:** defense against infections (particularly bacterial infections), ≤ 5 nuclear segments connected by chromatin bridges (“segmented granulocyte”), development period 7–10 days, life span of mature neutrophil granulocyte 7–10 h, average production 10×10^7/h, in response to infection up to 500×10^7/h
- **Eosinophil granulocytes:** relevant in allergic and parasitic diseases, two nuclear segments connected by chromatin bridges, eosinophilic cytoplasm
- **Basophil granulocytes:** relevant in allergic and parasitic diseases, two nuclear segments connected by chromatin bridges, rough basophilic cytoplasmic granules
- **Monocytes:** resistance to infection and phagocytosis, nuclear sinuses and loosely structured chromatin, median life span in peripheral blood 20–40 days
- **B lymphocytes:** antibody-mediated immune response, plasmacytic precursors, diameter 7–12 µm, basophilic cytoplasm, central round nucleus with densely structured chromatin
- **T lymphocytes:** cellular immune response, diameter 7–12 µm, basophilic cytoplasm, central round nucleus with densely structured chromatin

Phys:

Hematological Neoplasia
Hematologic neoplasms are formed by malignant transformation of cells of certain developmental stages → some characteristics of the neoplastic disease may be aligned with features of the corresponding stage of differentiation, e.g., proliferative activity, surface markers (CD antigens), molecular markers.
BFU-E burst-forming unit–erythroid, CFU colony-forming unit, Ba basophils, E erythrocytes, Eo eosinophils, G granulocytes, M monocytes or macrophages, Meg megakaryocytes, NK natural killer
Example: B-cell development, differentiation, and expression of surface markers (CD antigens). Hematologic malignancies developing at a specific stage of differentiation will carry the given CD antigen expression pattern.

II. Interleukin, SCF Stem Cell Factor, CD Surface Marker (Cluster of Differentiation ➔ Chap. 2.5)

Formation of hematological neoplasias on the basis of:
- Erythropoiesis ➔ erythroleukemias (AML M6) ➔ Chap. 7.1.2
- Thrombopoiesis ➔ megakaryoblastic leukemias (AML M7) ➔ Chap. 7.1.2
- Granulopoiesis ➔ acute myeloid leukemias ➔ Chap. 7.1.2
- Lymphopoiesis ➔ lymphomas, lymphatic leukemias ➔ Chaps. 7.1.1, 7.4, 7.5

Ref:
5. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100:1532–42

Web:
1.4 Prevention and Screening

H. Henß

Def:
Primary prevention = prevention of tumor development
Secondary prevention = tumor screening
Tertiary prevention = post-treatment follow-up and care to ensure early detection of relapse

Primary Prevention

Def:
Successful primary prevention of all malignancies is currently unrealistic for the following reasons:
- Unresolved etiology and pathogenesis of malignant diseases
- Multiple oncogenetic mechanisms of malignant diseases
- Uncertain efficacy of the majority of primary preventive measures (chemoprevention, antioxidant therapy, etc.)

However, epidemiological research suggests that specific measures may reduce the risk of developing certain tumors. Activities with the potential for tumor prevention are:
- Sufficient physical exercise
- Adequate nutrition
- Avoidance of exogenous risk factors (e.g., smoking)

Pg:
Primary prevention focuses on definition, recognition, and avoidance of risk factors, which can be genetically determined and/or acquired. Once genetic risk factors have been identified, they can be used to define a high-risk population.

Genetic Risk Factors: Examples (► Chap. 1.2)
- Familial adenomatous polyposis (FAP) and other familial colorectal tumors (HNPCC)
- Familial breast cancer and/or familial ovarian carcinoma (BRCA1, BRCA2)
- Xeroderma pigmentosum

In the presence of genetic risk factors, cancer screening, preventive therapy, and chemoprevention have to be considered.

Acquired Risk Factors Associated with Certain Tumors (► Chap. 1.2)
- *Smoking:* lung cancer, squamous cell carcinoma of the head and neck, breast cancer, pancreatic carcinoma, bladder carcinoma, renal cell carcinoma
- *Alcohol:* squamous cell carcinoma of the head and neck, hepatocellular carcinoma, breast cancer, gastrointestinal tumors
- *Hazardous substances:* lung cancer (e.g., asbestos), nasopharyngeal carcinoma (hardwood dust), bladder carcinoma (tar, solvents)
- *Infections:* hepatocellular carcinoma (hepatitis B / C), cervical carcinoma (papilloma virus, HPV), gastric cancer (*Helicobacter pylori*)
- *Excess exposure to sunlight / UV light:* malignant melanoma, basal cell carcinoma
- *Obesity (esp. postmenopausal):* breast cancer, endometrial carcinoma, prostatic cancer, colorectal cancer

Px:
The “European Code Against Cancer” was developed as a source of information for patients. It contains general rules of conduct in order to prevent tumor development.
Many aspects of general health can be improved, and certain cancers avoided, if you adopt a healthier life style

1. Do not smoke. If you smoke, stop doing so. If you fail to stop, do not smoke in the presence of non-smokers
2. Avoid obesity
3. Undertake some brisk physical activity every day
4. Increase your daily intake and variety of vegetables and fruits: eat at least 5 servings daily. Limit your intake of foods containing fats from animal sources
5. If you drink alcohol, whether beer, wine, or spirits, moderate your consumption to two drinks per day if you are a man and one drink per day if you are a woman
6. Care must be taken to avoid excessive sun exposure. It is specifically important to protect children and adolescents. For individuals who have a tendency to burn in the sun, active protective measures must be taken throughout life
7. Apply strictly regulations aimed at preventing any exposure to known cancer-causing substances. Follow all health and safety instructions on substances which may cause cancer. Follow advice of national radiation protection offices

There are public health programs that could prevent cancers developing or increase the probability that a cancer may be cured

8. Women from 25 years of age should participate in cervical screening. This should be within programs with quality control procedures in compliance with European Guidelines for Quality Assurance in Cervical Screening
9. Women from 50 years of age should participate in breast screening. This should be within programs with quality control procedures in compliance with European Guidelines for Quality Assurance in Mammography Screening
10. Men and women from 50 years of age should participate in colorectal screening. This should be within programs with built-in quality assurance procedures
11. Participate in vaccination programs against hepatitis B virus infection

Other measures

12. See a doctor if you notice a lump, a persistent wound (including inside the mouth), changes in shape, color, or size of a mole, any abnormal bleeding
13. See a doctor if you have persistent symptoms such as a chronic cough or persistent hoarseness, a change in bowel habits / urination, or unexpected weight loss

Chemoprevention

Def: Prevention of tumor development via prophylactic medication.

Th: Colorectal Tumors
- Retrospective studies demonstrate risk reduction through regular use of acetylsalicylic acid or non-steroidal antiinflammatory drugs (NSAIDs).
- Prospective studies showed decreased numbers of adenomas, but no significant influence on carcinoma-related mortality → General use of acetylsalicylic acid or NSAIDs for the prevention of colorectal tumors is presently not recommended due to the possible side effects.
Breast Cancer
- Positive family history and/or identification of the BRCA-1 and BRCA-2 genes constitute a higher risk. However, the extent of this risk remains uncertain. Recent studies have shown that women carrying the genes have up to an 80% lifetime risk of developing the disease by the age of 80.
- Initial larger studies using tamoxifen in high-risk populations showed a positive influence on the disease risk. Consequently, the US National Cancer Institute (NCI) formulated a recommendation for the prophylactic use of tamoxifen in patients at risk of developing breast cancer. At present, this recommendation is judged controversial as other studies failed to reproduce the initial results or have even shown a negative influence of tamoxifen → Outside of studies, tamoxifen use should be limited to clearly defined high-risk populations. Frequent follow-up is required due to the increased risk of endometrial carcinoma.

Cervical Carcinoma
Vaccination against human papillomavirus type 16 (HPV-16) prevents intraepithelial cervical neoplasias.

Lung Cancer
Two large studies were conducted on the influence of protective substances in high-risk populations:
- ATBC study: administration of alpha-tocopherol (vitamin E) and β-carotene
- CARET study: administration of β-carotene and retinol

Neither study showed any benefit in relation to the occurrence of lung cancer. Instead, mortality was increased in the β-carotene group (higher incidence of bronchial carcinomas and myocardial infarction). Hence, further similar studies were discontinued.

Head and Neck Tumors
Patients with successfully removed head and neck tumors show a reduced incidence of metachronous secondary tumors after prophylactic use of retinoids. However, retinoids appeared to have no influence on relapse frequency or metastasis of the primary tumor.

Xeroderma Pigmentosum
The use of retinoids also had a positive effect in known cases of xeroderma pigmentosum.

Selenium
Clinical studies do not conclusively verify the usefulness of selenium substitution. While substitution is useful in selenium deficient areas (e.g., China), it seems to have no protective effect in areas with sufficient selenium supply (e.g., Germany). Results of current clinical studies remain to be seen.

Secondary Prevention (Cancer Screening)

Def:
Cancer screening remains the main focus of prophylaxis. Its benefits are, however, still subject to debate.
- On the one hand, there is definite increase in cure rates and prolonged life expectancy in early stages of tumor development.
- On the other hand, there is lead time bias and diagnosis of asymptomatic tumors which have no influence on life expectancy (“over-diagnosis bias”).
- Furthermore, false-positive screening results lead to increased technology-intensive and invasive diagnostic procedures with a higher risk of acute and chronic side effects (exposure to radiation, risk of invasive measures, etc.).

Meth:
The following World Health Organization (WHO) criteria are adequate guidelines for screening measures.
WHO criteria for sensible and effective cancer screening programs

- The disease should be an important health problem
- There should be an accepted treatment
- There should be facilities for diagnosis and treatment of the disease
- The disease should have a detectable preclinical phase
- The natural history of the disease should be understood
- A suitable screening test should be available
- The test should be acceptable to the general public
- There should be a generally accepted strategy for determining whom to treat
- The costs generated should be acceptable
- The program should be designed to carry out screening continuously

Cancer Screening Programs

Cancer screening programs are considered standard medical care for:

- Cervical and endometrial carcinoma → women from 20 years of age
- Breast cancer → women from 30 years of age
- Colorectal cancer → women and men from 45 years of age
- Prostate cancer → men from 45 years of age
- Malignant skin tumors → women from 30 years of age / men from 45 years of age.

International publications have firmly established the benefits of screening for:

- Colorectal cancer
- Breast cancer in postmenopausal women
- Cervical carcinoma

Up to now, the exact benefits of screening for prostate cancer have not been verified by published studies. There is a positive trend toward using mammography to screen for breast cancer in premenopausal women. Screening for malignant melanoma is also recommended, especially given the low costs involved and the importance of early treatment. There are no recommendations for lung cancer and ovarian carcinoma. In both cases, currently published studies do not show any correlation between detection by screening and decreased mortality.

Ref:

Web: