Precedence-Type Tests and Applications

N. Balakrishnan
McMaster University
Department of Mathematics and Statistics
Hamilton, Ontario, Canada

H. K. Tony Ng
Southern Methodist University
Department of Statistical Science
Dallas, TX
This Page Intentionally Left Blank
Precedence-Type Tests
and Applications
WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors: David J. Balding, Noel A. C. Cressie, Nicholas I. Fisher, Iain M. Johnstone, J. B. Kadane, Geert Molenberghs, Louise M. Ryan, David W. Scott, Adrian F. M. Smith, Jozef L. Teugels
Editors Emeriti: Vic Barnett, J. Stuart Hunter, David G. Kendall

A complete list of the titles in this series appears at the end of this volume.
Precedence-Type Tests and Applications

N. Balakrishnan
McMaster University
Department of Mathematics and Statistics
Hamilton, Ontario, Canada

H. K. Tony Ng
Southern Methodist University
Department of Statistical Science
Dallas, TX
To

My Late Father and Mother,
R. Narayanaswamy Iyer and N. Lakshmi,
for their love, support, and encouragement!

(NB)

My Parents,
Cheong Leung Ng and Kit Ching Wong,
for their love and affection!

(HKTN)
This Page Intentionally Left Blank
Contents

List of Tables xiii
List of Figures xxii
Preface xxiii

1 Introduction 1
1.1 PROBLEMS OF INTEREST 1
1.2 SPECIAL CONSIDERATIONS 1
1.3 SPECIAL FORM OF TESTING 2
1.4 PRECEDECE TESTS 2
1.5 DEVELOPMENTS 3

2 Preliminaries 7
2.1 LIFE-TEST DATA 7
2.2 ORDER STATISTICS 8
2.2.1 Joint Densities and Markovian Property 8
2.2.2 Marginal Densities 9
2.2.3 Moments 11
2.2.4 Results for the Uniform Distribution 11
2.2.5 Results for the Exponential Distribution 13
2.3 CENSORED DATA 15
2.3.1 Type-I Censoring 15
2.3.2 Type-II Censoring 16
2.4 PROGRESSIVELY CENSORED DATA 17
2.4.1 General Properties 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Results for the Uniform Distribution</td>
<td>19</td>
</tr>
<tr>
<td>2.4.3 Results for the Exponential Distribution</td>
<td>20</td>
</tr>
<tr>
<td>2.5 SOME USEFUL LIFETIME DISTRIBUTIONS</td>
<td>23</td>
</tr>
<tr>
<td>2.5.1 Exponential Distribution</td>
<td>23</td>
</tr>
<tr>
<td>2.5.2 Gamma Distribution</td>
<td>24</td>
</tr>
<tr>
<td>2.5.3 Weibull Distribution</td>
<td>25</td>
</tr>
<tr>
<td>2.5.4 Extreme Value Distribution</td>
<td>26</td>
</tr>
<tr>
<td>2.5.5 Lognormal Distribution</td>
<td>27</td>
</tr>
<tr>
<td>2.6 WILCOXON'S RANK-SUM STATISTIC</td>
<td>28</td>
</tr>
<tr>
<td>2.7 RANDOMIZED TEST</td>
<td>29</td>
</tr>
<tr>
<td>3 Precedence Test</td>
<td>31</td>
</tr>
<tr>
<td>3.1 INTRODUCTION</td>
<td>31</td>
</tr>
<tr>
<td>3.2 CONCEPT OF PRECEDENCE TEST</td>
<td>32</td>
</tr>
<tr>
<td>3.3 EXACT NULL DISTRIBUTION</td>
<td>34</td>
</tr>
<tr>
<td>3.4 EXACT POWER FUNCTION UNDER LEHMANN ALTERNATIVE</td>
<td>35</td>
</tr>
<tr>
<td>3.5 MONTE CARLO SIMULATION UNDER LOCATION-SHIFT ALTERNATIVE</td>
<td>39</td>
</tr>
<tr>
<td>3.6 EVALUATION AND COMPARATIVE REMARKS</td>
<td>40</td>
</tr>
<tr>
<td>3.7 PROPERTIES OF PRECEDENCE AND RELATED TESTS</td>
<td>52</td>
</tr>
<tr>
<td>3.7.1 Powerful Precedence Tests</td>
<td>52</td>
</tr>
<tr>
<td>3.7.2 Median Tests</td>
<td>53</td>
</tr>
<tr>
<td>3.7.3 Precedence-type Tests for Complete and Censored Data</td>
<td>54</td>
</tr>
<tr>
<td>3.7.4 Exceedance Statistics and Placement Statistics</td>
<td>55</td>
</tr>
<tr>
<td>3.8 ILLUSTRATIVE EXAMPLES</td>
<td>56</td>
</tr>
<tr>
<td>4 Maximal Precedence Test</td>
<td>61</td>
</tr>
<tr>
<td>4.1 INTRODUCTION</td>
<td>61</td>
</tr>
<tr>
<td>4.2 EXACT NULL DISTRIBUTION</td>
<td>62</td>
</tr>
<tr>
<td>4.3 EXACT POWER FUNCTION UNDER LEHMANN ALTERNATIVE</td>
<td>66</td>
</tr>
</tbody>
</table>
CONTENTS

4.4 MONTE CARLO SIMULATION UNDER LOCATION-SHIFT ALTERNATIVE 72
4.5 EVALUATION AND COMPARATIVE REMARKS 74
4.6 ILLUSTRATIVE EXAMPLES 85

5 Weighted Precedence and Weighted Maximal Precedence Tests 87

5.1 INTRODUCTION 87
5.2 TEST STATISTICS AND EXACT NULL DISTRIBUTIONS 89
5.3 EXACT POWER FUNCTION UNDER LEHMANN ALTERNATIVE 90
5.4 MONTE CARLO SIMULATION UNDER LOCATION-SHIFT ALTERNATIVE 93
5.5 ILLUSTRATIVE EXAMPLES 94

6 Wilcoxon-type Rank-sum Precedence Tests 101

6.1 INTRODUCTION 101
6.2 TEST STATISTICS AND EXACT NULL DISTRIBUTIONS 102
 6.2.1 Wilcoxon-type Rank-sum Precedence Test Statistics 102
 6.2.2 Null Distributions 104
6.3 LARGE-SAMPLE APPROXIMATION FOR THE NULL DISTRIBUTIONS 111
6.4 EXACT POWER FUNCTION UNDER LEHMANN ALTERNATIVE 113
6.5 MONTE CARLO SIMULATION UNDER LOCATION-SHIFT ALTERNATIVE 126
6.6 EVALUATION AND COMPARATIVE REMARKS 149
6.7 ILLUSTRATIVE EXAMPLES 150
7 Extension to Progressive Censoring

7.1 INTRODUCTION
7.2 TEST STATISTICS AND EXACT NULL DISTRIBUTIONS
7.3 EXACT POWER FUNCTION UNDER LEHMANN ALTERNATIVE
7.4 MONTE CARLO SIMULATION UNDER LOCATION-SHIFT ALTERNATIVE
7.5 ILLUSTRATIVE EXAMPLE

8 Generalization to k-Sample Situation

8.1 INTRODUCTION
8.2 SOME PERTINENT PROBLEMS
8.3 COMPARING TREATMENTS WITH CONTROL
8.4 COMPARISON OF TREATMENTS

9 Selecting the Best Population Using a Test for Equality Based on Precedence Statistic

9.1 INTRODUCTION
9.2 TWO-SAMPLE SELECTION PROBLEM
 9.2.1 Equal Sample Size Situation
 9.2.2 Unequal Sample Size Situation
 9.2.3 Performance Under Lehmann Alternative
9.3 k-SAMPLE SELECTION PROBLEM
 9.3.1 Selection Procedure and Null Distribution
 9.3.2 Handling Ties
9.4 MONTE CARLO SIMULATION UNDER LOCATION-SHIFT
9.5 EVALUATION AND COMPARATIVE REMARKS
9.6 ILLUSTRATIVE EXAMPLES
10 Selecting the Best Population Using a Test for Equality Based on Minimal Wilcoxon Rank-sum Precedence Statistic 231

10.1 INTRODUCTION 231
10.2 TWO-SAMPLE SELECTION PROBLEM 232
 10.2.1 Equal Sample Size Situation 232
 10.2.2 Unequal Sample Size Situation 234
 10.2.3 Performance Under Lehmann Alternative 237
10.3 k-SAMPLE SELECTION PROBLEM 240
 10.3.1 Selection Procedure and Null Distribution 240
 10.3.2 Handling Ties 244
10.4 MONTE CARLO SIMULATION UNDER LOCATION-SHIFT 247
10.5 EVALUATION AND COMPARATIVE REMARKS 248
10.6 ILLUSTRATIVE EXAMPLES 265

Appendix 269
Bibliography 275
Author Index 283
Subject Index 285
List of Tables

3.1 Near 5% critical values (s) and exact levels of significance (α) for the precedence test statistic \(P_{(r)} \) 36

3.2 Near 10% critical values (s) and exact levels of significance (α) for the precedence test statistic \(P_{(r)} \) 37

3.3 Power values of the precedence test \(P_{(r)} \) under the Lehmann alternative for \(n_1 = n_2 = 10, \ r = 2(1)5, \) and \(\gamma = 2(1)6 \) 39

3.4 Power of precedence tests \((P_{(r)}) \) and Wilcoxon's rank-sum test \((W_R) \) when \(n_1 = n_2 = 10 \) 41

3.5 Power of precedence tests \((P_{(r)}) \) and Wilcoxon's rank-sum test \((W_R) \) when \(n_1 = 10, n_2 = 15 \) 43

3.6 Power of precedence tests \((P_{(r)}) \) and Wilcoxon's rank-sum test \((W_R) \) when \(n_1 = n_2 = 15 \) 45

3.7 Power of precedence tests \((P_{(r)}) \) and Wilcoxon's rank-sum test \((W_R) \) when \(n_1 = 15, n_2 = 20 \) 47

3.8 Power of precedence tests \((P_{(r)}) \) and Wilcoxon's rank-sum test \((W_R) \) when \(n_1 = n_2 = 20 \) 49

3.9 Times to insulating fluid breakdown data from Nelson (1982) for Samples 2 and 3 56

3.10 Times to insulating fluid breakdown data from Nelson (1982) for Samples 3 and 6 58
4.1 Near 5% critical values and exact levels of significance for the maximal precedence test statistic $M(r)$ 67

4.2 Near 10% critical values and exact levels of significance for the maximal precedence test statistic $M(r)$ 68

4.3 Power values of precedence and maximal precedence tests under Lehmann alternative for $n_1 = n_2 = 10$, $r = 2(1)5$, and $\gamma = 2(1)6$ 73

4.4 Power of precedence tests (P_r), maximal precedence tests (M_r), and Wilcoxon's rank-sum test (W_R) when $n_1 = n_2 = 10$ 75

4.5 Power of precedence tests (P_r), maximal precedence tests (M_r), and Wilcoxon's rank-sum test (W_R) when $n_1 = 10, n_2 = 15$ 77

4.6 Power of precedence tests (P_r), maximal precedence tests (M_r), and Wilcoxon's rank-sum test (W_R) when $n_1 = n_2 = 15$ 79

4.7 Power of precedence tests (P_r), maximal precedence tests (M_r), and Wilcoxon's rank-sum test (W_R) when $n_1 = 15, n_2 = 20$ 81

4.8 Power of precedence tests (P_r), maximal precedence tests (M_r), and Wilcoxon's rank-sum test (W_R) when $n_1 = n_2 = 20$ 83

5.1 Near 5% critical values and exact levels of significance for the weighted precedence test statistic P^*_r 91

5.2 Near 5% critical values and exact levels of significance for the weighted maximal precedence test statistic M^*_r 91

5.3 Power comparison of precedence, maximal precedence, weighted precedence, and weighted maximal precedence tests under Lehmann alternative for $n_1 = n_2 = 10$, $r = 2, 3$, and $\gamma = 2(1)6$ 93
LIST OF TABLES

5.4 Power of precedence, maximal precedence, weighted precedence, and weighted maximal precedence tests when $n_1 = n_2 = 10$ and $\theta = 0.5$ 95

5.5 Power of precedence, maximal precedence, weighted precedence, and weighted maximal precedence tests when $n_1 = n_2 = 10$ and $\theta = 1.0$ 96

5.6 Power of precedence, maximal precedence, weighted precedence, and weighted maximal precedence tests when $n_1 = n_2 = 20$ and $\theta = 0.5$ 97

5.7 Power of precedence, maximal precedence, weighted precedence, and weighted maximal precedence tests when $n_1 = n_2 = 20$ and $\theta = 1.0$ 98

5.8 Times to insulating fluid breakdown data from Nelson (1982) for Samples 2 and 3 99

6.1 Near 5% upper critical values and exact levels of significance for the Wilcoxon's rank-sum precedence test statistics 107

6.2 Near 10% upper critical values and exact levels of significance for the Wilcoxon's rank-sum precedence test statistics 108

6.3 Exact and approximate values of $\Pr(W_{\text{min},r} \leq s)$ by normal approximation and Edgeworth approximation (near 1% critical values) 116

6.4 Exact and approximate values of $\Pr(W_{\text{min},r} \leq s)$ by normal approximation and Edgeworth approximation (near 5% critical values) 117

6.5 Exact and approximate values of $\Pr(W_{\text{min},r} \leq s)$ by normal approximation and Edgeworth approximation (near 10% critical values) 118
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Exact and approximate values of $\Pr(W_{\max,r} \leq s)$ by normal approximation and Edgeworth approximation (near 1% critical values)</td>
</tr>
<tr>
<td>6.7</td>
<td>Exact and approximate values of $\Pr(W_{\max,r} \leq s)$ by normal approximation and Edgeworth approximation (near 5% critical values)</td>
</tr>
<tr>
<td>6.8</td>
<td>Exact and approximate values of $\Pr(W_{\max,r} \leq s)$ by normal approximation and Edgeworth approximation (near 10% critical values)</td>
</tr>
<tr>
<td>6.9</td>
<td>Exact and approximate values of $\Pr(W_E \leq s)$ by normal approximation and Edgeworth approximation (near 1% critical values)</td>
</tr>
<tr>
<td>6.10</td>
<td>Exact and approximate values of $\Pr(W_E \leq s)$ by normal approximation and Edgeworth approximation (near 5% critical values)</td>
</tr>
<tr>
<td>6.11</td>
<td>Exact and approximate values of $\Pr(W_E \leq s)$ by normal approximation and Edgeworth approximation (near 10% critical values)</td>
</tr>
<tr>
<td>6.12</td>
<td>Power values under Lehmann alternative for $n_1 = n_2 = 10$, $r = 2, 3$, and $\gamma = 2(1)6$</td>
</tr>
<tr>
<td>6.13</td>
<td>Power of precedence tests, maximal precedence tests, minimal, maximal, and expected rank-sum precedence tests, and Wilcoxon's rank-sum test (based on complete samples) when $n_1 = n_2 = 10$</td>
</tr>
<tr>
<td>6.14</td>
<td>Power of precedence tests, maximal precedence tests, minimal, maximal, and expected rank-sum precedence tests, and Wilcoxon's rank-sum test (based on complete samples) when $n_1 = 10, n_2 = 15$</td>
</tr>
<tr>
<td>6.15</td>
<td>Power of precedence tests, maximal precedence tests, minimal, maximal, and expected rank-sum precedence tests, and Wilcoxon's rank-sum test (based on complete samples) when $n_1 = n_2 = 15$</td>
</tr>
</tbody>
</table>
6.16 Power of precedence tests, maximal precedence tests, minimal, maximal, and expected rank-sum precedence tests, and Wilcoxon's rank-sum test (based on complete samples) when $n_1 = 15, n_2 = 20$

6.17 Power of precedence tests, maximal precedence tests, minimal, maximal, and expected rank-sum precedence tests, and Wilcoxon's rank-sum test (based on complete samples) when $n_1 = n_2 = 20$

7.1 Near 5% critical values (s) and exact levels of significance (α) for the weighted precedence test statistic $P_{(r)}^*$ under progressive censoring

7.2 Near 5% critical values (t) and exact levels of significance (α) for the weighted maximal precedence test statistic $M_{(r)}^*$ under progressive censoring

7.3 Power values under Lehmann alternative for $n_1 = n_2 = 10, r = 2, \text{ and } \gamma = 2(1)|6$

7.4 Power of the weighted precedence ($P_{(r)}^*$) and weighted maximal precedence tests ($M_{(r)}^*$) under progressive censoring for $n_1 = n_2 = 10$ with location-shift $= 0.5$

7.5 Power of the weighted precedence ($P_{(r)}^*$) and weighted maximal precedence tests ($M_{(r)}^*$) under progressive censoring for $n_1 = n_2 = 10$ with location-shift $= 1.0$

7.6 Power of the weighted precedence ($P_{(r)}^*$) and weighted maximal precedence tests ($M_{(r)}^*$) under progressive censoring for $n_1 = n_2 = 20$ with location-shift $= 0.5$

7.7 Power of the weighted precedence ($P_{(r)}^*$) and weighted maximal precedence tests ($M_{(r)}^*$) under progressive censoring for $n_1 = n_2 = 20$ with location-shift $= 1.0$

7.8 Times to insulating fluid breakdown data from Nelson (1982) for Samples 3 and 6
LIST OF TABLES

9.1 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (9.4) | 185
9.2 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (9.4) when $n_1 \neq n_2$ | 188
9.3 $Pr[CS]$ under the Lehmann alternative for $n_1 = n_2$
 $= n = 10, 20$, $r = 5(1)n$, and $\gamma = 2(1)7$ | 192
9.4 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (9.23) with $k = 3$ and equal sample sizes $n_1 = \cdots = n_k = n$ | 198
9.5 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (9.23) with $k = 4$ and equal sample sizes $n_1 = \cdots = n_k = n$ | 199
9.6 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (9.23) with $k = 3$ and unequal sample sizes | 200
9.7 Estimated probabilities of selection for $n_1 = n_2 = n$, with location-shift $\theta = 0.5$ | 204
9.8 Estimated probabilities of selection for $n_1 = n_2 = n$, with location-shift $\theta = 1.0$ | 205
9.9 Estimated probabilities of selection for n_1, n_2, with location-shift $\theta = 0.5$ | 206
9.10 Estimated probabilities of selection for n_1, n_2, with location-shift $\theta = 1.0$ | 208
9.11 Estimated probabilities of selection for $n_1 = n_2 = n_3$
 $= n$, with location-shift $\theta_1 = 0.5$, $\theta_2 = 1.0$ | 210
9.12 Estimated probabilities of selection for $n_1 = n_2 = n_3$
 $= n$, with location-shift $\theta_1 = 0.0$, $\theta_2 = 1.0$ | 212
9.13 Estimated probabilities of selection for $n_1 = n_2 = n_3$
 $= n$, with location-shift $\theta_1 = 1.0$, $\theta_2 = 2.0$ | 214
9.14 Estimated probabilities of selection for \(n_1 = n_2 = n_3 = n \), with location-shift \(\theta_1 = 0.5, \theta_2 = 1.5 \) 216

9.15 Estimated probabilities of selection for \(n_1, n_2, \) and \(n_3 \), with location-shift \(\theta_1 = 0.5, \theta_2 = 1.0 \) 218

9.16 Estimated probabilities of selection for \(n_1, n_2, \) and \(n_3 \), with location-shift \(\theta_1 = 0.0, \theta_2 = 1.0 \) 220

9.17 Estimated probabilities of selection for \(n_1, n_2, \) and \(n_3 \), with location-shift \(\theta_1 = 1.0, \theta_2 = 2.0 \) 222

9.18 Estimated probabilities of selection for \(n_1, n_2, \) and \(n_3 \), with location-shift \(\theta_1 = 0.5, \theta_2 = 1.5 \) 224

9.20 One-way ANOVA table based on log-lifetimes of appliance cord in Tests 1, 2, and 3 227

9.21 Survival times of 40 patients receiving two different treatments 228

10.1 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (10.2) 235

10.2 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (10.7) when \(n_1 \neq n_2 \) 238

10.3 \(\Pr[CS] \) under the Lehmann alternative for \(n_1 = n_2 = n \) 241

10.4 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (10.14) with \(n_1 = n_2 = n_3 = n \) 245

10.5 Near 5% critical values and exact levels of significance (in parentheses) for the procedure in (10.14) with \(k = 3 \) and unequal sample sizes 246

10.6 Estimated probabilities of selection under location-shift with \(n_1 = n_2 = 10 \) 249
10.7 Estimated probabilities of selection under location-shift = 0.5 with \(n_1 = n_2 = 15 \) 250

10.8 Estimated probabilities of selection under location-shift = 1.0 with \(n_1 = n_2 = 15 \) 251

10.9 Estimated probabilities of selection under location-shift = 0.5 with \(n_1 = n_2 = 20 \) 252

10.10 Estimated probabilities of selection under location-shift = 1.0 with \(n_1 = n_2 = 20 \) 253

10.11 Estimated probabilities of selection under location-shift with \(n_1 = 10 \) and \(n_2 = 15 \) 254

10.12 Estimated probabilities of selection under location-shift = 0.5 with \(n_1 = 15 \) and \(n_2 = 20 \) 255

10.13 Estimated probabilities of selection under location-shift = 1.0 with \(n_1 = 15 \) and \(n_2 = 20 \) 256

10.14 Estimated probabilities of selection for \(k = 3 \) with \(n_1 = n_2 = n_3 = 10, 15, \) and location-shift \(\theta_1 = 0.5, \theta_2 = 1.0 \) 257

10.15 Estimated probabilities of selection for \(k = 3 \) with \(n_1 = n_2 = n_3 = 20, \) and location-shift \(\theta_1 = 0.5, \theta_2 = 1.0 \) 259

10.16 Estimated probabilities of selection for \(k = 3 \) with \(n_1 = n_2 = n_3 = 10, 15, \) and location-shift \(\theta_1 = 1.0, \theta_2 = 2.0 \) 261

10.17 Estimated probabilities of selection for \(k = 3 \) with \(n_1 = n_2 = n_3 = 20, \) and location-shift \(\theta_1 = 1.0, \theta_2 = 2.0 \) 263

10.18 Insulating fluid breakdown times (in natural logs of seconds) from Nelson (1982, p. 278) 266
List of Figures

3.1 Schematic representation of a precedence life-test 33

5.1 Case 1 life-test in Example 5.1 88
5.2 Case 2 life-test in Example 5.1 88

6.1 Null distribution of the expected rank-sum statistic ($W_{E,r}$) for $n_1 = n_2 = 10$ and $n_1 = n_2 = 30$ when $q = \frac{r}{n_2}$ equals 60%, 80%, and 90% 114

6.2 Null distribution of the expected rank-sum statistic ($W_{E,r}$) for $n_1 = n_2 = 30$ and $n_1 = n_2 = 100$ when $q = \frac{r}{n_2}$ equals 20% 115

7.1 Schematic representation of a precedence life-test with progressive censoring 155
This Page Intentionally Left Blank
Preface

Nonparametric statistics are intuitive and easily understood and inferential procedures based on ranks and runs are often heuristically simple to follow and implement. One such family of test procedures are the so-called precedence-type tests. These tests, which are quite useful in life-testing situations to make quick and reliable decisions early in the experiment, are also time- and cost-efficient as they are based on only a few early failures (instead of failures of all units in the life-test). However, the development of precedence-type tests requires care and usage of a wide range of statistical techniques. This volume provides a thorough and comprehensive overview of various theoretical as well as applied developments on a variety of problems in which precedence-type test procedures may be applied effectively.

This volume comprises 10 chapters, and may be broadly classified into four parts—Part A, comprising Chapter 3, deals with the original precedence test and some properties of precedence and related test procedures; Part B, comprising Chapters 4-6, deals with some alternatives to precedence test such as maximal precedence, weighted forms of precedence and maximal precedence, and Wilcoxon-type rank-sum precedence tests and their properties; Part C, comprising Chapter 7, deals with the extension of precedence, maximal precedence, and Wilcoxon-type rank-sum precedence tests to the situation when the sample arising from the life-testing experiment is progressively Type-II censored, and their properties; and Part D, comprising Chapters 8-10, deals with precedence-type tests in multisample situations and selection problems. Throughout the volume, several tables have been presented so as to facilitate the use of these tests in practical problems, and also some examples have been included in order to illustrate all the precedence-type procedures.

The length of this volume as well as the extensive bibliography at the end of the volume (with a good number of publications being in the last 25 years or so) provides ample testimony to the growth and continued interest in this
topic of research. Even though we have discussed a number of variations of
the precedence test and also different applications of these test procedures,
there is clearly a lot more potential to develop new precedence-type tests as
well as to apply them to diverse inferential problems. It is our sincere hope
that this volume would enable and encourage this to happen.

In a volume of this nature and size, inevitably there will be omission of
some results that should have been included. Any such omission is accidental
and by no means due to personal nonscientific antipathy.

We encourage readers to comment on the contents of this volume and
thank them in advance for informing us of any errors, omissions, or misrep-
resentations.

We acknowledge the support and encouragement of Mr. Steve Quigley,
Editor, John Wiley & Sons, throughout the course of this project. The
managerial, editorial, and production help provided by Ms. Susanne Steitz,
Mr. Andrew Prince, and Ms. Shirley Thomas, respectively, of John Wiley
& Sons, Hoboken, NJ, are gratefully acknowledged. We also acknowledge
the kind permission provided by World Scientific Publishing Company (Sin-
gapore), Blackwell Publishing Company (UK), Elsevier Science B.V. (The
Netherlands), and John Wiley & Sons (USA), for us to reproduce some of
the previously published tables and figures. Thanks are also due to Mrs.
Debbie Iscoe (Ontario, Canada) for her help and assistance during the type-
setting of this volume. Finally, we express our sincere thanks to all our family
members whose support, cooperation, understanding and immense patience
we both enjoyed during the entire period we worked on this volume.

N. BALAKRISHNAN

H. K. TONY NG

Hamilton, Ontario, Canada

Dallas, Texas, USA

January 2006
Chapter 1

Introduction

1.1 PROBLEMS OF INTEREST

The comparison of the quality of products from different manufacturing processes or the effectiveness of different treatments for an illness is a commonly encountered problem in practice. For example, a manufacturer of a product may wish to compare a new manufacturing process with the existing process. If there is significant statistical evidence that the new process results in better product (meaning, more reliable or with longer lifetime), then the manufacturer may wish to abandon the existing process and implement the new process into production. Another example is when a medical researcher wishes to compare a new treatment with a control. In this case, patients may be assigned randomly to treatment and control groups, and their remission times (or lifetimes) are recorded. Based on these data, the researcher will be primarily interested in determining whether the treatment is effective.

The development of efficient statistical procedures for these problems is, therefore, of great interest and importance.

1.2 SPECIAL CONSIDERATIONS

In the examples described above, we may have some special considerations. For example, in the medical experiment, the treatment may be toxic and harmful to the patients; therefore, based on ethical grounds, the researcher may wish to terminate the experiment as soon as there is evidence to draw a reliable conclusion, one way or the other. In the other example involving
quality or reliability of products, the manufacturer may want (1) to make quick and reliable decisions early in the life-testing experiment, and (2) to minimize the number of failures of units from the new process since their cost of production may be relatively high so that the units that had not failed could be used for some other testing purposes.

For these reasons, our main goal is to make decisions during the early stage of the experiment, not having observed many failures.

1.3 SPECIAL FORM OF TESTING

As we are concerned with the comparison of the lifetime distributions of units from the new process with those from the standard process, and because we would expect more failures to occur from the standard process than from the new process during the early stage of the experiment, we would naturally like to utilize this to collect data in this special form and then carry out a test suitably based on these data.

For this purpose, we assume throughout this book that sample units from the processes are placed simultaneously on a life-testing experiment and that failures are observed as they arise in a naturally time-increasing manner.

At this point, there are clearly two ways to proceed: one is to assume specific lifetime distributions for the samples and carry out the test under a parametric setup, and the other is to collect data in a nonparametric manner (for example, only the ranks of failure times rather than the failure times themselves) and carry out the test under a nonparametric setup. We have chosen the latter because we will have only very few failures (and so assumption of a family of lifetime distributions for data in hand may be difficult to justify or verify) and the decisions made will be somewhat robust (as compared to those from efficient tests based on some specific family of lifetime distributions).

1.4 PRECEDENCE TESTS

From the life-testing experiment described in the previous section, one form of (nonparametric) data that we could collect easily is the number of failures from the standard process that preceded the first failure from the new process, the number of failures from the standard process that occurred between the first and second failures from the new process, and so on.
If the experimenter had decided to allow only a certain number (say, \(r \)) of failures from the new process (for reasons stated earlier), then the life-test would be terminated as soon as this \(r \)th failure occurred from the new process. We would then have the data on the numbers of failures from the standard process only until this particular failure time.

This form of life-test is called a \textit{precedence test} and any test statistic based on these “precedences” is called a \textit{precedence-type statistic}; see, for example, Nelson (1963, 1986) and Ng and Balakrishnan (2006). Of course, the simplest precedence-type statistic is the number of failures from the standard process that preceded the \(r \)th failure from the new process; as a matter of fact, this is what Nelson (1963) has called as a \textit{precedence statistic}. One may then change the functional form (instead of just the sum of the numbers of failures from the standard process) and come up with different precedence-type statistics, each with its own special features and properties. Furthermore, the idea of precedence-type statistics can also be extended to some other statistical problems. These, indeed, form the bases for all the developments in this book!

\section*{1.5 DEVELOPMENTS}

For the problems described in Section 1.1, with the goals as stated in Section 1.2, many different precedence-type test procedures are developed in this book and their properties are evaluated.

First, in Chapter 2, we present briefly the basic concepts and results that are essential for the developments in the subsequent chapters. After describing the form and nature of data arising from a life-testing experiment, we introduce order statistics and present some important formulas and results concerning order statistics. We then explain the concept of censoring and different forms of censored data that could arise from a life-test. We pay special attention to progressive censoring and present some formulas and results concerning the progressively censored order statistics. Some useful lifetime distributions are described next, and these distributions are used throughout this book for evaluating the performance of all the test procedures. Since the test procedures are developed under a stochastically ordered alternative, it will be quite natural to compare their performance with the well-known Wilcoxon’s rank-sum statistic for complete samples; so, we present a brief description of Wilcoxon’s rank-sum test and also explain how a randomized
test could be developed if one wishes to have a test that attains exactly a
prespecified level of significance.

Next, in Chapter 3, we introduce the concept of precedence testing and
present the precedence test statistic. We derive the exact null distribution
of this test statistic by combinatorial method and also by means of an order
statistics approach. We evaluate the power properties of this test through the
exact power function under the Lehmann alternative as well as through the
simulated power under the location-shift alternative. We then discuss various
properties of the precedence test and some other related nonparametric tests,
and present finally some examples to illustrate the use of precedence tests.

Since the precedence test developed in Chapter 3 suffers from a masking
effect, we introduce in Chapter 4 the maximal precedence test statistic. We
derive the exact null distribution of this test statistic by means of an order
statistics approach. We evaluate the power properties of this test through the
exact power function under the Lehmann alternative as well as through the
simulated power under the location-shift alternative. We then make some
comparisons of this test with the precedence test and show that the maximal
precedence test, unlike the precedence test, does not suffer from the masking
effect. Finally, we present some examples to illustrate the use of maximal
precedence tests.

In Chapter 5, we introduce the concept of weighted precedence and
weighted maximal precedence tests. We derive the exact null distributions of
these test statistics. We evaluate their power properties through their exact
power functions under the Lehmann alternative as well as through their sim-
ulated power values under the location-shift alternative. Finally, we present
some examples to illustrate the use of weighted precedence and weighted
maximal precedence tests.

In Chapter 6, we introduce three Wilcoxon-type rank-sum precedence
test statistics—the minimal, maximal, and expected rank-sum statistics. We
derive the exact null distributions of these three test statistics. Since the
large-sample normal approximation for the null distributions is not satisfac-
tory in the case of small or moderate sample sizes, we present an Edgeworth
approximation to the significance probabilities. We evaluate the power prop-
erties of these three tests through their exact power functions under the
Lehmann alternative as well as through their simulated power values un-
der the location-shift alternative. We then make some comparisons of these
three tests with the precedence test, the maximal precedence test, and the
Wilcoxon's rank-sum test based on complete samples. Finally, we present