European Manual of Medicine

Neurosurgery

C. B. Lumenta, C. Di Rocco, J. Haase, J. J. A. Mooij
Editors
Foreword of the Series Editors

The European Manual of Medicine series was founded on the premise of offering residents as well as specialised clinicians the latest and most up-to-date information on diagnosis and treatment in Europe. In contrast to existing textbooks, the European Manual of Medicine series aims to find a consensus on the demands of modern European medicine based on the “logbooks” recommended by the Union of European Medical Societies (UEMS). Therefore, identical for each discipline, diagnostic and therapeutic principles are recommended as “recommended European standards”.

To fulfil these demands, we – together with Springer – recruit editors who are well established and recognised in their specialities. For each volume, at least three editors from different European countries are invited to bring the high clinical and scientific standards of their respective disciplines to the book.

Wherever possible, the book editors were asked to follow a standardised structure for each chapter so as to guarantee the reader easy and quick access to the material. High-quality illustrations and figures should provide additional useful information. For the interested reader, detailed references allow him or her to further investigate areas of individual interest.

The series editors are deeply grateful to Springer, especially to Mrs. Gabriele Schroeder, Mrs. Waltraud Leuchtenberger and Mrs. Stephanie Benko for their support and assistance in the realisation of this project from the early stages.

The third volume of the European Manual of Medicine series is Neurosurgery. The aim is to provide neurosurgery trainees with a comprehensive, yet condensed, guide to the core knowledge required in this speciality, and to give them the ability to work in their speciality in the entire European Union.

The volume editors Prof. Christiano B. Lumenta, Munich/Germany; Prof. Concezio Di Rocco, Rome/Italy; Prof. Jens Haase, Aalborg/Denmark; and Prof. Jan Jakob A. Mooij, Groningen/The Netherlands, leading European experts in Neurosurgery, recruited contributors from different European countries to compile a textbook that fulfils our original concept of the European Manual of Medicine series.

Wolfgang Arnold
Uwe Ganzer
Munich/Düsseldorf
Fall 2009
Preface

In a highly specialized field of medicine such as neurosurgery, specific knowledge is needed, and residents in training for neurosurgery also need to have such knowledge.

As we know, there are differences in the training programmes in the various EU countries, making it difficult to standardize medical training in the specialized field of neurosurgery. The basis for an international European consensus in neurosurgery is set out in this manual.

The book is written for residents as well as for students and other physicians with special interest in neurosurgery. Attempts were made to incorporate details of diagnostic and therapeutic procedures in different neurosurgical cases depending on the localization (cranial, spinal, peripheral nerves), with consideration of congenital defects and paediatric neurosurgical disorders, of functional and stereotactic neurosurgery as well as of critical neurosurgical care. The chapters on each organ contain the basics in anatomy and physiology. The book is structured with a clear description of the entities and their neurosurgical treatment options.

With better understanding of specific neurosurgical problems, the reader will be able to provide patients with better medical care. In preparing for the board examination, the resident will have a European standard for stepwise management of neurosurgical problems.

Munich, Germany
C. B. Lumenta

Rome, Italy
C. Di Rocco

Aalborg, Denmark
J. Haase

Groningen, The Netherlands
J. J. A. Mooij

Summer 2009
Contents

Introduction
Edited by Christianto B. Lumenta

1.1 Introduction to Neurosurgery 3
References 3

Training and Education
Edited by Christianto B. Lumenta

2.1 Training in Neurosurgery 7
2.1.1 Introduction 7
2.1.2 Goals of a Neurosurgical Training Programme 7
2.1.3 Length of Training 7
2.1.4 Contents of Training 7
2.1.5 The Training Programme 7
2.1.6 The Training Institution 8
2.1.6.1 Requirements for Training Institutions with Regard to Equipment and Educational Facilities 8
2.1.6.2 Institutional Quality Management Provisions 9
2.1.6.3 Responsibilities of a Training Programme Director 9
2.1.6.4 Responsibilities of Trainers 9
2.1.6.5 Requirements for Trainees 9
2.1.7 Periodic Progress Evaluation 10
2.1.8 Certification at Completion of Training 10
2.1.9 Subspecialisation 10
References 16

2.2 Basic Training in Technical Skills: Introduction to Learning ‘Surgical Skills’ in a Constructive Way 17
2.2.1 Introduction to ‘Basic Training Skills’ 17
2.2.2 Learning: Theories 17
2.2.3 Length of Training Periods 18

2.2.4 Magnification of Surgical Dexterity 19
2.2.5 Virtual Reality as Part of the Learning Process 20
2.2.6 Conclusion 21
References 21

The Neurocranium
Edited by Christianto B. Lumenta,
Jan Jakob A. Mooij and Concezio Di Rocco

3.1 Basics 27
3.1.1 Anatomy 27
3.1.1.1 The Skull and Its Solid Contents 27
3.1.1.2 The Cerebral Blood Vessels 28
3.1.1.3 The Cerebrospinal Fluid and Ventricle System 29
3.1.1.4 The Cranial Nerves 31
3.1.2 Pathophysiology 31
3.1.3 Clinical Symptomatology 32
3.1.3.1 Sensorimotor Deficit 32
3.1.3.2 Speech Disturbances 33
3.1.3.3 Optic Function Disturbance 33
3.1.3.4 Cerebellar Symptomatology 33
3.1.4 General Clinical Examination 33
3.1.4.1 The Present and the Past Histories of the Patient and the Family 33
3.1.4.2 The Neurological Examination 33
3.1.5 Cerebral Diagnostics 34
3.1.5.1 Radiology: Fundamentals of Cranial Neuroimaging 34
3.1.5.2 Electroencephalography 43
3.1.5.3 Evoked Potentials and Their Use in Neurosurgical Practice 46
3.1.5.4 Radionuclide Imaging Studies 52
3.1.5.5 Cerebrospinal Fluid Diagnostics 56
References 59
3.2 Brain Tumors

- **3.2.1 Classification and Biology of Brain Tumors**
 - 3.2.1.1 Introduction
 - 3.2.1.2 Morphology, Prognosis, and Clinical Malignancy
 - 3.2.1.3 Genetics
 - 3.2.1.4 Single Entities
 - 3.2.1.4.1 Selected Reading
 - 3.2.1.5 Special Remarks
 - 3.2.1.5.1 Selected Reading

- **3.2.2 Epidemiology of Brain Tumours**
 - 3.2.2.1 Basics
 - 3.2.2.2 Definitions
 - 3.2.2.3 Epidemiology of Brain Tumours in Adults
 - 3.2.2.4 Epidemiology of Brain Tumours in Children
 - 3.2.2.5 Special Remarks
 - 3.2.2.5.1 Selected Reading
 - 3.2.2.6 Selected Reading

- **3.2.3 Indications for Surgery**
 - 3.2.3.1 General Principles of Surgery on Brain Tumors
 - 3.2.3.2 Aim of Surgery
 - 3.2.3.3 Results of Surgery
 - 3.2.3.4 Microsurgical Instruments
 - 3.2.3.5 Stereotactic Biopsy
 - 3.2.3.5.1 Selected Reading
 - 3.2.3.6 Introduction
 - 3.2.3.7 Technique of Frame-Based Stereotactic Biopsy
 - 3.2.3.7.1 Selected Reading
 - 3.2.3.8 Indications
 - 3.2.3.8.1 Selected Reading
 - 3.2.3.9 Complications
 - 3.2.3.9.1 Selected Reading
 - 3.2.3.10 Supratentorial Brain Tumors
 - 3.2.3.10.1 Introduction
 - 3.2.3.10.2 Mechanism of Action
 - 3.2.3.10.3 Standard Basic Equipment
 - 3.2.3.10.4 Recent Developments
 - 3.2.3.11 Neuroepithelial Tumors
 - 3.2.3.11.1 Selected Reading
 - 3.2.3.12 Meningiomas
 - 3.2.3.12.1 Selected Reading
 - 3.2.3.13 Lymphomas
 - 3.2.3.13.1 Selected Reading
 - 3.2.3.14 Germ Cell Tumors
 - 3.2.3.14.1 Selected Reading
 - 3.2.3.15 Tumors of the Sellar Region
 - 3.2.3.15.1 Selected Reading
 - 3.2.3.16 Metastases
 - 3.2.3.16.1 Selected Reading

- **3.2.4 Surgical Principles**
 - 3.2.4.1 Introduction
 - 3.2.4.2 Microsurgical Instruments
 - 3.2.4.3 Standard Basic Equipment
 - 3.2.4.4 Recent Developments
 - 3.2.4.5 Stereotactic Approaches
 - 3.2.4.5.1 Standard Approaches to Radiotherapy
 - 3.2.4.5.2 The Late Consequences of Radiation Therapy to the Brain
 - 3.2.4.6 Selected Reading

- **3.2.5 Neuroepithelial Tumours**
 - 3.2.5.1 Introduction
 - 3.2.5.2 Pathologies of the Cranio-Cervical Junction
 - 3.2.5.2.1 Selected Reading

- **3.2.6 Cerebellopontine Angle Tumours**
 - 3.2.6.1 Neuroepithelial Tumours
 - 3.2.6.1.1 Selected Reading
 - 3.2.6.2 Selected Reading

- **3.2.7 Tumor of the Orbit**
 - 3.2.7.1 Introduction
 - 3.2.7.2 Symptoms
 - 3.2.7.3 Topographical Distribution
 - 3.2.7.4 Histology
 - 3.2.7.5 Operative Approaches
 - 3.2.7.6 European Recommendations
 - 3.2.7.7 Selected Reading

- **3.2.8 Germ Cell Tumors**
 - 3.2.8.1 Introduction
 - 3.2.8.2 Pathology
 - 3.2.8.3 Treatment
 - 3.2.8.4 Diagnosis
 - 3.2.8.5 Imaging
 - 3.2.8.6 Prognosis
 - 3.2.8.7 Surgical Principles
 - 3.2.8.8 Secondary Pseudotumour Cerebri
 - 3.2.8.9 Special Remarks
 - 3.2.8.10 Selected Reading

- **3.2.9 Meningiomas**
 - 3.2.9.1 Pathology
 - 3.2.9.2 Treatment
 - 3.2.9.3 Prognosis
 - 3.2.9.4 Surgical Principles
 - 3.2.9.5 Imaging
 - 3.2.9.6 Diagnosis
 - 3.2.9.7 European Guidelines
 - 3.2.9.8 European Recommendations
 - 3.2.9.9 Selected Reading

- **3.2.10 Metastases**
 - 3.2.10.1 Introduction
 - 3.2.10.2 Pathology
 - 3.2.10.3 Treatment
 - 3.2.10.4 Diagnosis
 - 3.2.10.5 Imaging
 - 3.2.10.6 Prognosis
 - 3.2.10.7 Surgical Principles
 - 3.2.10.8 Secondary Pseudotumour Cerebri
 - 3.2.10.9 Special Remarks
 - 3.2.10.10 Selected Reading

- **3.2.11 Tumors of the Sellar Region**
 - 3.2.11.1 Introduction
 - 3.2.11.2 Pathology
 - 3.2.11.3 Treatment
 - 3.2.11.4 Prognosis
 - 3.2.11.5 Imaging
 - 3.2.11.6 Diagnosis
 - 3.2.11.7 European Guidelines
 - 3.2.11.8 European Recommendations
 - 3.2.11.9 Selected Reading

- **3.2.12 Tumor of the Orbit**
 - 3.2.12.1 Introduction
 - 3.2.12.2 Pathology
 - 3.2.12.3 Treatment
 - 3.2.12.4 Prognosis
 - 3.2.12.5 Imaging
 - 3.2.12.6 Diagnosis
 - 3.2.12.7 European Guidelines
 - 3.2.12.8 European Recommendations
 - 3.2.12.9 Selected Reading

- **3.2.13 Malignant Tumors of the Cranio-Cervical Junction**
 - 3.2.13.1 Introduction
 - 3.2.13.2 Pathology
 - 3.2.13.3 Treatment
 - 3.2.13.4 Prognosis
 - 3.2.13.5 Imaging
 - 3.2.13.6 Diagnosis
 - 3.2.13.7 European Guidelines
 - 3.2.13.8 European Recommendations
 - 3.2.13.9 Selected Reading

- **3.2.14 Neuroepithelial Tumors in Adults**
 - 3.2.14.1 Introduction
 - 3.2.14.2 Pathology
 - 3.2.14.3 Treatment
 - 3.2.14.4 Prognosis
 - 3.2.14.5 Imaging
 - 3.2.14.6 Diagnosis
 - 3.2.14.7 European Guidelines
 - 3.2.14.8 European Recommendations
 - 3.2.14.9 Selected Reading

- **3.2.15 Neuroepithelial Tumors in Children**
 - 3.2.15.1 Introduction
 - 3.2.15.2 Pathology
 - 3.2.15.3 Treatment
 - 3.2.15.4 Prognosis
 - 3.2.15.5 Imaging
 - 3.2.15.6 Diagnosis
 - 3.2.15.7 European Guidelines
 - 3.2.15.8 European Recommendations
 - 3.2.15.9 Selected Reading
<table>
<thead>
<tr>
<th>3.4.5.4</th>
<th>Diagnostic Procedures and Treatment</th>
<th>3.5.8.1</th>
<th>Introduction</th>
<th>277</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.6</td>
<td>Brain Abscess</td>
<td>3.5.8.2</td>
<td>Pathophysiology</td>
<td>277</td>
</tr>
<tr>
<td>3.4.6.1</td>
<td>Aetiology/Epidemiology</td>
<td>3.5.8.3</td>
<td>Initial Examination</td>
<td>278</td>
</tr>
<tr>
<td>3.4.6.2</td>
<td>Symptoms</td>
<td>3.5.8.4</td>
<td>Operative Treatment</td>
<td>278</td>
</tr>
<tr>
<td>3.4.6.3</td>
<td>Diagnostic Procedures</td>
<td>3.5.8.5</td>
<td>Postoperative Treatment</td>
<td>279</td>
</tr>
<tr>
<td>3.4.6.4</td>
<td>Therapy</td>
<td>3.5.8.6</td>
<td>Outcome</td>
<td>279</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Encephalitis</td>
<td>3.5.9</td>
<td>Traumatic Haematoma</td>
<td>279</td>
</tr>
<tr>
<td>3.4.7.1</td>
<td>Definition</td>
<td>3.5.9.1</td>
<td>Epidural Haematoma</td>
<td>279</td>
</tr>
<tr>
<td>3.4.7.2</td>
<td>Aetiology/Epidemiology</td>
<td>3.5.9.2</td>
<td>Acute Subdural Haematoma</td>
<td>281</td>
</tr>
<tr>
<td>3.4.7.3</td>
<td>Symptoms</td>
<td>3.5.9.3</td>
<td>Parenchymal Lesions</td>
<td>289</td>
</tr>
<tr>
<td>3.4.7.4</td>
<td>Diagnostic Procedures</td>
<td>3.5.10</td>
<td>Selected Reading</td>
<td>291</td>
</tr>
<tr>
<td>3.4.7.5</td>
<td>Therapy</td>
<td>Books</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>3.5.11</td>
<td>Traumatic Brain Injuries</td>
<td>Articles</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>3.5.11.1</td>
<td>Specific Types of Head Injuries in Newborns and Infants</td>
<td>Guidelines</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>3.5.11.2</td>
<td>Medical Aspects</td>
<td>Useful Links</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>3.5.11.3</td>
<td>Selected Reading</td>
<td>3.6</td>
<td>Developmental and Acquired Anomalies</td>
<td>301</td>
</tr>
<tr>
<td>3.5.2</td>
<td>General Principles and Pathophysiology of Head Injuries</td>
<td>3.6.1</td>
<td>Hydrocephalus in Adults</td>
<td>301</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Initial Assessment and Early Management</td>
<td>3.6.1.1</td>
<td>Basics</td>
<td>301</td>
</tr>
<tr>
<td>3.5.3.1</td>
<td>Introduction</td>
<td>3.6.1.2</td>
<td>Diagnostic Procedures</td>
<td>301</td>
</tr>
<tr>
<td>3.5.3.2</td>
<td>Initial Assessment of the Head Injured Patient</td>
<td>3.6.1.3</td>
<td>Clinical Signs</td>
<td>301</td>
</tr>
<tr>
<td>3.5.3.3</td>
<td>Early Management</td>
<td>3.6.1.4</td>
<td>Radiological Findings</td>
<td>302</td>
</tr>
<tr>
<td>3.5.3.4</td>
<td>Imaging</td>
<td>3.6.1.5</td>
<td>Spinal Tap</td>
<td>302</td>
</tr>
<tr>
<td>3.5.3.5</td>
<td>Classification</td>
<td>3.6.1.6</td>
<td>Continuous CSF Pressure Monitoring</td>
<td>302</td>
</tr>
<tr>
<td>3.5.3.6</td>
<td>Treatment</td>
<td>3.6.1.7</td>
<td>CSF Dynamics</td>
<td>303</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Diagnostic Procedures</td>
<td>3.6.1.8</td>
<td>Additional/Useful Diagnostic Procedures</td>
<td>303</td>
</tr>
<tr>
<td>3.5.4.1</td>
<td>Computed Tomography</td>
<td>3.6.1.9</td>
<td>Therapy</td>
<td>303</td>
</tr>
<tr>
<td>3.5.4.2</td>
<td>Magnetic Resonance Imaging</td>
<td>3.6.2</td>
<td>Selected Reading</td>
<td>305</td>
</tr>
<tr>
<td>3.5.4.3</td>
<td>Cerebral Angiography</td>
<td>3.6.2.1</td>
<td>Useful Links</td>
<td>305</td>
</tr>
<tr>
<td>3.5.4.4</td>
<td>Skull Radiography</td>
<td>3.6.2.2</td>
<td>Definition and Etiology</td>
<td>305</td>
</tr>
<tr>
<td>3.5.5</td>
<td>General Principles of Treatment</td>
<td>3.6.2.3</td>
<td>Intracranial Arachnoid Cysts</td>
<td>306</td>
</tr>
<tr>
<td>3.5.5.1</td>
<td>Minor and Moderate Injuries</td>
<td>3.6.2.4</td>
<td>Supratentorial Arachnoid Cysts</td>
<td>306</td>
</tr>
<tr>
<td>3.5.5.2</td>
<td>Severe Injuries</td>
<td>3.6.2.5</td>
<td>Infratentorial Arachnoid Cysts</td>
<td>309</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Skull Fractures and Open Injuries</td>
<td>3.6.2.6</td>
<td>Intraspinal Arachnoid Cysts</td>
<td>310</td>
</tr>
<tr>
<td>3.5.6.1</td>
<td>Linear Fractures</td>
<td>3.6.3</td>
<td>Chiari Malformations</td>
<td>311</td>
</tr>
<tr>
<td>3.5.6.2</td>
<td>Depressed Fractures</td>
<td>3.6.3.1</td>
<td>Background</td>
<td>311</td>
</tr>
<tr>
<td>3.5.6.3</td>
<td>Treatment</td>
<td>3.6.3.2</td>
<td>Chiari 1 Malformation</td>
<td>311</td>
</tr>
<tr>
<td>3.5.7</td>
<td>CSF Fistulas</td>
<td>3.6.3.3</td>
<td>Chiari 2 Malformation</td>
<td>313</td>
</tr>
<tr>
<td>3.5.7.1</td>
<td>Introduction</td>
<td>3.6.3.4</td>
<td>Chiari 3 Malformation</td>
<td>313</td>
</tr>
<tr>
<td>3.5.7.2</td>
<td>Clinical Presentation</td>
<td>3.6.4</td>
<td>Selected Reading</td>
<td>314</td>
</tr>
<tr>
<td>3.5.7.3</td>
<td>Physical Examination</td>
<td></td>
<td>Cranio-Vertebral Junction</td>
<td>315</td>
</tr>
</tbody>
</table>
The Spine and Spinal Cord

Edited by Jan Jakob A. Mooij

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Basics</td>
<td>339</td>
</tr>
<tr>
<td>4.1.1 Anatomy</td>
<td>339</td>
</tr>
<tr>
<td>4.1.1.1 Spinal Column</td>
<td>339</td>
</tr>
<tr>
<td>4.1.1.2 Spinal Cord</td>
<td>341</td>
</tr>
<tr>
<td>4.1.1.3 Meninges and Nerve Roots</td>
<td>342</td>
</tr>
<tr>
<td>4.1.2 Pathophysiology</td>
<td>342</td>
</tr>
<tr>
<td>4.1.2.1 Degenerative Disc Disease</td>
<td>343</td>
</tr>
<tr>
<td>4.1.2.2 Spinal Stenosis</td>
<td>343</td>
</tr>
<tr>
<td>4.1.3 Clinical Symptomatology</td>
<td>343</td>
</tr>
<tr>
<td>4.1.3.1 Radiculopathy</td>
<td>343</td>
</tr>
<tr>
<td>4.1.3.2 Myelopathy</td>
<td>343</td>
</tr>
<tr>
<td>4.1.3.3 Cauda Equina Syndrome</td>
<td>344</td>
</tr>
<tr>
<td>4.1.3.4 Low Back Syndrome</td>
<td>344</td>
</tr>
<tr>
<td>4.1.3.5 Failed Back Syndrome</td>
<td>344</td>
</tr>
<tr>
<td>4.1.4 General Methods of Clinical Examination</td>
<td>344</td>
</tr>
<tr>
<td>4.1.4.1 Inspection and Palpation</td>
<td>344</td>
</tr>
<tr>
<td>4.1.4.2 Specific Neurological Investigation</td>
<td>345</td>
</tr>
<tr>
<td>References</td>
<td>346</td>
</tr>
<tr>
<td>4.1.5 Radiology: Fundamentals of Spinal Neuroimaging</td>
<td>346</td>
</tr>
<tr>
<td>4.1.5.1 Introduction</td>
<td>346</td>
</tr>
<tr>
<td>4.4 Spinal Vascular Diseases</td>
<td>393</td>
</tr>
<tr>
<td>4.4.1 Introduction</td>
<td>393</td>
</tr>
<tr>
<td>4.4.2 Clinical Presentation</td>
<td>393</td>
</tr>
</tbody>
</table>
4.4.12 European Recommendations 396
4.4.12.1 Suggested Reading 396

4.5 Infectious Disease of the Spine 399
4.5.1 Vertebral Body and Disc 399
4.5.1.1 Definition .. 399
4.5.1.2 Etiology/Epidemiology 399
4.5.1.3 Symptoms ... 399
4.5.1.4 Diagnostic Procedures 399
4.5.1.5 Therapy .. 400
4.5.2 Spinal Epidural Abscess 400
4.5.2.1 Definition .. 400
4.5.2.2 Etiology/Epidemiology 400
4.5.2.3 Symptoms ... 400
4.5.2.4 Diagnostic Procedures 400
4.5.2.5 Therapy .. 401
4.5.3 Transverse Myelitis and Human Immunodeficiency Virus
Myelopathy .. 401
4.5.3.1 Definition .. 401
4.5.3.2 Etiology/Epidemiology 401
4.5.3.3 Symptoms ... 401
4.5.3.4 Diagnostic Procedures 401
4.5.3.5 Therapy .. 401
4.5.3.6 References .. 401

4.6 Spinal Trauma .. 403
4.6.1 Surgery of Cervical Spine Trauma 403
4.6.1.1 Introduction ... 403
4.6.1.2 Trauma of Upper Cervical Spine (C0–C2) 403
4.6.1.3 Trauma of Subaxial Cervical Spine (C3–T1) 409
4.6.1.4 Conclusion ... 412
4.6.1.5 References .. 412
4.6.2 Trauma of the Thoracolumbar Spine 413
4.6.2.1 Introduction ... 413
4.6.2.2 Classifications and Review of the Recent Literature 413
4.6.2.3 Indications for Fixation, Diagnostic Work-up and Defining Stability ... 417
4.6.2.4 Historical Steps in Spinal Surgery 421

4.6.2.5 Recent Clinical and Research Developments 423
4.6.2.6 Late Problems .. 423
4.6.2.7 Controversies About the Use of Steroids in Acute Spinal Cord Injuries .. 423
4.6.2.8 Timing of Surgery 425
4.6.2.9 Future Questions and Direction 425
4.6.2.10 Conclusion .. 425
4.7 References .. 425

4.8 Treatment and Rehabilitation of Patients with Spinal Cord Lesions .. 433
4.8.1 Epidemiology .. 433
4.8.2 Survival and Causes of Death 433
4.8.3 Prognosis After Traumatic Spinal Cord Lesion 433
4.8.3.1 Classification ... 433
4.8.3.2 Consequences of a Spinal Cord Lesion 433
4.8.3.3 Acute Treatment of the Spinal Cord Lesion 434
4.8.3.4 Respiration .. 435
4.8.3.5 Cardiovascular Issues 435
4.8.3.6 Pressure Ulcers 435
4.8.3.7 Urological Management 435
4.8.3.8 Bowel Management 436
4.8.3.9 Sexual Function and Fertility 436
4.8.3.10 Spasticity .. 436
4.8.3.11 Pain .. 437
4.8.3.12 Posttraumatic Syringomyelia 437
4.8.3.13 Functional Electrical Stimulation 437
4.8.3.14 Suggested Reading 438

Peripheral Nerve Surgery
Edited by Jens Haase

5.1 Basics: Aetiology, Pathophysiology, General Symptomatology and Diagnosis of Peripheral Nerve Injuries 441
5.1.1 Aetiology .. 441
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.5 Other Neurovascular</td>
<td></td>
</tr>
<tr>
<td>Compression Syndromes</td>
<td>479</td>
</tr>
<tr>
<td>Conclusion</td>
<td>481</td>
</tr>
<tr>
<td>6.3 Conclusion</td>
<td></td>
</tr>
<tr>
<td>7.1 Cranial and Spinal Dysraphisms</td>
<td>485</td>
</tr>
<tr>
<td>7.1.1 Encephaloceles and Related Malformations</td>
<td>485</td>
</tr>
<tr>
<td>7.1.1.1 Introduction: Concepts and Definitions</td>
<td>485</td>
</tr>
<tr>
<td>7.1.1.2 Anencephaly</td>
<td>486</td>
</tr>
<tr>
<td>7.1.1.3 Encephalocele</td>
<td>486</td>
</tr>
<tr>
<td>7.1.1.4 Cranial Meningocele</td>
<td>490</td>
</tr>
<tr>
<td>7.1.1.5 Atretic Cephalocele</td>
<td>490</td>
</tr>
<tr>
<td>7.1.1.6 Scalp Defects</td>
<td>491</td>
</tr>
<tr>
<td>7.1.1.7 Sinus Pericranii</td>
<td>492</td>
</tr>
<tr>
<td>7.1.1.8 Conclusions</td>
<td>493</td>
</tr>
<tr>
<td>7.1.2 Spinal Anomalies</td>
<td>493</td>
</tr>
<tr>
<td>7.1.2.1 Spina Bifida Aperta</td>
<td>493</td>
</tr>
<tr>
<td>7.1.2.2 Spina Bifida Occulta</td>
<td>495</td>
</tr>
<tr>
<td>7.2 Craniosynostosis</td>
<td>501</td>
</tr>
<tr>
<td>7.2.1 Non-syndromic Craniosynostosis</td>
<td>501</td>
</tr>
<tr>
<td>7.2.1.1 Introduction</td>
<td>501</td>
</tr>
<tr>
<td>7.2.1.2 Classification</td>
<td>501</td>
</tr>
<tr>
<td>7.2.1.3 Prevalence</td>
<td>501</td>
</tr>
<tr>
<td>7.2.1.4 Pathogenesis</td>
<td>502</td>
</tr>
<tr>
<td>7.2.1.5 Functional Problems in Non-syndromic Craniosynostosis</td>
<td>503</td>
</tr>
<tr>
<td>7.2.1.6 Diagnosis</td>
<td>506</td>
</tr>
<tr>
<td>7.2.1.7 Treatment: Indication and General Aspects</td>
<td>506</td>
</tr>
<tr>
<td>7.2.1.8 Postoperative Management</td>
<td>509</td>
</tr>
<tr>
<td>7.2.1.9 Scaphocephaly</td>
<td>509</td>
</tr>
<tr>
<td>7.2.1.10 Trigonoocephaly</td>
<td>511</td>
</tr>
<tr>
<td>7.2.1.11 Plagiocephaly</td>
<td>513</td>
</tr>
<tr>
<td>7.2.1.12 Brachycephaly</td>
<td>514</td>
</tr>
<tr>
<td>7.2.1.13 Non-syndotic Occipital Plagiocephaly and Lambdoid Synostosis</td>
<td>515</td>
</tr>
<tr>
<td>7.2.2 Syndromic Craniosynostoses</td>
<td>522</td>
</tr>
<tr>
<td>7.2.2.1 Introduction</td>
<td>522</td>
</tr>
<tr>
<td>7.2.2.2 Genetics</td>
<td>523</td>
</tr>
<tr>
<td>7.2.2.3 Main Syndromes</td>
<td>523</td>
</tr>
<tr>
<td>7.2.2.4 Functional Aspects</td>
<td>526</td>
</tr>
<tr>
<td>7.2.2.5 Management Principles</td>
<td>526</td>
</tr>
<tr>
<td>7.2.3 Hereditary Hemorrhagic Telangiectasia</td>
<td>536</td>
</tr>
<tr>
<td>7.2.4 Sturge–Weber Syndrome</td>
<td>535</td>
</tr>
<tr>
<td>7.2.5 Neurocutaneous Syndromes</td>
<td>529</td>
</tr>
<tr>
<td>7.2.5.1 Neurofibromatoses</td>
<td>529</td>
</tr>
<tr>
<td>7.2.5.2 Neurofibromatosis Type 1</td>
<td>529</td>
</tr>
<tr>
<td>7.2.5.3 Neurofibromatosis Type 2</td>
<td>531</td>
</tr>
<tr>
<td>7.2.5.4 Tuberous Sclerosis Complex</td>
<td>533</td>
</tr>
<tr>
<td>7.2.5.5 Von Hippel–Lindau Disease</td>
<td>535</td>
</tr>
<tr>
<td>7.2.5.6 Hereditary Hemorrhagic Telangiectasia</td>
<td>536</td>
</tr>
<tr>
<td>7.3 Hydrocephalus</td>
<td>539</td>
</tr>
<tr>
<td>7.3.1 Definitions</td>
<td>539</td>
</tr>
<tr>
<td>7.3.2 Pathophysiology</td>
<td>539</td>
</tr>
<tr>
<td>7.3.3 Aetiology</td>
<td>539</td>
</tr>
<tr>
<td>7.3.4 Epidemiology</td>
<td>541</td>
</tr>
<tr>
<td>7.3.5 Clinical Symptoms</td>
<td>541</td>
</tr>
<tr>
<td>7.3.6 Clinical Signs</td>
<td>541</td>
</tr>
<tr>
<td>7.3.7 Investigation</td>
<td>541</td>
</tr>
<tr>
<td>7.3.8 Treatment</td>
<td>541</td>
</tr>
<tr>
<td>7.3.9 Medical Treatment</td>
<td>542</td>
</tr>
<tr>
<td>7.3.10 Complications</td>
<td>542</td>
</tr>
<tr>
<td>7.3.11 Prognosis</td>
<td>542</td>
</tr>
<tr>
<td>7.3.12 Ongoing Care</td>
<td>543</td>
</tr>
<tr>
<td>7.3.13 Suggested Reading</td>
<td>543</td>
</tr>
<tr>
<td>7.4 Hydrocephalus</td>
<td>539</td>
</tr>
<tr>
<td>7.4.1 Definitions</td>
<td>539</td>
</tr>
<tr>
<td>7.4.2 Pathophysiology</td>
<td>539</td>
</tr>
<tr>
<td>7.4.3 Aetiology</td>
<td>539</td>
</tr>
<tr>
<td>7.4.4 Epidemiology</td>
<td>541</td>
</tr>
<tr>
<td>7.4.5 Clinical Symptoms</td>
<td>541</td>
</tr>
<tr>
<td>7.4.6 Clinical Signs</td>
<td>541</td>
</tr>
<tr>
<td>7.4.7 Investigation</td>
<td>541</td>
</tr>
<tr>
<td>7.4.8 Treatment</td>
<td>541</td>
</tr>
<tr>
<td>7.4.8.1 Surgical Options</td>
<td>542</td>
</tr>
<tr>
<td>7.4.8.2 Shunt Valves</td>
<td>542</td>
</tr>
<tr>
<td>7.4.8.3 Medical Treatment</td>
<td>542</td>
</tr>
<tr>
<td>7.4.8.4 Complications</td>
<td>542</td>
</tr>
<tr>
<td>7.4.8.5 Prognosis</td>
<td>542</td>
</tr>
<tr>
<td>7.4.8.6 Ongoing Care</td>
<td>543</td>
</tr>
<tr>
<td>7.4.8.7 Suggested Reading</td>
<td>543</td>
</tr>
<tr>
<td>7.5 Neuroradiology</td>
<td>547</td>
</tr>
<tr>
<td>7.5.1 Outcome and Long-Term Development</td>
<td>547</td>
</tr>
<tr>
<td>7.5.2 Perspectives in Epilepsy Surgery</td>
<td>547</td>
</tr>
<tr>
<td>7.5.3 Objective</td>
<td>547</td>
</tr>
<tr>
<td>7.5.4 Modern Literature Review</td>
<td>547</td>
</tr>
<tr>
<td>7.5.5 Recent Clinical and Research Development</td>
<td>548</td>
</tr>
<tr>
<td>7.5.6 Future Questions and Directions</td>
<td>548</td>
</tr>
<tr>
<td>7.5.7 Conclusion</td>
<td>548</td>
</tr>
<tr>
<td>7.5.8 Suggested Reading</td>
<td>548</td>
</tr>
<tr>
<td>7.5.9 Epilepsy: Specific Aspects in Children</td>
<td>549</td>
</tr>
<tr>
<td>7.5.10 Drug-Resistant Epilepsy</td>
<td>549</td>
</tr>
</tbody>
</table>
8.3.2.2 Catastrophic Seizures in Infancy and Childhood 550
8.3.2.3 Main Etiological Forms .. 550
Suggested Reading 557

8.2 Pain .. 559
8.2.2 Origin of Pain and Pain Phenomena 559
8.2.3 Experimental Methods for Pain Evaluation 560
8.2.3.1 Estimation of Tactile Sensibility – von Frey Hair 560
8.2.3.2 Pressure Stimulation ... 560
8.2.3.3 Thermal Stimulation ... 561
8.2.3.4 Electrical Stimulation ... 561
8.2.3.5 Chemical Stimulation ... 561
8.2.3.6 Temporal Summation .. 561
8.2.4 Experimental Methods for Quantitative Sensory Testing ... 562
8.2.4.1 Psychophysical Determinations 562
8.2.4.2 Stimulus–Response Functions 562
8.2.4.3 Pain and Pain Tolerance Thresholds 562
8.2.5 Rating Scales .. 563
8.2.6 Conventional Neurophysiologic Techniques 563
8.2.6.1 Neurography .. 563
8.2.6.2 Sensory-Evoked Potentials 563
8.2.7 Conclusion .. 565
Suggested Reading 565

8.3 Functional Stereotactic Neurosurgery for Movement Disorders: Deep Brain Stimulation 567
8.3.1 Introduction ... 567
8.3.2 Principles of DBS Surgery for Movement Disorders 567
8.3.2.1 Anatomy and Targets ... 567
8.3.2.2 Hardware .. 568
8.3.2.3 Operative Technique ... 568
8.3.2.4 Hardware-Related Problems 571
8.3.3 Patient Selection for Deep Brain Stimulation 571
8.3.3.1 Tremor ... 571
8.3.3.2 Parkinson's Disease .. 572
8.3.3.3 Dystonia ... 572
8.3.4 Results of Deep Brain Stimulation for Movement Disorders 572
8.3.4.1 Tremor ... 572
8.3.4.2 Parkinson's Disease .. 573
8.3.4.3 Dystonia ... 574
8.3.5 Conclusions and Perspectives 574
Suggested Reading 575

8.4 Functional Applications of Radiosurgery 577
8.4.1 Introduction ... 577
8.4.2 Aims ... 577
8.4.3 Technique .. 577
8.4.3.1 Indications .. 577
8.4.4 Pain ... 577
8.4.4.1 Trigeminal Neuralgia .. 577
8.4.5 Psychosurgery ... 577
8.4.5.1 Indications .. 577
8.4.5.2 Anatomical Targets ... 577
8.4.5.3 Outcome ... 577
8.4.6 Movement Disorders .. 577
8.4.6.1 Indications .. 577
8.4.6.2 Targets .. 578
8.4.6.3 Technique .. 578
8.4.6.4 Outcome ... 578
8.4.7 Epilepsy ... 578
8.4.7.1 Rationale ... 578
8.4.7.2 Mesial Temporal Sclerosis 578
8.4.7.3 Hypothalamic Hamartoma 578
References ... 578

8.5 Image-Guided Neurosurgery ... 579
8.5.1 Introduction ... 579
8.5.2 Technique of Frameless Neuronavigation 579
8.5.3 Intraoperative Imaging ... 580
8.5.4 Guidance for Neuronavigation with the BrainLAB VectorVision System .. 584
8.5.4.1 Hardware and Software 584
8.5.4.2 Navigation Planning .. 584
8.5.4.3 Marker-Based Registration 584
8.5.4.4 Patient Registration ... 585
8.5.4.5 Navigation – Accuracy 585
8.5.5 Indication for Neuronavigation 585
Suggested Reading 587

8.6 Spasticity and Muscles: Basics for Understanding the Different Treatment Modalities 591
8.6.1 Introduction ... 591
8.6.2 Muscle Stiffness in Sitting Spastic Patients 591
8.6.3 The Non-Reflex/Muscle Component 592
8.6.4 Reflex-Mediated Mechanical Muscle Responses 593
8.6.5 Neuropathology of the Increased Muscle Tone and Exaggerated Stretch Reflex at Rest in Spastic Patients 593
8.6.6 The Threshold and Gain of the Pathologic Stretch Reflex 593
Critical Neurosurgical Care
Edited by Christiano B. Lumenta

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Consciousness Impairment</td>
<td>601</td>
</tr>
<tr>
<td>9.1.1 Basics</td>
<td>601</td>
</tr>
<tr>
<td>9.1.2 Definition of Consciousness</td>
<td>601</td>
</tr>
<tr>
<td>9.1.3 Morphologic Correlate of Consciousness</td>
<td>601</td>
</tr>
<tr>
<td>9.1.3.1 The Activating Reticular Ascending System</td>
<td>601</td>
</tr>
<tr>
<td>9.1.4 Mechanisms of Alterations in the State of Consciousness</td>
<td>602</td>
</tr>
<tr>
<td>9.1.5 Grading of Disturbances of Consciousness</td>
<td>602</td>
</tr>
<tr>
<td>9.1.5.1 Clouding of Consciousness</td>
<td>602</td>
</tr>
<tr>
<td>9.1.5.2 Lethargy</td>
<td>602</td>
</tr>
<tr>
<td>9.1.5.3 Obtundation</td>
<td>602</td>
</tr>
<tr>
<td>9.1.5.4 Stupor</td>
<td>603</td>
</tr>
<tr>
<td>9.1.5.5 Coma</td>
<td>603</td>
</tr>
<tr>
<td>9.1.6 Grading of Coma</td>
<td>603</td>
</tr>
<tr>
<td>9.1.7 Frequent Neurosurgical Causes of Altered Consciousness</td>
<td>603</td>
</tr>
<tr>
<td>9.1.8 Approach to the Comatose Patient</td>
<td>603</td>
</tr>
<tr>
<td>9.2 Intracranial Hypertension</td>
<td>605</td>
</tr>
<tr>
<td>9.2.1 Basics</td>
<td>605</td>
</tr>
<tr>
<td>9.2.2 Pathophysiology</td>
<td>605</td>
</tr>
<tr>
<td>9.2.3 Measurement Devices for Intracranial Pressure</td>
<td>606</td>
</tr>
<tr>
<td>9.2.3.1 Ventricular ICP Devices</td>
<td>607</td>
</tr>
<tr>
<td>9.2.3.2 Parenchymal ICP Devices</td>
<td>607</td>
</tr>
<tr>
<td>9.2.3.3 Devices for Concurrent ICP Measurement and CSF Drainage</td>
<td>607</td>
</tr>
<tr>
<td>9.2.3.4 European Standard</td>
<td>607</td>
</tr>
<tr>
<td>9.2.4 Selection of Patients for ICP Measurement</td>
<td>607</td>
</tr>
<tr>
<td>9.2.4.1 European Standard</td>
<td>607</td>
</tr>
<tr>
<td>9.2.5 Treatment of Increased Intracranial Pressure</td>
<td>607</td>
</tr>
<tr>
<td>9.2.5.1 Body Position</td>
<td>608</td>
</tr>
<tr>
<td>9.2.5.2 Sufficient Anesthesia and Analgesia</td>
<td>608</td>
</tr>
<tr>
<td>9.2.5.3 Drainage of Cerebrospinal Fluid</td>
<td>608</td>
</tr>
<tr>
<td>9.2.5.4 Cerebral Perfusion Pressure</td>
<td>608</td>
</tr>
<tr>
<td>9.2.5.5 Moderate Hyperventilation</td>
<td>609</td>
</tr>
<tr>
<td>9.2.5.6 Osmotherapeutics: Mannitol and Hypertonic Saline (NaCl 7.5%)</td>
<td>609</td>
</tr>
<tr>
<td>9.2.5.7 Barbiturates</td>
<td>609</td>
</tr>
<tr>
<td>9.2.5.8 Moderate Hypothermia</td>
<td>609</td>
</tr>
<tr>
<td>9.2.5.9 Decompressive Craniectomy</td>
<td>610</td>
</tr>
<tr>
<td>9.3 Water and Electrolyte Regulation</td>
<td>611</td>
</tr>
<tr>
<td>9.3.1 Introduction</td>
<td>611</td>
</tr>
<tr>
<td>9.3.2 Basics</td>
<td>611</td>
</tr>
<tr>
<td>9.3.2.1 Body Water</td>
<td>611</td>
</tr>
<tr>
<td>9.3.2.2 Electrolytes</td>
<td>611</td>
</tr>
<tr>
<td>9.3.2.3 Osmolarity, Osmolality and Tonicity</td>
<td>611</td>
</tr>
<tr>
<td>9.3.3 Regulation of Body Water and Osmolarity</td>
<td>611</td>
</tr>
<tr>
<td>9.3.4 Regulation of Sodium</td>
<td>612</td>
</tr>
<tr>
<td>9.3.4.1 The Renin–Angiotensin–Aldosterone System</td>
<td>613</td>
</tr>
<tr>
<td>9.3.4.2 Atrial Natriuretic Peptide (ANP)</td>
<td>613</td>
</tr>
<tr>
<td>9.3.5 Regulation of Potassium</td>
<td>613</td>
</tr>
<tr>
<td>9.3.6 Fluid Regulation in the Brain</td>
<td>613</td>
</tr>
<tr>
<td>9.3.6.1 The Blood–Brain Barrier</td>
<td>613</td>
</tr>
<tr>
<td>9.3.6.2 Fluid Regulation in the Brain with a Damaged Blood–Brain Barrier</td>
<td>613</td>
</tr>
<tr>
<td>9.3.7 Changes of Sodium and Water Balance Following Surgery</td>
<td>613</td>
</tr>
<tr>
<td>9.3.8 Hypernatremia</td>
<td>614</td>
</tr>
<tr>
<td>9.3.9 Hyponatremia</td>
<td>614</td>
</tr>
<tr>
<td>9.3.10 Diabetes Insipidus</td>
<td>614</td>
</tr>
<tr>
<td>9.3.11 Syndrome of Inadequate ADH Secretion</td>
<td>614</td>
</tr>
<tr>
<td>9.3.12 Cerebral Salt-Wasting Syndrome</td>
<td>615</td>
</tr>
<tr>
<td>9.3.13 Differences Between CSWS and SIADH</td>
<td>615</td>
</tr>
<tr>
<td>9.4 Temperature Regulation</td>
<td>617</td>
</tr>
<tr>
<td>9.4.1 Introduction</td>
<td>617</td>
</tr>
<tr>
<td>9.4.2 Normal Control of Thermoregulation</td>
<td>617</td>
</tr>
<tr>
<td>9.4.2.1 The Thermoafferent System</td>
<td>617</td>
</tr>
<tr>
<td>9.4.2.2 The Integrating System</td>
<td>617</td>
</tr>
<tr>
<td>9.4.2.3 The Effector System</td>
<td>617</td>
</tr>
<tr>
<td>9.4.3 Disturbances of Thermoregulation</td>
<td>617</td>
</tr>
<tr>
<td>9.4.3.1 Central Disturbances of Temperature Regulation</td>
<td>617</td>
</tr>
<tr>
<td>9.4.3.2 Effects of Anesthetics on Temperature Regulation</td>
<td>618</td>
</tr>
<tr>
<td>9.4.4 Perioperative Hypothermia</td>
<td>618</td>
</tr>
<tr>
<td>9.4.4.1 Early Changes of Body Temperature During Anesthesia</td>
<td>618</td>
</tr>
</tbody>
</table>
9.5.1 Respiration .. 621
 9.5.2 Basics ... 621
 9.5.3 Central Disturbances of Breathing 621
 9.5.4 Central Breathing Patterns 621
 9.5.5 Intubation .. 622
 9.5.6 Ventilation 622
 9.5.7 Apneustic Cluster and Ataxic Breathing 621
 9.5.8 When Not to Intubate 623
 9.5.9 Principal Modes of Mechanical Ventilation .. 623
 9.5.9.1 Volume-Controlled Ventilation 623
 9.5.9.2 Pressure-Controlled Ventilation 623
 9.5.9.3 Combined Ventilation Modes 623
 9.5.9.4 Biphasic Positive Airway Pressure Ventilation .. 623
 9.5.10 Positive End-Expiratory Pressure 623
 9.5.11 Recommended Ventilator Settings for the Neurosurgical Patient 624
 9.5.12 Acute Lung Injury in Neurosurgical Patients 624
 9.5.13 Side Effects of Mechanical Ventilation 624
 9.5.14 Effects on the Cardiovascular System 624
 9.5.15 Effects of Mechanical Ventilation on the Kidneys 624
 9.5.16 Effects of Mechanical Ventilation on the Digestive Organs 624
 9.5.17 Effects of Mechanical Ventilation on the Brain 624
 9.5.18 Weaning from the Respirator 625
 9.5.19 Methods of Weaning from the Respirator 625
 9.5.19.1 Extubation Criteria 625
 9.6 Nutrition ... 627
 9.6.1 Basics 627
 9.6.2 Effect of Nutrition on the Immune System and Outcome 627
 9.6.3 Effects of Stress and Malnutrition 627
 9.6.4 Assessment of the Nutritional Need 627
 9.7 Multiresistant Infections in Neurointensive Care Patients 631
 9.7.1 Basics 631
 9.7.2 Methicillin-Resistant Staphylococcus aureus 631
 9.7.3 Epidemiology 631
 9.7.4 Clinical Significance 631
 9.7.5 Diagnosis and Screening for MRSA 632
 9.7.6 Treatment 632
 9.7.7 Vancomycin-Resistant Enterococcus 632
 9.7.8 Epidemiology 632
 9.7.9 Clinical Significance 632
 9.7.10 Diagnosis 632
 9.7.11 Treatment 632
 9.7.12 Extended Spectrum Beta-Lactamase-Induced Resistance 632
 9.7.13 Epidemiology 632
 9.7.14 Clinical Significance 632
 9.7.15 Diagnosis 632
 9.7.16 Treatment 632
 9.8 Specific Aspects of Critical Care for Children 635
 9.8.1 Basics 635
 9.8.2 Acute Pain Assessment in Paediatric Patients 635
 9.8.3 Post-operative Pain Management 636
 9.8.4 By the Patient 636
 9.8.5 By the Ladder 636
<table>
<thead>
<tr>
<th>9.8.4</th>
<th>Pharmacological Classification of Analgesic Drugs</th>
<th>9.8.5</th>
<th>Patient-Controlled Analgesia</th>
<th>641</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8.4.1</td>
<td>Non-opioid Analgesics</td>
<td>9.8.6</td>
<td>Conclusions and Perspectives</td>
<td>641</td>
</tr>
<tr>
<td>9.8.4.2</td>
<td>Opioid Analgesics</td>
<td></td>
<td>Suggested Reading</td>
<td>641</td>
</tr>
<tr>
<td>9.8.4.3</td>
<td>Adjuvant Analgesics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.8.4.4</td>
<td>Topical Analgesics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subject Index ... 643
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Address</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrahamsen, Jan</td>
<td>Department of Clinical Physiology</td>
<td>Regionshospitalet Viborg Postboks 130 8800 Viborg Denmark</td>
<td>jan.abrahamsen@Viborg.RM.dk</td>
</tr>
<tr>
<td>Arendt-Nielsen, Lars</td>
<td>Center for Sensory-Motor Interaction</td>
<td>Laboratory for Experimental Pain Research Institute for Heath Science and Technology Fredrik Bajersvej 7, D3 9220 Aalborg Denmark</td>
<td>Lan@smi.auc.dk</td>
</tr>
<tr>
<td>Arnaud, Eric</td>
<td>Craniofacial Unit</td>
<td>Department of Paediatric Neurosurgery Hôpital Necker – Enfants Malades, Paris René Descartes University Paris France</td>
<td>drericarnaud@hotmail.com</td>
</tr>
<tr>
<td>Battaglia, Domenica I.</td>
<td>Pediatric Neurology</td>
<td>Catholic University Medical School Rome Italy</td>
<td>Domenica.battaglia@rm.unicatt.it</td>
</tr>
<tr>
<td>Beneš, Vladimír</td>
<td>Department of Neurosurgery</td>
<td>Central Military Hospital U Vojenske nemocnice 1200 16902 Prague 6 Czech Republic</td>
<td>Vladimír.benes@uvn.cz</td>
</tr>
<tr>
<td>Bertalanffy, Helmut</td>
<td>Department of Neurosurgery</td>
<td>University Hospital Zurich Frauenklinikstrasse 10 8091 Zurich Switzerland</td>
<td>helmut.bertalanffy@usz.ch</td>
</tr>
<tr>
<td>Biering-Sørensen, Fin</td>
<td>Righospitalet</td>
<td>Blegdamsvej 9 2100 Copenhagen Denmark</td>
<td>Fin.biering-soerensen@rh.hosp.dk</td>
</tr>
<tr>
<td>Caldarelli, Massimo</td>
<td>Department of Pediatric Neurosurgery</td>
<td>Catholic University Medical School Largo A. Gemelli 8 00168 Rome Italy</td>
<td>mcaldarelli@rm.unicatt.it</td>
</tr>
<tr>
<td>Capelle, Hans-Holger</td>
<td>Department of Neurosurgery</td>
<td>Medical School Hannover (MHH) Hannover Germany</td>
<td>Capelle.Hans-Holger@mh-hannover.de</td>
</tr>
<tr>
<td>Chiaretti, Antonio</td>
<td>Pediatric Intensive Care Unit</td>
<td>Catholic University Medical School Largo A. Gemelli 8 00168 Rome Italy</td>
<td>achiaretti@yahoo.it</td>
</tr>
</tbody>
</table>
Cioni, Beatrice
Istituto di Neurochirurgica
Università Cattolica del Sacro Cuore, Policlinico Gemelli
Largo A. Gemelli 8
00168 Rome
Italy
E-mail: bcioni@rm.unicatt.it

Di Rocco, Concezio
Istituto di Neurochirurgica
Università Cattolica del Sacro Cuore, Policlinico Gemelli
Largo A. Gemelli 8
00168 Rome
Italy
E-mail: cdirocco@rm.unicatt.it

Di Rocco, Federico
Department of Paediatric Neurosurgery
Hôpital Necker – Enfants Malades, Paris
René Descartes University
Paris
France
E-mail: federico.dirocco@nck.aphp.fr

Espinosa de Rueda Ruiz, Mariano
Regional Unit of Interventional Neuroradiology,
Servicio de Radiodiagnóstico
Hospital Universitario Virgen de la Arrixaca
30120 El Palmar, Murcia
Spain
E-mail: mm.espinosa@gmail.com

Fuglsang-Frederiksen, Anders
Department of Clinical Neurophysiology
Aarhus University Hospital
Norrebrogade 44, Building 10
8000 Aarhus C
Denmark
E-mail: anders.fuglsang@aarhus.rm.dk

Garnett, Matthew
Department of Paediatric Neurosurgery
Hôpital Necker – Enfants Malades, Paris
René Descartes University
Paris
France

Genovese, Orazio
Pediatric Intensive Care Unit
Catholic University Medical School
Largo A. Gemelli 8
00168 Rome
Italy
E-mail: Hor6505@yahoo.com

George, Bernard
Department of Neurosurgery
Hôpital Lariboisière 2
rue Ambroise Paré
75475 Paris
France
E-mail: bernard.george@lrh.ap-hop-paris.fr

Gerlach, Rüdiger
Klinik für Neurochirurgie
Johann Wolfgang Goethe-Universität
Schleusenweg 2–16
60528 Frankfurt/Main
Germany
E-mail: r.gerlach@em.uni-frankfurt.de

Gjerris, Flemming
Pediatric Oncology Department
Institut Gustave Roussy
Villejuif
France
E-mail: f.gjerris@dadlnet.dk

Grill, Jacques
Pediatric Oncology Department
Institut Gustave Roussy
Villejuif
France
E-mail: jacques.grill@igr.fr

Gumprecht, Hartmut
Department of Neurosurgery
Bogenhausen Academic Teaching Hospital
Technical University of Munich
Englschalkinger Straße 77
81925 Munich
Germany
E-mail: hartmut.gumprecht@regiokliniken.de
hARTmut.gumprecht@kh-bogenhausen.de

Haase, Jens
Institute of Health Science and Technology,
Faculties of Engineering, Science and Medicine
Aalborg University
Fredrik Bajers vej 7 D3
9220 Aalborg East
Denmark
E-mail: jph@hst.aau.dk
Hänggi, Daniel
Vaskuläre Neurochirurgie und Schädelbasischirurgie
Neurochirurgische Klinik
Heinrich Heine Universität Düsseldorf
Moorenstraße 5
40225 Düsseldorf
Germany
E-mail: Daniel.Haenggi@uni-duesseldorf.de

Hansen, Peter Orm
Department of Clinical Neurophysiology
Aarhus University Hospital
Norrebrogade 44, Building 10
8000 Aarhus C
Denmark
E-mail: peter.orm.hansen@aarhus.rm.dk

Hassler, Werner-Erwin
Neurochirurgische Klinik
Klinikum Duisburg gGmbH
Zu den Rehwiesen 9
47055 Duisburg
Germany
E-mail: hassler@klinikum-duisburg.de

Holm, Ida E.
Department of Pathology
Aalborg University Hospital
Reberbanegade
9000 Aalborg
Denmark
E-mail: idaholm@dadlnet.dk

Hoving, Eelco
Department of Neurosurgery
University of Groningen Medical Centre UMCG
POB 30001
9700 RB Groningen
The Netherlands
E-mail: e.w.hoving@nchir.umcg.nl

Journée, H.L.
Department of Neurosurgery
University of Groningen Medical Centre (UMCG)
PO Box 30001
9700 RB Groningen
The Netherlands
E-mail: h.l.journee@nchir.umcg.nl

Kaech, Denis L.
Department of Neurosurgery
Kantonsspital Graubünden
7000 Chur
Switzerland
E-mail: denislkaech@ksgr.ch

Kemeny, Andras
National Centre for Stereotactic Radiosurgery
Sheffield
U.K.
E-mail: a.kemeny@sheffield.ac.uk

Kiwit, Jürgen
Neurochirurgische Klinik
HELIOS Klinikum Berlin
Schwanebecker Chaussee 50
13125 Berlin
Germany
E-mail: juergen.kiwit@helios-klkiken.de

Klekamp, Jörg
Department of Neurosurgery
Christliches Krankenhaus Quakenbrück e.V.
Danziger Straße 2
49610 Quakenbrück
Germany
E-mail: j.klekamp@christliches-krankenhaus-ev.de

Krammer, Matthias J.
Department of Neurosurgery
Bogenhausen Academic Teaching Hospital
Technical University of Munich
Englschalkinger Straße 77
81925 München
Germany
E-mail: matt.krammer@googlemail.com

Krauss, Joachim K.
Department of Neurosurgery
Medical School Hannover
Carl-Neuberg-Str. 1
30625 Hannover
Germany
E-mail: krauss.joachim@mh-hannover.de

Lange, Bent
Orthopædisch-chirurgische Universitätsklinik
Dronninglund Sygehus
Noerrevej 19
9310 Dronninglund
Denmark
E-mail: bent.lange@rn.dk

Lasjaunias, Pierre †
Centre Hôpitalier Université de Bicêtre
2e Département de Neurochirurgie
78 Rue du Général Leclerc
94275 Le Kremlin-Bicêtre
France
List of Contributors

Lindsay, Ken
14 Kenmure Road
Giffnock, Glasgow, G46 6TU
UK
E-mail: kwlindsay@hotmail.com

Miller, Dorothea
Klinik für Neurochirurgie
Universitätsklinikum Essen
Hufelandstraße 55
45147 Essen
Germany
E-mail: dorothea.miller@uk-essen.de

Mooij, Jan Jakob A.
Department of Neurosurgery
University of Groningen Medical Centre UMCG
PO Box 30.001
9700 RB Groningen
The Netherlands
E-mail: j.j.a.mooij@nchir.umcg.nl

Moreno Diéguez, Antonio
Regional Unit of Interventional Neuroradiology,
Servicio de Radiodiagnóstico
Hospital Universitario Virgen de la Arrixaca
30120 El Palmar, Murcia
Spain
E-mail: moreno@euroespes.com

Pamir, M. Necmettin
Department of Neurosurgery
Acibadem Hospital Kozyatagi
İnönü Cad Okur Sok 20
Kozyatagi 34742
İstanbul
Turkey
E-mail: pamirmn@yahoo.com

Parrilla Reverter, Guillermo
Regional Unit of Interventional Neuroradiology,
Servicio de Radiodiagnóstico
Hospital Universitario Virgen de la Arrixaca
30120 El Palmar, Murcia
Spain
E-mail: gpr1972@gmail.com

Pérez-Espejo, Miguel Angel
Regional Service of Neurosurgery
Virgen de la Arrixaca University Hospital
Murcia
Spain
E-mail: miguel.perezespejo@carm.es

Piastra, Marco
Pediatric Intensive Care Unit
Catholic University Medical School
Rome
Italy
E-mail: marco.piastra@fastwebnet.it

Marquardt, Gerhard
Neurosurgical Clinic
Goethe-University
Schleusenweg 2-16
60528 Frankfurt am Main
Germany
E-mail: c.lumenta@extern.lrz-muenchen.de

Martinez-Lage, Juan F.
Regional Service of Neurosurgery
Virgen de la Arrixaca University Hospital
E-30120
El Palmar, Murcia
Spain
E-mail: juanf.martinezlage@cablemurcia.com

Massimi, Luca
Department of Pediatric Neurosurgery
Catholic University Medical School
Largo A. Gemelli 8
00168 Rome
Italy
E-mail: bmassimi@email.it

Mathijssen, Irene
Department of Plastic and Reconstructive Surgery
Erasmus University
Medical Centre Rotterdam
Rotterdam
The Netherlands
E-mail: i.mathijssen@erasmusmc.nl

Mennel, H.D.
Department of Neuropathology
Medical Center of Pathology
Philipps-University Marburg
Baldingerstraße
35043 Marburg
Germany
E-mail: mennelh@med.uni-marburg.de
Piek, Jürgen
Abteilung für Neurochirurgie
Chirurgische Universitätsklinik Rostock
Postfach 10 08 88
18057 Rostock, MV
Germany
E-mail: juergen.piek@med.uni-rostock.de

Pietrini, Domenico
Pediatric Intensive Care Unit
Catholic University Medical School
Rome
Italy
E-mail: d.pietrini@rm.unicatt.it

Popovic, Dejan B.
Center for Sensory and Motor Interaction (SMI)
Department of Health Sciences and Technology
Aalborg University
Denmark
E-mail: db@hst.aau.dk

Puget, Stephanie
Department of Paediatric Neurosurgery
Hôpital Necker – Enfants Malades, Paris
René Descartes University
Paris
France

Rampling, Roy P.
Beatson Oncology Centre
Western Infirmary
Glasgow, G11 6NT
UK
E-mail: r.rampling@udcf.gla.ac.uk

Renier, Dominique
Department of Paediatric Neurosurgery
Hôpital Necker – Enfants Malades, Paris
René Descartes University
Paris
France
E-mail: dominique.renier@nck.aphp.fr

Reulen, Hans-Jürgen
Schwojerstraße 19
81249 München
Germany
E-mail: Ilona.Anders@med.uni-muenchen.de

Ridola, Vita
Division of Pediatric Oncology
Catholic University Medical School
Largo A. Gemelli 8
00168 Rome
Italy
E-mail: Vita.ridola@rm.unicatt.it

Romano, Dario
Institute of Neurosurgery
Catholic University of Rome
Largo A. Gemelli 8
00168 Rome
Italy
E-mail: dariorom@jumpy.it

Roujeau, Thomas
Department of Paediatric Neurosurgery
Hôpital Necker – Enfants Malades, Paris
René Descartes University
Paris
France

Sainte-Rose, Christian
Department of Paediatric Neurosurgery
Hôpital Necker – Enfants Malades
149, rue de Sèvres
75743 Paris Cedex 15
France
E-mail: christian.sainte-rose@nck.aphp.fr

Schick, Uta
Neurochirurgische Klinik
Klinikum Duisburg gGmbH
Zu den Rehwiesen 9
47055 Duisburg
Germany
E-mail: uta_schick@web.de
schick@klinikum-duisburg.de

Schmid-Elsaesser, R. †
Neurochirurgische Klinik und Poliklinik Klinikum
der Universität München-Grosshadern
Marchioninistraße 15
81377 Munich
Germany

Schürer, Ludwig
Department of Neurosurgery
Bogenhausen Academic Teaching Hospital
Technical University of Munich
Engelschalkinger Str. 77
D-81925 München
Germany
E-mail: Ludwig.Schuerer@extern.lrz-muenchen.de
Seifert, Volker
Department of Neurosurgery
University Hospital Johann-Wolfgang-Goethe University
Schleusenweg 2–16
60528 Frankfurt
Germany
E-mail: v.seifert@em.uni-frankfurt.de

Sinkjaer, Thomas
The Danish National Research Foundation
Holbergsgade 14, 1. sal
1057 Copenhagen K
Denmark
E-mail: ts@dg.dk

Steiger, Hans-Jakob
Department of Neurosurgery
Heinrich-Heine-University Düsseldorf
Moorenstraße 5
40225 Düsseldorf
Germany
E-mail: neurochirurgie@uni-duesseldorf.de

Suchomel, Petr
Department of Neurosurgery
Neurocenter, Regional Hospital
Husova Street, 10
46063 Liberec
Czech Republic
E-mail: petr.such@nextra.cz; petr.suchomel@nemlib.cz

Sure, Ulrich
Klinik für Neurochirurgie
Universitätsklinikum Essen
Hufelandstraße 55
45122 Essen
Germany
E-mail: ulrich.sure@uk-essen.de

Tamburrini, Gianpiero
Department of Pediatric Neurosurgery
Catholic University Medical School
Largo Gemelli 8
Rome
Italy
E-mail: gtamburrini@hotmail.com

Thompson, Dominic N.P.
Department of Neurosurgery
Great Ormond Street Hospital
London
UK
E-mail: Thompd@gosh.nhs.uk

Trost, Hans Axel
Klinik für Neurochirurgie
Klinikum Bayreuth GmbH – Betriebsstätte Hohe Warte
Hohe Warte 8
95445 Bayreuth
Germany
E-mail: hans-axel.trost@klinikum-bayreuth.de

van den Bent, Martin J.
Neuro-Oncology Unit
Daniel den Hoed Oncology Center
PO Box 5201
3008 AE Rotterdam
The Netherlands
E-mail: m.vandenbent@erasmusmc.nl

van Dijk, J. Marc C.
Department of Neurosurgery
University of Groningen Medical Centre UMCG
POB 30.001
9700 RB Groningen
The Netherlands
E-mail: j.m.c.vandijk@nchir.umcg.nl

van Veelen-Vincent, Marie Lise C.
Department of Pediatric Neurosurgery
Sophia Children's Hospital
Erasmus University Medical Centre Rotterdam
Dr. Molewaterplein 60
Rotterdam
The Netherlands
E-mail: m.l.c.vanveelen@erasmusmc.nl

Visocchi, Massimiliano
Institute of Neurosurgery
Catholic University Rome
Largo A. Gemelli 8
00168 Rome
Italy
E-mail: mvisocchi@hotmail.com

Westphal, Manfred
Neurochirurgische Klinik
Universitäts-Krankenhaus Eppendorf
Martinistraße 52
20246 Hamburg
Germany
E-mail: westphal@uke.uni-hamburg.de
Wolf, Stefan
Department of Neurosurgery
Bogenhausen Academic Teaching Hospital
Technical University of Munich
Englschalkinger Str. 77
D-81925 München
Germany
E-mail: stefan.wolf@operamail.com

Zamarro Parra, Joaquín
Regional Unit of Interventional Neuroradiology,
Servicio de Radiodiagnóstico
Hospital Universitario Virgen de la Arrixaca
30120 El Palmar, Murcia
Spain
E-mail: joaquin zamarro@gmail.com
nrxhuva@gmail.com

Zerah, Michel
Department of Paediatric Neurosurgery
Hôpital Necker – Enfants Malades, Paris
René Descartes University
Paris
France
Introduction

Edited by Christianto B. Lumenta
Neurosurgery is defined as a special field of operative treatment of space-occupying lesions, such as tumors, infection, or hematomas, malformations, degenerative changes, injuries, and other surgically reachable entities of the central, peripheral, and vegetative nervous system and the associated necessary diagnostic procedures.

Modern neurosurgery is count as one of the newer fields of medicine, comparable to the fields of urology, orthopedic surgery, or vascular surgery which are now separated from the field of “general surgery” [1]. Nevertheless, the beginnings of neurosurgery go back to Stone Age times. Old Egyptian medicine had experience of and treatment guidelines for skull diseases 3,000 years bc. Since the middle of the nineteenth century archeologists have found, in different parts of the world, the remains of human skulls that have undergone trepanation and show evidence that the individuals have survived the procedure. Probably the procedures were for ritual purposes or for the treatment of some head injuries. Surgery on the nervous system, however, was reserved for more recent times. In the second half of the nineteenth century topographic anatomy was introduced after the development of asepsis and anesthesia. The first successful brain surgery was performed by R. Godlee in 1884, while, one year before, McEwen had removed a spinal tumor.

Modern neurosurgery could be realized after the development of examination methods such as myelography by W. Dandy in 1919, cerebral angiography by E. Moniz in 1927, electroencephalography by Berger in 1927, and echoencephalography by Leksell in 1953. With the beginning of the computer era in the 1970s, computed tomography was developed by Ambrose and Hounsfield, followed by magnetic resonance imaging (MRI) with the possibility for functional MRI, MRI spectroscopy, depiction of the pyramidal tract, and so on.

The results of brain surgery were improved after the introduction of clips and diathermy by Cushing at the beginning of the twentieth century. Modern neurosurgery, however, began with the introduction of the microscope, modern anesthesiology, and neurointensive management. Progress continued with the development of the ultrasonic aspirator, laser technology, neuroendoscopy, neuronavigation, and image-guided surgery. Functional neurosurgery for the treatment of pain and movement disorders changed from ablative procedures to electrode stimulation techniques.

Despite these rapid advances, in the last two decades the special field of neurosurgery has had to compete with other disciplines in the treatment of some conditions, such as stereotactic radiosurgery for the treatment of arteriovenous malformations (AVM) or small and well-defined brain tumors (metastasis, vestibular schwannoma, etc.), and endovascular neuroradiology for the treatment of intracranial aneurysms and AVM. Nanotechnology and molecular biology will bring in alternative treatments for many neurooncologic diseases. The most difficult cases, however, will be reserved for the neurosurgeon.

As a consequence of all these developments, it is very important to have standards in the training of neurosurgical residents and in basic training for the technical skills.

References
Training and Education

Edited by Christiano B. Lumenta
2.1 Training in Neurosurgery

HANS-JÜRGEN REULEN

2.1.1 Introduction

National authorities and professional bodies have the responsibility for monitoring and recognising training institutions and to provide certification or recognition of medical specialists. The European Union of Medical Specialists (UEMS) is the responsible authority in the EU for harmonisation and improvement of the quality of training of medical specialists. Harmonisation is a necessary prerequisite to enable free movement of medical specialists in the countries of the EU.

The European Neurosurgical Training Charter of the UEMS [1] summarises the requirements and standards for training in neurosurgery. National organisations are strongly recommended to adopt these requirements in their national guidelines. In the following, all referrals are made to the European Neurosurgical Training Charter.

Departments in the process of developing or improving their training programme may find comprehensive information in Training in neurosurgery in the countries of the EU, a guide to organize a training program [2].

2.1.2 Goals of a Neurosurgical Training Programme

The main goal is to provide a trainee with a broad knowledge base, the necessary operative and procedural skills and experiences, as well as professional judgement as preparation for independent neurosurgical practice. Further goals are to teach self-criticism, critical assessment of his/her results, and the ability to undertake self-directed learning, which will eventually lead to continued expert practice and professionalism.

2.1.3 Length of Training

Neurosurgical training requires a minimum duration of six years which includes a minimum of four years training in clinical neurosurgery in an accredited programme. Of these four years at least three years should be spent in a UEMS member state and not less than three years in the same recognised programme. Training must include adequate exposure to intensive care and to paediatric neurosurgery. Because of the future reduction in the hours of work there may be a need to extend the training time in clinical neurosurgery from four to five years.

Up to a total of two years may be spent in related disciplines (in a surgical discipline, neurology, neuropaediatrics, neuroradiology, neuropathology, neurophysiology) and/or activities including research in neurosciences.

2.1.4 Contents of Training

The contents of training are described in the classical textbooks, encompassing knowledge in:

- General basics of surgery
- Complete neurological investigation tests and procedures
- Neurosurgical diseases, their diagnosis, prognosis, treatment indications, and their operative and non-operative treatment (including intensive care and possible complications)
- Conservative and operative treatment of head injuries and the spine/spinal cord
- Microsurgical operative techniques and neuronavigation
- Indications for and the interpretation of modern neuroradiological examination techniques (CT, MRI, myelography, angiography), as well as Doppler sonography and ultrasound
- Quality control (morbidity and mortality conference, infection control, risk management)

2.1.5 The Training Programme

- There should be a written Training Curriculum describing the contents and aims in each year of training. A structured Surgical Training Plan can be helpful to provide a systematic escalation of surgical competence
2.1 Training in Neurosurgery

and responsibilities. Emphasis should be placed on adequate time allocated for study and tuition independent of clinical duties.

- There should be established Rotation Periods covering all main areas of neurosurgery. Each rotation should have clearly defined goals with regard to responsibilities in patient care, knowledge and operative experience.
- During each rotation a trainee should be assigned to a specific trainer.
- There should be a documented Education Programme with lectures, clinical presentations, neuropathological and neuroradiological conferences, a journal club, a morbidity and mortality conference, teaching meetings including subspecialties, and teaching in ethics, administration, management and economics.
- It is recommended that trainees participate at least once a year in a national/European training course, in a hands-on course or a national neurosurgical meeting, respectively.
- Each trainee must keep an authorised logbook (meeting the standards of the UEMS/European Association of Neurosurgical Societies [EANS] logbook) for documentation of his/her operative experience. The trainee will have to demonstrate that he/she has assisted in a wide range of cases, which should include a balance of trainer-assisted and personal cases under supervision. The logbook must be supervised and signed regularly by the respective trainer, and it must be available at Board examination.
- Trainees should be encouraged to participate in research and to develop an understanding of research methodology. In academic programmes, clinical and/or basic research opportunities must be available to trainees with appropriate faculty supervision.

2.1.6 The Training Institution

A training institution must have national recognition in accordance with the standards of the UEMS Training Charter. Participation of training institutions in the European accreditation process at present is voluntary and, if compliant, indicates that the department and the training programme fulfil the European Standards of Excellence for Education in Neurosurgery.

Units that cannot comply with the minimum standards of the UEMS Training Charter (case volume and mixture, number of trainers and beds, etc. as listed below) and cannot offer the full spectrum of neurosurgery cannot be training centres on their own. It is recommended that they develop a common training programme in co-operation with a larger department. Highly specialised centres can be included in the rotation of a recognised training centre.

2.1.6.1 Requirements for Training Institutions with Regard to Equipment and Educational Facilities

- There must be a referral base sufficient to provide an adequate case volume and mixture to support the training programme.
- There must be a minimum of four trainers (including the chairman/programme director).
- There must be at least 30 neurosurgical beds and in addition critical care beds (7–10/million population).
- There must be at least two designated, fully staffed operating theatres (neurosurgically trained staff), appropriately equipped and with 24-h availability.
- There must be an operating microscope with CCTV for each theatre. The following are deemed essential equipment: ultrasonic aspirator, image guidance and/or ultrasound, a stereotactic system, radiological imaging, and endoscopy equipment.
- Neurosurgical theatres should be covered by anaesthetists with a special interest in neuroanaesthesia. Anaesthesia coverage should be available at all times for neurosurgery.
- There must be designated and fully staffed neurosurgical intensive care beds. Neurosurgical intensive care may be managed by neurosurgery or there may be joint responsibility between neurosurgery and anaesthesia.
- There must be an emergency unit with 24-h admission.
- There must be outpatient clinics where non-emergency patients are seen before and after surgery.
- There must be exposure to paediatric neurosurgery as a mandatory component of a training programme. Where this does not form part of the routine work of a neurosurgical department, a 6-month secondment to an appropriate programme should be arranged (it must be recognised that in some European countries paediatrics requires special training and a protected environment).
- There should be opportunity to obtain experience in functional neurosurgery either within the department or in another neurosurgical department specialising in this field.
- All main specialities (neurology, surgery/traumatology, anaesthesiology, radiology, neuroradiology, neuropathology, radiotherapy, internal medicine, paediatrics) must be present to provide the trainee with the opportunity of developing his/her skills in a team approach to patient care.
- There should be an easily accessible library, with an adequate selection of books and journals on neurosurgery, as well as facilities for computer literature searches.
2.1.6.2 Institutional Quality Management Provisions

A training institution must have an internal system of quality assurance. There should be written guidelines concerning patient care and patient information (patient's consent), referrals, medical records, documentation, on-call and back-up schedules, days off, residents' working schedules, attendance at conferences and educational activities. An example may be found in [2]. There must be a structured procedure for the reporting of adverse events in the form of a mortality and morbidity conference; and the hospital should have an infection control committee and a drugs and therapeutics committee.

2.1.6.3 Responsibilities of a Training Programme Director

The training programme director does not need to be the head of the training institution. He/she must be a certified specialist of a minimum of five years, and demonstrate evidence of continuing professional development.

The Programme Director must establish a transparent and fair appointment process for trainees. A training agreement (contract) should be completed and signed by the director and the trainee at the beginning of training. The programme director should provide the trainee with a written Training Curriculum of his/her training (see Sect. 2.1.5). The promotion of an ethos of a high level of professional conduct and ethics within the training programme is essential.

The programme director has to:
- Organise and coordinate a balanced training programme with established rotations ensuring that the trainee will have exposure to all aspects of neurosurgery. The programme must be written and available to trainees and trainers.
- Ensure that there is dedicated time allocated to the trainers for training and that the trainers fulfil their training responsibilities.
- Ensure that there is dedicated time for trainees to attend educational meetings and approved courses, and that trainees can fulfil all training obligations.
- Ensure that the individual trainee’s documentation (training portfolio) is up to date.
- Organise a transparent and fair semi-annual progress evaluation of trainees.
- Provide valid documentation as to satisfactory completion of training.

2.1.6.4 Responsibilities of Trainers

Trainers should be certified specialists and possess the necessary administrative, teaching and clinical skills, and commitment to instruct and support their trainees. They have to:
- Set realistic aims and objectives for a rotation period
- Supervise the day-to-day work of the trainee on the ward, in the outpatient clinic and in the operating theatre
- Support the trainee’s operative and clinical progress and provide feedback
- Assess and report on the trainee’s progress at the end of each rotation (progress evaluation)
- Inform the programme director of problems at an early stage

2.1.6.5 Requirements for Trainees

Trainees during their training must be exposed to at least four different trainers and the full spectrum of neurosurgical procedures.

The attached Operative List (Appendix 1) summarises the minimal and optimal numbers of so-called key procedures that trainees should have performed on completion of training. In addition to this mandatory list of operative procedures, the trainee should have assisted in or partly performed operations for pituitary adenomas, complex basal meningiomas, aneurysms, arteriovenous malformations, acoustic neurinomas, paediatric procedures, intramedullary tumours, etc. (see assistant figures in Appendix 1) [3].

Trainees should be directly involved in the pre- and postoperative management of these patients and should have a detailed understanding of the preoperative investigations.

Many of the above procedures demand the use of the operating microscope that the trainee must be fully familiar with.

The trainee must learn to record and document patient history, examinations and investigative findings, obtain patients’ consent for operative procedures, clearly detailing the reasons for performing the procedure and the risks involved, as well as learn to communicate with patients and relatives and pass on distressing information (e.g. malignancies or bereavement) in a sensitive and caring manner.

He/she must maintain an operative logbook detailing his/her involvement in all cases. He/she should ensure that the goals and objectives of each rotation are met, that all problems are discussed with the assigned trainer and that copies of the progress evaluation forms are stored. Also it is recommended to keep a record of courses attended, publications and/or presentations (training portfolio).