A Handbook of Mouse Models of Cardiovascular Disease

Editor

Qinbo Xu

St George’s University of London, London, UK

John Wiley & Sons, Ltd
A Handbook of Mouse Models of Cardiovascular Disease
A Handbook of Mouse Models of Cardiovascular Disease

Editor

Qingbo Xu

St George’s University of London, London, UK
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Mice – general information</td>
<td>1</td>
</tr>
<tr>
<td>Hermann Dietrich</td>
<td></td>
</tr>
<tr>
<td>Historical perspective of house mice as laboratory animals</td>
<td>1</td>
</tr>
<tr>
<td>Maintaining and breeding of mice</td>
<td>3</td>
</tr>
<tr>
<td>Mouse genetics</td>
<td>5</td>
</tr>
<tr>
<td>Blood and bone marrow collection methods</td>
<td>7</td>
</tr>
<tr>
<td>Anesthesia and analgesia</td>
<td>7</td>
</tr>
<tr>
<td>Euthanasia</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>14</td>
</tr>
<tr>
<td>2 Naturally occurring variation among mouse strains</td>
<td>19</td>
</tr>
<tr>
<td>Weibin Shi and Aldons J. Lusis</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>Mapping genes underlying quantitative traits</td>
<td>20</td>
</tr>
<tr>
<td>Dissecting QTLs using congenic strains</td>
<td>22</td>
</tr>
<tr>
<td>Testing candidate genes in QTL regions</td>
<td>24</td>
</tr>
<tr>
<td>Functional tests of candidate genes</td>
<td>26</td>
</tr>
<tr>
<td>From mouse to man</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>28</td>
</tr>
<tr>
<td>3 Transgenic and gene-targeted mice in the study of hyperlipidemia</td>
<td>33</td>
</tr>
<tr>
<td>Yadong Huang</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>Generation of transgenic mouse models</td>
<td>34</td>
</tr>
<tr>
<td>Generation of gene-targeted mouse models</td>
<td>36</td>
</tr>
<tr>
<td>Application of transgenic and gene-targeted mouse models</td>
<td></td>
</tr>
<tr>
<td>in hyperlipidemia research</td>
<td>38</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>39</td>
</tr>
<tr>
<td>References</td>
<td>40</td>
</tr>
<tr>
<td>4 Bone marrow transplantation: the methodology and its application</td>
<td>43</td>
</tr>
<tr>
<td>in atherosclerosis research</td>
<td></td>
</tr>
<tr>
<td>Menno P.J. de Winther and Marten H Hofker</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>Methods</td>
<td>45</td>
</tr>
</tbody>
</table>
CONTENTS

Discussion and application 48
Conclusions 50
References 51

5 Hyperlipidemia-induced atherosclerosis 53

Alan Daugherty and Debra L. Rateri

- Introduction 53
- Induction of hyperlipidemia in mice 54
- Mouse strain 56
- Environmental factors 57
- Gender 57
- Analysis of atherosclerotic lesions 57
- Determination of lesion composition 62
- Statistical analysis 63
- Conclusions 64
- Acknowledgments 64
- References 64

6 Magnetic resonance imaging evaluation of atherosclerotic plaque 67

Martina A. McAteer, Jürgen E. Schneider and Robin P. Choudhury

- Introduction 67
- Imaging atherosclerosis with MRI 68
- Mouse MRI 68
- Materials and methods 69
- Discussion 75
- Application 76
- Acknowledgments 76
- References 76

7 Plaque rupture 79

Christopher L. Jackson

- Introduction 79
- Animals 79
- Husbandry and welfare 81
- Termination 81
- Tissue processing 82
- Morphological analysis 83
- Morphometric analysis 84
- Study design considerations 85
- Summary 85
- Acknowledgment 86
- References 86

8 Perivascular cuff-, electronic and chemical injury-induced stenosis 89

Nuno M.M. Pires, Margreet R. de Vries, Abbey Schepers, Daniel Eefting, Jan-Willem H.P. Lardenoye and Paul H.A. Quax

- Introduction 89
- Materials and methods 92
- Discussion 93
CONTENTS

Application 94
References 100

9 Flow-induced vascular remodeling 103
Vyacheslav A. Korshunov and Bradford C. Berk
Introduction 103
Materials and methods 104
Discussion 107
Applications 108
References 110
Movie legends 111

10 Vein graft atherosclerosis 113
Yanhua Hu and Qingbo Xu
Introduction 113
Materials and methods 114
Discussion 119
Applications 120
Acknowledgments 122
References 122

11 Angiotensin II-induced aortic aneurysms 125
Yi-Xin Wang, Lisa A. Cassis and Alan Daugherty
Introduction 125
Methods 126
Discussion 133
Acknowledgments 133
References 134

12 Carotidojugular fistula 137
Yves Castier, Alain Tedgui and Stéphanie Lehoux
Introduction 137
Creation of the AVF 138
Hemodynamic and structural data 142
References 144

13 Applications to the study of stroke 147
Jacques Seylaz and Elisabeth Pinard
Introduction 147
Experimental preparation of mice 148
Methods 153
Applications 155
References 157

14 Identifying congenital heart defects in embryos using high-resolution magnetic resonance imaging 159
Jürgen E Schneider and Shoumo Bhattacharya
Introduction 159
Identifying mouse cardiac malformations 160
Magnetic resonance imaging 160
Embryo MRI technique and analysis 161
Discussion 166
Applications 166
Pros and cons of ex vivo MRI 169
Acknowledgments 169
References 170

15 Allograft arteriopathy: heterotopic heart transplantation and aortic interposition grafts 173
Koichi Shimizu and Richard N. Mitchell
Introduction 173
Murine models for AA 175
Murine heterotopic cardiac transplantation 177
Murine aortic interposition grafts 183
Translation to clinical investigation 187
References 189

16 Heart preconditioning analysis 193
Guang-Wu Wang, David A Liem, Steven Le and Peipei Ping
Introduction 193
Methods 194
Methodological considerations 198
References 200

17 Myocardial ischemia–reperfusion 203
Bernhard Metzler, Elisabetta Conci and Otmar Pachinger
Myocardial ischemia–reperfusion 203
Ischemia–reperfusion models 206
Measurement of infarction size 210
Electrocardiogram and in vivo left ventricular pressure–volume measurements 214
Different mouse types 215
Conclusion 217
References 217

18 Cardiac hypertrophy 221
David J. Grieve, Alison C. Cave and Ajay M. Shah
Introduction 221
Materials and methods 222
Summary 231
Acknowledgments 231
References 231

19 The retrogradely perfused isolated heart model 235
Mihaela M. Mocanu and Derek M. Yellon
Introduction 235
Langendorff system 235
Preparation of hearts for perfusion 237
Experimental protocol 241
CONTENTS

Measurement of infarct size 242
Infarct size computation 243
General comments 244
Acknowledgments 244
References 244

20 Measurement of pulse wave velocity 245
Yi-Xin Wang
Introduction 245
Materials and methods 246
Discussion 249
Application 251
References 252

21 Gene transfer to dyslipidemic mice 255
Kazuhiro Oka, Andrew H. Baker and Lawrence Chan
Introduction 255
Mouse models of dyslipidemia 256
ApoB transgenic mice 263
Vectors for liver-directed gene transfer 263
Route or vector delivery 267
Conclusion 268
Acknowledgments 269
References 269

22 Hypertension 273
Daiana Weiss and W. Robert Taylor
Introduction 273
Pharmacological models of hypertension 275
Renal models of hypertension 278
Genetic models of hypertension 279
Measurement of blood pressure in mice 282
Summary 282
References 283

23 Ischemia-induced neovascularisation 287
Ken-ichiro Sasaki, Christopher Heeschen, Alexandra Aicher and Stefanie Dimmeler
Introduction 287
Materials and methods 288
Discussion 296
Application 296
References 297

24 Angiogenesis in biomatrices and artificial materials 299
Pieter Koolwijk and Victor W.M. van Hinsburgh
Introduction 299
Materials and methods 300
Discussion 305
CONTENTS

Application 307
Acknowledgments 308
References 308

25 Venous thrombosis 311
Alberto Smith, James Gossage, Matthew Waltham, Bijan Modarai and Julie Humphries
Background 311
Models of thrombosis 313
The St Thomas’ model 314
References 319

26 Virus-induced vasculitis 321
Philippe Krebs and Burkhard Ludewig
Introduction 321
Materials and methods 322
Discussion 329
Application 329
References 330

27 Surgically induced chronic heart failure 333
Craig A. Lygate and Stefan Neubauer
Introduction 333
Materials and methods 336
Discussion 340
Applications 346
Conclusions 346
References 347

28 Cardiac electrophysiology 349
Sander Verheule, Toshiaki Sato and Jeffrey E. Olgin
Introduction 349
Anesthesia for adult mice 350
ECG recording and analysis 351
Transesophageal stimulation 352
Open chest epicardial measurements 354
Studies on Langendorff perfused hearts 357
Conclusion 360
References 361

29 Ligation- and wire injury-induced stenosis 363
Volkhard Lindner
Introduction 363
Materials and methods 364
Discussion 367
Acknowledgments 370
References 370

Index 373
Preface

Cardiovascular disease, the principal cause of heart attack, stroke, and gangrene of
the extremities, remains a major contributor to morbidity and mortality in the Western
World. Many factors, such as genetic polymorphisms, hypercholesterolemia, mod-
ified lipoproteins, hypertension, diabetes mellitus, autoimmune responses, infections
and smoking have been implicated in the development of cardiovascular diseases.
The etiology and pathogenesis of many cardiovascular diseases have not been fully
elucidated. Although clinical investigation of these diseases is an important approach
for understanding their etiology and therapy, animal models are essential tools for
understanding the mechanisms of the pathogenesis as well as of interventions.

Cardiovascular research with animal models, as known today, is nearly 100 years
old. The use of animal models in the study of cardiovascular diseases is essential to
answer many questions. For instance, evaluation of a risk factor as a single
independent variable, with almost complete exclusion of other factors, can best be
performed in animals free of intercurrent diseases or abnormalities and with well
known genetic characteristics. Furthermore, experiments using animals are the only
way to develop and test new diagnostic, preventive, and therapeutic procedures for
both ethical and practical reasons. The investigator can choose the time and method,
as well as obtain tissue and serum samples and other material needed for measure-
ments under optimal conditions and selective circumstances that are difficult, if not
impossible, in studies with human subjects.

Attracted by the availability of well-defined genetic systems of transgenic and
knockout mice, a number of investigators have begun to use the mouse as an
experimental system for arteriosclerosis research. Hundreds of inbred lines have
been established, the genetic map is relatively well defined, and both congenic strains
and recombinant strains are available to facilitate genetic experimentation. In just a
few years, murine lipoproteins have been characterised, genetic variants of apolipo-
proteins identified, and genetic variation in susceptibility to atherosclerosis among
inbred mouse strains demonstrated. Because inbred strains have low variability, fewer
are needed for each experiment, which is also of economic benefit. The mouse is
becoming a widely used model for studying all aspects of cardiovascular diseases.

Although the mouse model is widely used by many laboratories, some problems
often appear due to insufficient knowledge of the specific animal models, especially
technical issues. Many mouse models involve techniques of microsurgery, which
cannot be performed without training following specific guidelines. Investigators who
are not experienced in using mouse models need to consider several issues before
starting their experiments. They need some essential information about experimental
procedures, specific instruments and technical know-how. The present handbook provides a brief background on each individual disease, describes detailed methods and materials used for establishing the mouse model, discusses the problems that may appear in the experiments, and gives some examples for applications of the model. Importantly, the movies on the accompanying CD allow researchers to learn the techniques by directly watching the whole operation. This book covers most, if not all, mouse models of cardiovascular diseases authored by experts in the research field. I believe that this book will be useful for all researchers working with mouse models in cardiovascular research.

Qingbo Xu
List of Contributors

Alexandra Aicher
University of Frankfurt
Frankfurt, Germany

Andrew H. Baker
Cardiovascular Research Centre
Division of Cardiovascular and Medical Sciences
University of Glasgow
Glasgow, UK

Bradford C. Berk
University of Rochester
Center for Cardiovascular Research
Rochester, NY, USA

Shoumo Bhattacharya
Department of Cardiovascular Medicine
Welcome Trust Centre for Human Genetics
University of Oxford
Oxford, UK

Lisa A. Cassis
Graduate Center for Nutritional Sciences
University of Kentucky
Lexington, KY, USA

Yves Castier
Centre de Recherche Cardiovasculaire
Inserm Lariboisière
Paris, France

Alison C. Cave
Cardiovascular Division
King’s College London
London, UK

Lawrence Chan
Departments of Molecular and Cellular Biology and Medicine
Baylor College of Medicine
Houston, TX, USA

Robin P. Choudhury
Department of Cardiovascular Medicine, John Radcliffe Hospital
University of Oxford
Oxford, UK

Elisabetta Conci
Department of Cardiology
University Hospital of Internal Medicine
Innsbruck, Austria

Alan Daugherty
Internal Medicine & Physiology, Division of Cardiovascular Medicine
University of Kentucky
Lexington, KY, USA

Hermann Dietrich
University of Innsbruck Medical School
Innsbruck, Austria

Stephanie Dimmeler
Molecular Cardiology
University of Frankfurt
Frankfurt, Germany

Daniel Eefting
TNO-Quality of Life, Gaubius Laboratory
Leiden, The Netherlands
LIST OF CONTRIBUTORS

James Gossage
Academic Dept of Surgery
Cardiovascular Division
King’s College London School of Medicine
St Thomas’ Hospital, London, UK

David J. Grieve
Cardiovascular Division
King’s College London
London, UK

Christopher Heeschen
University of Frankfurt
Frankfurt, Germany

Victor W.M. van Hinsburgh
TNO Quality of Life
Gaubius Laboratory
Leiden, The Netherlands

Marten H. Hofker
Department of Molecular Genetics
Cardiovascular Research Institute Maastricht
Maastricht, The Netherlands

Yanhua Hu
Department of Cardiac and Vascular Sciences
St George’s University of London
London, UK

Yadong Huang
Gladstone Institute of Neurological Disease
University of California
San Francisco, CA, USA

Julia Humphries
Academic Dept of Surgery
Cardiovascular Division
King’s College London School of Medicine
St Thomas’ Hospital, London, UK

Christopher Jackson
Bristol Heart Institute
Bristol Royal Infirmary
Bristol, UK

Pieter Koolwijk
TNO Quality of Life
Gaubius Laboratory
Leiden, The Netherlands

Vyacheslav A. Korshunov
Cardiovascular Research Institute and Department of Medicine
University of Rochester
Rochester, NY, USA

Philippe Krebs
Research Department, Kantonal Hospital
St Gallen
St Gallen, Switzerland

Jan-Willem H.P. Lardenoye
Leiden University Medical Center
Leiden, The Netherlands

Steven Le
Departments of Physiology and Medicine/Cardiology
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Stephanie Lehoux
Centre de Recherche Cardiovasculaire
Inserm Lariboisière
Paris, France

David A Liem
Departments of Physiology and Medicine/Cardiology
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Volkhard Lindner
Center for Molecular Medicine
Maine Medical Center Research Institute
Scarborough, USA

Burkhard Ludewig
Research Department, Kanton Hospital
St Gallen
St Gallen, Switzerland

Aldons Lusis
Department of Medicine, MIMG and Human Genetics
Center for Health Sciences, UCLA
Los Angeles, CA, USA
Craig A. Lygate
Department of Cardiovascular Medicine,
John Radcliffe Hospital
University of Oxford
Oxford, UK

Martina A. McAteer
Department of Cardiovascular Medicine,
John Radcliffe Hospital
Oxford, UK

Bernhard Metzler
Department of Cardiology
University Hospital of Internal Medicine
Innsbruck, Austria

Richard N. Mitchell
Harvard Medical School
Brigham and Women’s Hospital
Boston, MA, USA

Mihaela M Mocanu
The Hatter Cardiovascular Institute
Department of Medicine
University College London, UK

Bijan Moderai
Academic Dept of Surgery
Cardiovascular Division
King’s College London School of Medicine
St Thomas’ Hospital, London, UK

Stefan Neubauer
Department of Cardiovascular Medicine,
John Radcliffe Hospital
University of Oxford
Oxford, UK

Kazuhiro Oka
Department of Molecular and
Cellular Biology
Baylor College of Medicine
Houston, TX, USA

Jeffrey Olgin
Cardiac Electrophysiology
University of California
San Francisco, CA, USA

Otmar Pachinger
Department of Cardiology
University Hospital of Internal Medicine
Innsbruck, Austria

Elisabeth Pinard
Centre de Recherche Cardiovasculaire
Inserm Lariboisière
Paris, France

Peipei Ping
Departments of Physiology and
Medicine/Cardiology
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Nuno M.M. Pires
TNO-Quality of Life, Gaubius Laboratory
Leiden, The Netherlands

Paul H.A. Quax
TNO-Quality of Life, Gaubius Laboratory
Leiden, The Netherlands

Debra L. Rateri
Cardiovascular Research Center
University of Kentucky
Lexington, KY, USA

Ken-ichiro Sasaki
University of Frankfurt
Frankfurt, Germany

Toshiako Sato
Cardio-pulmonary Division
Keio University School of Medicine
Tokyo, Japan

Abbey Schepers
TNO-Quality of Life,
Gaubius Laboratory
Leiden, The Netherlands

Jurgen E. Schneider
Department of Cardiovascular Medicine,
John Radcliffe Hospital
Oxford, UK
Jacques Seylaz
INSERM U 541
UFR-Lariboisière, St. Louis
Paris, France

Ajay M. Shah
Cardiovascular Division
King’s College
London, UK

Weibin Shi
University of Virginia
Charlottesville, VA, USA

Koichi Shimizu
Harvard Medical School
Brigham and Women’s Hospital
Boston, MA, USA

Alberto Smith
Academic Dept of Surgery
Cardiovascular Division
King’s College London School of Medicine
St Thomas’ Hospital, London, UK

W. Robert Taylor
Department of Medicine/Division of Cardiology
Emory University
Atlanta, GA, USA

Alain Tedgui
Centre de Recherche Cardiovasculaire
Inserm Lariboisière
Paris, France

Sander Verheule
Department of Physiology, Faculty of Medicine
Maastricht University
Maastricht, The Netherlands

Margreet R. de Vries
TNO-Quality of Life, Gaubius Laboratory
Leiden, The Netherlands

Matthew Waltham
Academic Dept of Surgery
Cardiovascular Division
King’s College London School of Medicine
St Thomas’ Hospital, London, UK

Guang-Wu Wang
Departments of Physiology and Medicine/Cardiology
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Yi-Xin Wang
Department of Pharmacology
Berlex Biosciences
Richmond, CA, USA

Daiana Weiss
Cardiology Division of the Department of Medicine
Emory University School of Medicine
Atlanta, GA, USA

Menno de Winther
Department of Molecular Genetics
Maastricht University
Maastricht, The Netherlands

Qingbo Xu
Department of Cardiac and Vascular Sciences
St George’s University of London
London, UK

Derek Yellon
The Hatter Cardiovascular Institute, Department of Medicine, University College London, UK
1

Mice – general information

Hermann Dietrich

Central Laboratory Animal Facilities, Innsbruck Medical University, Peter-Mayr-Strasse 4a, A-6020 Innsbruck, Austria

Abstract

The gentle and careful use of laboratory animals requires specific knowledge on the general biology and the characteristic hallmarks of the used animals and the adequate consideration of legal requirements, ethical aspects, and scientific guidelines. In this chapter, important topics of laboratory animal science regarding the mouse as laboratory animal are addressed. Initially, a brief historical overview of the mouse is given and the step from the house mouse to the worldwide actually mostly used laboratory animal species. Moreover, housing conditions of mice, maintaining, and selected genetic principles are described. Commonly used handling techniques are explained in detail. For practical benefit, adequate methods for the sampling of blood and bone marrow cells and the application of substances, in particular, the intravenous injection technique, are described. Finally, useful techniques for anesthesia, analgesia, and euthanasia are emphasized.

Keywords

mice, laboratory animal, housing, breeding, genetics, blood, injection techniques, anesthesia, analgesia, euthanasia

Historical perspective of house mice as laboratory animals

The step of the wild mouse to the worldwide most-used laboratory animal was principally caused by the usefulness of this species for different interests. Historically, mice have been used in biomedical research since the 16th century, when Robert Hooke used mice in England to study the biological consequences of increasing air pressure. Morse reported in 1981 that William Harvey used mice for his fundamental studies on reproduction and blood circulation. In the 19th century several fanciers in
Europe, the United States and Asia were breeding and exchanging in particular pet mice and rats (rarely other rodents like hamsters, guinea pigs, etc.) showing a variety of coat colour or behavioural mutations.

A booming use of mice have been reported since the 20th century in many areas of biomedical research. Mice had played and continue to play an instrumental role in several scientific fields such as genetics, physiology, immunology, metabolism, pathology, oncology, cardiovascular diseases, etc. Several geneticists had created highly standardised mouse strains, whose genetic characteristics were precisely known. To retain those genetic standards, every breeding generation of mice had to be monitored by specific methods.

With a few exceptions, historical records concerning the genealogy of most laboratory inbred mouse strains are well documented and several reviews on this subject are available. A chart concerning the genealogy of these strains has been published recently and regularly updated data on the genetics, genomics, and biology of the laboratory mouse are available. One of the worldwide top ranked research institutions and biggest non-profit breeding organisations of laboratory mice is The Jackson Laboratory, which was founded in 1929 in Bar Harbor (Maine, USA) by C.C. Little. The ‘Jax-Lab’ has played a pivotal role in the promotion of mice as a very useful laboratory animal and still is a unique source of various mouse strains. Several other institutions, like the Oak Ridge National Laboratory in Tennessee (USA) and the MRC Centre at Harwell in the UK have also played an important role in the development of the mouse as a laboratory model for research projects on genetics, oncology and immunology. Recently the European Union has decided to support the establishment of a network of genetic repositories (the so-called European Mouse Mutant Archive or EMMA), with major breeding institutions in Italy (EMMA Headquarters is in Monterotondo, near Roma), in the UK (MRC-Mammalian Genetics Unit, Harwell), in France (CNRS-Centre de Distribution, de Typage et d’Archivage Animal, Orléans-la-Source), in Portugal (FCG-Instituto Gulbenkian de Ciência, Oeiras), and in Germany (GSF-Institute for Experimental Genetics, Munich). Finally, more recently, Japan has established a Bioresource Center at the RIKEN in Tsukuba.

In addition, well established commercial breeding institutions (e.g. Charles River Laboratories, Harlan-Winkelmann, Taconic, etc.) provide laboratory animals worldwide. Those companies also offer special services to scientists, such as cryoconservation, re-derivations of contaminated and infected animals, respectively, health monitoring programs, isolator- and barrier-housing, immunisation protocols for antibody production, and the service of mouse hotels, if limitations of space, technical equipment, adequate hygienic conditions, and trained staff exist in the basic animal house.

Various genetic backgrounds of laboratory mice are available to achieve the envisaged goal of a scientific analysis, e.g. outbred, inbred, hybrid, congenic, etc. In particular, the use of inbred strains of mice has offered investigations at the genomic level, because they can be achieved with a high level of refinement and can be correlated in a very reliable way to the phenotype of the living animal. It can be affirmed that the new types of mouse strains became of expanding interests for the
biomedical research programmes. Scientists predict that mice will be more useful for scientific research that it has been over the last centuries, especially due to the mouse genome project13 with its contributions worldwide.

In addition, numerous transgenic mouse models were developed to study human diseases, and it is nearly impossible to depict all of them. Animal models are used for numerous diseases of man, e.g. genetic diseases, infectious diseases (parasites, fungi, bacteria, viruses, prion diseases), apoptosis research, oncology, aging, Alzheimer’s disease, immunology and xenografting, reproduction research and endocrine disorders, and cardiovascular diseases. Using hereditary, experimentally induced, and transgenic mouse models, specific (patho-)mechanisms and characteristics of diseases can be better understood and reveal a more detailed and mostly superior insight into complex structures and functions, and even allows to define new therapeutic strategies and drugs capable of protecting humans against diseases. Especially transgenic mice are an essential tool to study human diseases, and this methodology is expected to be even more extensively used in the coming decades.

For the understanding of complex correlations in the pathogenesis of cardiovascular diseases, in particular to elucidate pathomechanisms of atherosclerosis, the use of adequate mouse models increased during the past two decades14–21 However, some authors had estimated the small size of rodents22 as impedimentary to be used in cardiovascular research.

Maintaining and breeding of mice

Housing conditions of mice includes several parameters, which can influence growth and development as well as well-being and social behaviour of mice. A well-organised colony management and exactly followed animal care regulations23 are essential prerequisites for animal experiments of high quality and reproducibility. In general, national and international laws and guidelines for the care and use of laboratory animals exist in line with animal welfare regulations. For details, see relevant textbooks, national laws and international conventions. Several recommendations on proper housing conditions of mice24,26–28 have been published. These guidelines refer to requirements on ventilation, temperature, humidity, light, noise levels, health status, feeding, water supply, animal enclosures, handling and experimentation procedures, including anaesthesia, analgesia and euthanasia.

The environmental requirements of mice are summarized in Table 1.1. The standard procedures have to be strictly performed by a specifically educated and well-trained staff29 Such standard procedures are (i) daily monitoring of animals for adequate environmental conditions and general health, (ii) food and water control, (iii) regular changes of cages and bedding, (iv) cleaning and sterilisation programs of cages, racks, cage covers, filter hoods, water bottles, and other equipment, and (v) sanitation programmes.

Genetic monitoring of mice is important to analyse mutations and differential fixations of alleles in inbred strains. Phenotypic differences detected among substrains have been shown to be caused by genetic factors. The techniques for
genotyping have to be adjusted to the specific needs of an institution or a group, and may depend on laboratory equipment, maintenance conditions, and the scientific purpose of such analyses. The determination of a genetic profile allows to distinguish among different strains maintained in one animal unit. In general, this genetic profile is composed of monogenetic polymorphic markers which may be further differentiated by biochemical, immunological, morphological, cytogenetic, and DNA markers. Those classic markers have been almost fully replaced in routine applications by the microsatellite marker technique. A huge number of primer pairs is available and can be purchased from companies worldwide.

Laboratory animals have to be housed under specific environmental conditions, which prevent animals from infections by microbial agents, and established the status of ‘specific pathogen-free’ (SPF) animals. Locks and showers were commonly used for personnel, autoclaving for food, water, materials, and equipment, and mice were maintained in technically adapted (positive pressure, filtered air, etc.) and regularly disinfected animal rooms. During the last decade, filter cabinets, microisolator cages and individually ventilated cage (IVC)-systems have been increasingly used in laboratory animal facilities. Those new cage types offer the advantage of separating small populations from each other and are also frequently used for housing immunocompromised or infected mice. The transmission of infectious agents can be efficiently prevented by such cage systems, which must be considered as self-contained microbiological entities. In IVC systems, every single cage has its individual route for air supply and air exhaust. The rate of ventilation is much more higher in IVCs than in conventional open cages and allows some extension of the cage-changing interval. The major effect of filter cabinets, microisolator cages, and IVCs is to erect an effective hygienic barrier between the animals and their environment, which can provide a better microbiological status of animals used. However, a well-trained staff29 is needed to run those cage systems effectively. Because of the higher expenditure of time for concomitant work, e.g. using clean benches with laminar flow conditions, manipulation of animal cages under sterile environment, marking of animals, and care and management of animals in breeding procedures, the number of mice per animal technician is

<table>
<thead>
<tr>
<th>Table 1.1 Environmental requirements of mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Relative humidity</td>
</tr>
<tr>
<td>Ventilation (air exchange per h)</td>
</tr>
<tr>
<td>Photoperiod (light-dark-rhythm)</td>
</tr>
<tr>
<td>Light intensity</td>
</tr>
<tr>
<td>Noise</td>
</tr>
<tr>
<td>Water intake</td>
</tr>
<tr>
<td>Food intake</td>
</tr>
</tbody>
</table>

See also Fox et al.55 GV-SOLAS26
definitely reduced to about 50–70% compared to the hitherto existing open housing systems.

Mouse genetics

The management of breeding colonies of mice requires specific knowledge on the goals of inbred and outbred populations. The objectives for ‘outbred’ animals are to ensure that the population remains constant in all characteristics for as many generations as possible to maintain the highest level of heterozygosity and to preserve the population’s original allelic forms and frequencies as stable as possible over generations. In contrast, for ‘inbred’ strains efforts are focused on the preservation of isogeneity and a maximum inbreeding coefficient. To achieve the goal of homogenous populations, the main three causes of divergence have to be avoided: genetic contamination, mutations, and residual heterozygosity. Several factors can affect the genetic characteristics of inbred and outbred populations, e.g. the population size, the type of mating scheme, spontaneous mutations, and (positive and negative) selection procedures.

Outbred stocks are characterized by maximum genetic variability (polymorphism) in the population, avoidance of the introduction of new allelic forms, and minimisation of increasing inbreeding from generation to generation by using breeding partners, which are preferably not related to each another. Usually, outbred populations have large numbers of permanent breeding pairs (sometimes more than 200 pairs), no selection criteria (i.e. loss of allelic forms), high interval between generations (to slow down genetic drift), and closed mating populations (no introduction of new breeders).

A different mating scheme is used for inbred strains. Inbred strains are defined as those derived from 20 or more consecutive sister × brother matings. The main goal of inbreeding is a maximum level of homozygosity at virtually all of the loci, which entails a genetic and phenotypic uniformity. This uniformity reduces the number of mice, which have to be used for experimental approaches, because experimental variability in phenotype is limited to variations in epigenetic, extragenetic, and/or varying uncontrolled environmental factors. However, inbred animals are usually characterised by a lower degree of robustness for infectious agents and environmental factors, a decreased fecundity (fertility rate, litter size, number of weaned pups, etc.), and relatively higher costs than outbred animals. In addition, specific phenotypes can be expressed or even inability to live because of homozygosity for a certain recessive trait and/or lethal gene(s).

The crossing of two inbred strains generates hybrid mice, which are genetically and phenotypically uniform like inbred mice. F1 hybrids display an overall hybrid vigor, i.e. increased resistance to diseases, better survival under stress situations, greater natural longevity, higher numbers of litter, and are therefore useful as recipients of tissue transplants from mice of either parental strain. Crossings of F1 × F1 result in the F2 progeny, in which alleles of the two parental strains segregate following Mendelian principles of inheritance.
Special breed of inbred lines are recombinant inbred (RI) and congenic strains. RI strains are derived by systematic inbreeding from a cross of two different inbred strains, recombinant congenic (RC) strains are established by backcrossing of F1 hybrids to mice of one of the parental lines32,33 (for details see also Chapter 2). Congenic strains are inbred strains carrying a mutant gene or ‘foreign’ polymorphic allele from a different strain or stock and are expected to be identical at virtually all loci except for the transferred locus (‘locus of interest’) and a linked segment of the chromosome. A strain is considered congenic after 10 generations of backcrossing to a recipient inbred strain (N10). Using marker-assisted technologies, congenic strains can be established in <10 generations, creating so-called ‘speed congenics’, from which DNA microsatellite markers are extensively mapped7,34

With regards to cardiovascular research, mice of the C57BL/6J strain are most susceptible for hyperlipidemia-induced atherosclerosis. However, it is known that inbred mice of another inbred strains, for example C3H/HeJ, BALB/cJ and A/J are not sensitive to a cholesterol diet and atherosclerotic lesions cannot be induced by feeding of cholesterol-enriched diets. Concerning the injury models, data indicate that neointimal lesions vary between different strains, but differ from diet-induced atherosclerosis, suggesting that injury-induced neointimal hyperplasia and diet-induced atherosclerosis are controlled by distinct sets of genes; the former appeared to be determined by recessive genes at minimally two loci35. Neointimal lesions in vein isografts between C57BL/6J and BALB/c strains revealed no significant difference in either inflammatory responses or the thickness of lesions, suggesting there is less effect of genetics on vein graft models. For transplant arteriosclerosis, different major histocompatibility complex class II antigens between donors and recipients are needed, e.g. between C57BL/6J and BALB/c mice. Thus, careful selection of the model with different genetic background for such experiments is essential for the successful performance of the study.21

During the last two decades genetically engineered strains of mice were created by ‘transgenesis’ and ‘targeted mutagenesis’. Transgenic mice have genetic material randomly added to their genome, whereas knockout and knockin mice are produced by the gene targeting technique using mouse embryonic stem (ES) cells. Gene targeting replaces the gene sequence resident in the mouse genome by means of homologous recombination of a related sequence that has been modified in the laboratory to contain a mutation.

Thousands of transgenic mouse strains have been used to study gene function and expression and have resulted7 in many important disease models. The phenotype of a knockout mouse provides important clues about the gene’s normal role. One major application of this technology is the modelling of human diseases caused by loss of gene function. Such knockout mouse models are useful tools to investigate the biochemical and physiological aspects of diseases. Interesting examples of knockout mice for transplant arteriosclerosis research are animals, which lack gene function for interferon-gamma,36 nitric oxide synthase (NOS),37 P-selectin,38 intercellular adhesion molecule-1 (ICAM-1),17,38 and Apo E.39
Blood and bone marrow collection methods

For different analyses in hematology, immunology and similar disciplines, the collection of blood samples is necessary. In this chapter, the scientifically accepted blood collection methods from mice are described. Blood collection techniques should be performed with a minimum of tissue trauma and thus a minimum of pain and suffer to the animals. Methods that enable blood sampling directly from a vessel or plexus are preferred to those that may cause more tissue trauma. The following sites are commonly used for blood collection in mice: orbital sinus, tail vein, heart, aorta, and vena cava. Depending on the site that is used for blood collection, either a terminal procedure (heart, aorta, vena cava, jugular vein) or a survival procedure (orbital sinus, tail vein) is applied. Terminal blood collection procedures must be performed in anesthetised mice only.

Proper handling techniques are necessary for blood sampling from orbital sinus or from the tail vein. After removal from the cage by grasping the animal’s tail and, if required, identification of mice, the restraining can be performed either by an immobilisation device or by fixing a skin fold at the rear of the neck with thumb and forefinger. For the collection of blood samples from the orbital sinus an adequate sedation or a brief anesthesia is recommended. For routine hematology, the collected blood should be immediately placed in a tube to let the blood clot for serum extraction. In the case that anticoagulation should be achieved to separate plasma from cell compartments, EDTA (ethylenediamine tetra-acetic acid), heparin, sodium citrate (3.8 per cent) and others are valuable anticoagulants.

For qualitative and quantitative analyses, bone marrow cells are used for smears and counting to evaluate for relative proportions, maturity of precursor cells, storage pools, and other changes. Among the feasible methods used to prepare bone marrow cells are cytospin preparations, paint brush smears and squash preparations. Most commonly, the femur (or other appropriate long bone) is cracked and bone marrow material is either rinsed from the marrow cavity using sterile medium and a 22-gauge or 23-gauge needle, or a slightly moistened paint-brush is introduced into the marrow cavity to pick up a small amount of bone marrow, or bone marrow cells are harvested by centrifugation of the cracked bone in a 0.6 ml centrifugation tube and adequate medium.

Anesthesia and Analgesia

Anesthesia and analgesia protocols require specific knowledge of the mouse physiology and is a real challenge to the mouse anesthetist. The three major ‘pillars’ of an appropriate anesthesia are adequate analgesia, sedation/hypnosis, and relaxation of skeletal muscles. Hence, an expertly performed anesthesia needs special knowledge and experience. The choice for the used anesthetic regimen is particularly affected by the aim of the scheduled study, the age, sex, and size of the animal species, and the
advantages and disadvantages of various anesthetic drugs. Anesthetics can be administered by injection or by inhalation (and via the route of tank water, if animals are aquatic residents). For major surgery and other long-term procedures a combination of injectable anesthetics with an inhalant anesthetic may be considered.42

Several problems can occur in association with the small body size of mice, e.g. the higher surface area relative to body mass, increased sensitivity to blood loss entailing cardiovascular failure, and the lack of intra-anesthetic monitoring. In addition, strain, sex-, and age-dependent variability in the effective dose of some injectable anesthetics may result in inadequate depth of anesthesia or even in a lethal overdose.42

For larger animals a fasting period of 12–24 hours is usually emphasized in the preanesthetic phase. In contrast, it is undesirable to withhold food and water before anesthetising mice.43 For anticholinergic premedication mice should be treated with atropine (0.04 mg/kg, subcutaneously)44 about 30 minutes prior the induction of anesthesia.

However, anesthetics are usually injected into mice because of easy administration by the subcutaneous (Figure 1.1), intraperitoneal (Figure 1.2), or intramuscular (Figure 1.3) routes. Drug absorption is slow via those routes, and it needs a couple of minutes until the anesthetic drug(s) provide(s) an adequate anesthesia. Rapid
absorption, which entails a nearly simultaneous anesthetic effect can be achieved by intravenous application (Figure 1.4).

For the performance of intravenous injections mice are first placed under a heating lamp for about 10 minutes to warm the animals’ body. Overheating of mice must be avoided by permanent careful observation. Unless the mice show increasing activity for self-grooming, expressed by distinct wiping movements of the forepaws over face and snout, mice are placed in a restriction device made from plastic or glass. The free movement of the body is restricted, the experimenter has free access to the tail, where the veins can be well seen due to their heat-induced dilatation. On the dorsal site as well as at the left and right lateral site the three tail veins can be observed, if the warming procedure of the mouse has been properly performed (Figure 1.5). At the ventral site of the tail the artery runs along the tail to the tip and should not be used for intravenous applications. One of the three tail veins can be punctured using a 30-gauge needle (0.3 × 13 mm). It is emphasized to insert the needle into the vein lumen in an angle of 5°–10°, meaning nearly parallel to the surface of the tail skin. The

Figure 1.2 Intraperitoneal injection. Administration of substances into the peritoneal cavity of mice is a frequently used technique. The mouse is properly restraint by grasping the animal’s skin in the neck region, and turned the abdominal site upwards. The right injection location can be found as follows: an imaginary line runs between the *processus xyphoideus* (end of the sternum) to the cranial edge of the pubic bone (*os pubis*). This distance is cut in half, and this particular site is used for the i.p. injection. To avoid injuries of the intestine, liver, and of other abdominal organs by the needle, it is important to keep the head of the mouse deeper that the abdominal/pelvic region. The needle is carefully placed at the above described site and inserted in an angle of about 50-60 degree to keep the way through the various skin layers as short as possible (a minimum number of sensitive nerves should be irritated by the needlepoint). The recommended injection volume is 0.1 to 0.5 ml. For a color version of this figure, please see the images supplied on the accompanying CD.
Figure 1.3 Intramuscular injection. Because of the small muscle mass of mice, the intramuscular application of substances is not a very common technique used in mice. In principle, parts of the M. glutaeus are used to be injected. The mouse has to be restraint as described. The appropriate muscles are found between the ischium and the popliteal region. The needle is inserted into the M. glutaeus and the injection is performed. The recommended injection volumes should not exceed 0.05 ml for an adult mouse.

Note: take care not to injure the ischiatic and femoralis nerve or the femoralis blood vessels with the needletip. For a color version of this figure, please see the images supplied on the accompanying CD.

Figure 1.4 Intravenous injection. Before a intravenous injection mice are warmed by a heating lamp for about 10 minutes to warm the animal’s body. Tail veins became distinctly visible and can be punctured using a 30-gauge needle. The needle must be inserted into the vein lumen in an angle of 5–10°, nearly parallel to the surface of the tail skin. Because of the application the blood in the vein lumen is displaced and thus indicate the proper placement of the needle in the vessel lumen. Recommended volume for intravenous application into adult mice is 0.05 to 0.15 ml. The intravenous injection technique must be properly educated and trained to ensure successful intravenous injections in mice. For a color version of this figure, please see the images supplied on the accompanying CD.
application of drugs must be performed slowly and displacement of blood by the injected fluid assure that the injection is properly placed in the vessel lumen. Adequate education and training is required to conduct intravenous injections in mice successfully.

Recommended injection volumes\(^{44-45}\) range from 0.1 to 0.5 ml for intraperitoneal and subcutaneous applications, from 0.05 to 0.15 ml for intravenous application and should not exceed 0.05 ml for intramuscular injection to an adult mouse. Young mice and animals with a lower body weight should receive reduced injection volumes accordingly.

A recommendable anesthesia can be achieved by intraperitoneal injection of medetomidine (0.5 mg/kg), midazolam (5 mg/kg) and fentanyl (0.05 mg/kg), because those drugs can be neutralized by specific antagonists (atipamezole (2.5 mg/kg), flumazenil 0.5 mg/kg, and naloxone (1.2 mg/kg), subcutaneous application). Optimised and safe intraperitoneal injection anesthesia in mice was analysed by Arras\(^{46}\) by using combinations of dissociative anesthetics (ketamine, tiletamine), \(\alpha_2\)-agonists (xylazine, medetomidine), and/or sedatives (acepromazine, azaperone, zolazepam).

Alternatively, volatile anesthetic drugs, such as enflurane, isoflurane, sevoflurane, etc. are widely used for inhalation anesthesia for mice because of the better controllability on the anesthetic depth. Those volatile agents are applied by a specific device, which vaporises the liquid substances by higher pressure. For the initiation of anesthesia the volatile agent is conducted into a chamber, in which the animal had been placed. Anesthesia is continued by inhalation of the anesthetic vapor via fitting face masks. As an easily manageable system syringes can be used from which the pistols had been removed. For mice, aged >6 weeks, 5 ml-syringes can serve as face masks, for older mice 10 ml-syringes are commonly used. The major advantages of inhalation anesthesia are rapid onset of analgesia, proper sedation, adequate relaxation, and a precise adjustment of the anesthetic depth and period. In larger animal species a tube is inserted into the trachea\(^{45}\) allowing artificial respiration in case of apnea. Table 1.2 summarizes the use of anesthetics and tranquilizers in mice.

Figure 1.5 ‘Mouse tail vein’. This picture clearly shows the course of the dorsal tail vein, which can be used for the intravenous injection technique. For a color version of this figure, please see the images supplied on the accompanying CD
<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg/kg)</th>
<th>Comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Chloralose</td>
<td>114 i.p.</td>
<td>5% solution, only in combination with analgetics and/or other anesthetic agents</td>
<td>Windholz⁵⁶</td>
</tr>
<tr>
<td>Alphaxolone/alphadolone (Saffan, Althesin)</td>
<td>10–20 i.v.</td>
<td>Unpredictable anesthetic effect following i.p., volume too large for i.m.</td>
<td>Green,⁴⁴ Flecknell⁴³</td>
</tr>
<tr>
<td>Chloral hydrate</td>
<td>60–90 i.p.</td>
<td>Light surgical anesthesia</td>
<td>Green⁴⁴</td>
</tr>
<tr>
<td></td>
<td>370–400 i.p.</td>
<td>Considerable strain differences</td>
<td>Flecknell¹³</td>
</tr>
<tr>
<td>Fentanyl/fluanisone</td>
<td>0.4 ml/kg i.m.</td>
<td>Muscle rigidity, pronounced respiratory depression, 1:10 dilution</td>
<td>Flecknell¹³</td>
</tr>
<tr>
<td>Hypnorm/midazolam</td>
<td>10 ml/kg i.p.</td>
<td>2 parts water for injection + 1 part Hypnorm + 1 part midazolam (5 mg/ml)</td>
<td>Flecknell¹³</td>
</tr>
<tr>
<td>Fentanyl/droperidol</td>
<td>0.5 i.m.</td>
<td>Irritant, tissue necrosis, self-trauma following i.m. application</td>
<td>Flecknell¹³</td>
</tr>
<tr>
<td>Ketamine</td>
<td>80–100 i.m.</td>
<td>Sedation, muscle</td>
<td>Green⁴⁴ Flecknell¹³</td>
</tr>
<tr>
<td>Methohexital (Brevital, Brevinyltal)</td>
<td>10 i.v. 44 i.p.</td>
<td>Short-term anesthesia</td>
<td>Flecknell¹³ Dörr⁵⁷</td>
</tr>
<tr>
<td>Medomitate/fentanyl</td>
<td>60/0.06 s.c.</td>
<td>1:10 dilution, narrow safety margin, marked strain differences in response, severe respiratory depression</td>
<td>Flecknell¹³ Green,⁴⁴ Flecknell⁴³ Erhardt⁵⁸ Zeller⁵⁹ Koizumi⁶⁰</td>
</tr>
<tr>
<td>Pentobarbital (Nembutal, Vetanarcol)</td>
<td>45 i.p. 50 i.p. 60 i.p.</td>
<td>1:10 dilution, narrow safety margin, marked strain differences in response, severe respiratory depression</td>
<td>Flecknell¹³ Erhardt⁵⁸ Zeller⁵⁹ Koizumi⁶⁰</td>
</tr>
<tr>
<td>Propofol (Rapinovet, Diprivan)</td>
<td>26 i.v. 30 i.v.</td>
<td>Short-term anesthesia, i.v. injection required</td>
<td>Flecknell¹³ Koizumi⁶⁰</td>
</tr>
<tr>
<td>Thiopental (Penthotal, Trapanal)</td>
<td>30 i.v.</td>
<td>Short-term anesthesia, i.v. injection required, dose dependent hypothermia and respiratory depression</td>
<td>Flecknell¹³</td>
</tr>
<tr>
<td>Tiletamine/zolazepam</td>
<td>40 i.p.</td>
<td></td>
<td>Flecknell¹³ Silverman⁶¹</td>
</tr>
<tr>
<td>(Telazol)</td>
<td>80–100 i.p.</td>
<td></td>
<td>Flecknell¹³</td>
</tr>
<tr>
<td>Tribromethanol (Avertin)</td>
<td>125–300 i.p. 240 i.p.</td>
<td>1.2% solution, possible peritonitis, serositis</td>
<td>Flecknell¹³ Zeller⁵⁹</td>
</tr>
</tbody>
</table>

i.p., intraperitoneally; i.m., intramuscularly; i.v., intravenously; s.c., subcutaneously.