Recent Advances in Physiotherapy

Edited by
CECILY PARTRIDGE
Recent Advances in Physiotherapy
Recent Advances in Physiotherapy

Edited by
CECILY PARTRIDGE
Contents

Contributors vii

Introduction 01
 Cecily Partridge

I CARDIORESPIRATORY 03

1 Physiotherapy and the Adult with Non-Cystic Fibrosis Bronchiectasis 05
 Jennifer A. Pryor

2 Coordinated Management of a Patient in ICU with Cardiorespiratory Failure 17
 Elizabeth Dean

II SURGICAL 41

3 Abdominal Surgery: The Evidence for Physiotherapy Intervention 43
 Linda Denenhy and Laura Browning

III NEUROLOGICAL 75

4 Practice and Feedback for Training Reach-to-Grasp in a Patient with Stroke 77
 Paulette M. Van Vliet and Katherine Durham

5 Improving Walking After Stroke Using a Treadmill 108
 Louise Ada and Catherine M. Dean

6 Treatment of the Upper Limb Following Stroke: A Critical Evaluation of Constraint Induced Movement Therapy 124
 Martine Nadler
CONTENTS

IV PAIN MANAGEMENT 133

7.1 An Introduction to Current Concepts of Pain 135
Lester Jones

7.2 Non-Specific Arm Pain 142
Lester Jones

7.3 Recurrent Lumbar Pain after Failed Spinal Surgery 159
Lester Jones and Audrey Wang

V MUSCULOSKELETAL 181

8 Evidence for Exercise and Self-Management Interventions for Lower Limb Osteoarthritis 183
Nicola Walsh

9 Using Evidence-Based Practice for Upper Extremity Musculoskeletal Disorders 202
Joy C. MacDermid

VI ORTHOPAEDIC 223

10 Physiotherapy Rehabilitation Following Primary Total Knee Arthroplasty 225
Justine Naylor, Alison Harmer and Richard Walker

Index 251
Contributors

Cecily Partridge
PhD, BA Hons, FCSP
Cecily is an Honorary Reader in the Centre for Health Services Studies at the University of Kent at Canterbury and an Emeritus Reader of London University. Her research and clinical interests have been mainly in neurological physiotherapy and the use of appropriate research methods in physiotherapy. She set up the first UK MSc degree in Research Methods for therapists in 1980, and founded the journal Physiotherapy Research International in 1996 and was editor until 2006. Centre for Health Service Studies, Cornwallis Building, The University of Kent, Canterbury, Kent CT2 7NF email: cecily.partridge@virgin.net

Louise Ada
PhD, MA, BSc, Grad Dip Phty
Louise is an Associate Professor in the School of Physiotherapy, The University of Sydney. Her teaching and research are in the area of adult neurology. Her research covers: examining the contribution of motor impairments such as weakness, incoordination, spasticity to limitations in physical activity; testing interventions for stroke rehabilitation; and investigating the delivery of rehabilitation, in particular, increasing the amount of practice of physical activity. School of Physiotherapy, Faculty of Health Sciences, The University of Sydney, PO Box 170, Lidcombe NSW 1825 Australia Fax: 61293519278 email: L.Ada@fhs.usyd.edu.au

Laura Browning
BPhysio
Laura Browning graduated with a Bachelor of Physiotherapy from La Trobe University, Melbourne in 1999. She worked as a junior physiotherapist at the Western Hospital, Melbourne, before commencing as a cardiothoracic physiotherapist at the Royal Melbourne Hospital, while continuing her clinical role and teaching undergraduate cardiothoracic physiotherapy students at the university. Her research interests include functional recovery following abdominal surgery, post-operative mobilisation programmes, and physiotherapy practice in abdominal surgery.

Catherine M. Dean
PhD, MA, BAppSci (Phty)
Cath is senior lecturer in the School of Physiotherapy, The University of Sydney. Her teaching and research are in the areas of clinical education, adult neurology, and the older person. Her research covers: examining models of clinical education for physiotherapy students; testing interventions for stroke rehabilitation and the older person; and investigating the delivery of rehabilitation, in particular, increasing the
amount of practice of physical activity. *School of Physiotherapy, Faculty of Health Sciences, The University of Sydney, P O Box 170, Lidcombe NSW 1825 Australia Fax: 61293519278 email: C.Dean@fhs.usyd.edu.au*

Elizabeth Dean
PhD PT
Elizabeth Dean is professor on faculty in the School of Rehabilitation Sciences, University of British Columbia, Canada. She has been invited to speak worldwide. Because lifestyle conditions are no longer pandemic in western countries alone, her research has increasingly focused on integrating knowledge of culture and diversity in promoting health and wellness globally, and in addressing the physical therapy needs of people from the ICU to community. She has published widely and is a co-editor of the text ‘Cardiovascular and Pulmonary Physical Therapy: Evidence and Practice (4 edn)’. She spent a year as Senior of the Cardiovascular/Cardiorespiratory Team, Kuwait Dalhousie Project, Kuwait, and a year as Visiting Professor at the Hong Kong Polytechnic University.

School of Rehabilitation Sciences, University of British Columbia, T325-2211Westbrook Mall, Vancouver, British Columbia, Canada V6T Fax: 16048227624 email: elizdean@interchange.ubc.ca

Linda Denehy
PhD, BAppSc (Physio), Grad Dip Physio (Cardiothoracic)
Linda Denehy graduated as a physiotherapist in 1976 in Melbourne, and completed her Graduate Diploma of Physiotherapy (Cardiothoracic) in 1987 and her PhD in April 2001 at the University of Melbourne. She worked in major public hospitals in Melbourne for 15 years and at the Royal Brompton hospital in London for a year before pursuing an academic career. Linda is currently a senior lecturer in the School of Physiotherapy at the University of Melbourne, where she coordinates both the undergraduate and post-graduate cardiorespiratory programmes and supervises research higher degree students. Her primary research interests involve management of patients in the area of acute care, including major surgery and critical care. *Post-graduate Student Research Co-ordinator, School of Physiotherapy, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne Victoria 3010 Australia email: l.denehy@unimelb.edu.au*

Katherine Durham
BSc (Hons)
Kathy Durham graduated as a physiotherapist in 1997 from Nottingham University. As a senior, she has worked within the fields of mental health, elderly rehabilitation and neurology. She has a broad background in the assessment and treatment of neurological conditions and has specialised in stroke rehabilitation. Kathy is currently working towards her doctorate at Birmingham University, looking at the effects of different types of feedback on motor performance.

Alison Harmer
PhD, BAppSc (Physio)
Alison Harmer is a lecturer in the School of Physiotherapy, The University of Sydney, Lidcombe, Australia. Alison has research interests in effects of exercise and exercise
training on muscle morphology and metabolism in patient populations, including those with diabetes, after joint replacement, and patients with back pain.

Lester Jones
MCSP
Lester Jones is a senior lecturer in the Faculty of Health and Social Care Sciences, Kingston University and St George’s University of London. He has worked in interdisciplinary teams in rehabilitation (Royal Melbourne Hospital) and pain management (University of Sydney Pain Management and Research Centre) as well as in private practice (Sydney and London). He currently holds an honorary Senior Lecturer position in the Faculty of Medicine University of Sydney. Lester has completed Bachelor degrees in physiotherapy and psychology and a post-graduate diploma in behavioural studies in health care at La Trobe University, Melbourne; a post-graduate certificate in teaching and learning in higher education at Kingston University London; and a Master’s degree in pain management at the University of Sydney. Lester has been on the committee of the Physiotherapy Pain Association (UK) for the last three years, two of those as Education Officer. He is also a member of the Australian Physiotherapy Association and the International Association for the study of pain, including the ‘Pain and Movement’ special interest group.

School of Physiotherapy, Faculty of Health and Social Care Science, 2nd Floor, Grosvenor Wing, St George’s University of London, Cranmer Terrace London SW17 0RE, UK email: ljones@hscs.sgul.ac.uk

Joy C. MacDermid
PhD, MSc, BS PT, BSc
Joy MacDermid is a physical therapist, hand therapist, epidemiologist, and holds a Canadian Institutes of Health Research (CIHR) New Investigator Award. She is an Associate Professor (School of Rehabilitation Science) at McMaster University and is also Co-director of the Clinical Research Lab within the Hand and Upper Limb Centre (HULC) in Canada. She is cross-appointed to Departments of Surgery and Epidemiology at both McMaster University and the University of Western Ontario. Her research interests include: upper extremity disability; randomized clinical trials and trial methodology; outcomes studies; psychometrics of clinical measurement (performance and self-report); clinical epidemiology; clinical practice guidelines; and knowledge transfer. Her research projects emphasise multidisciplinary approaches to enhancing prevention, assessment, and management of musculoskeletal problems.

School of Rehabilitation Science, McMaster University, 1400 Main Street West, Rm 429, IAHS, Hamilton, Ontario, L8S 1C7 Canada Phone: 9055259140 ext. 22524 Fax: 9055240069 email: macderj@mcmaster.ca

Martine Nadler
PhD, MSc, MCSP
Martine Nadler qualified as a physiotherapist in 1987. She is a clinical specialist at the Wolfson Centre, Wimbledon, London (part of St George’s Healthcare NHS Trust) and a part time post-graduate lecturer. In 1997, she read for a Master’s in Neuroscience at the Department of Anatomy and Developmental Biology at University College London, and in 2000 published a PhD in the Department of Physiology at UCL.
In addition to working at various London teaching hospitals, she spent five years at the Bobath Centre London. Her research interests include investigation of central pathway changes after stroke. Dr Nadler currently holds an honorary research post at the Centre for Rehabilitation and Ageing at St George’s Hospital, London. 115 Coombe Lane, Wimbledon, London SW20 OQY UK email: atgd80@dsl.pipex.com

Justine Naylor
PhD, BAppSc (Physio)
Justine is Senior Research Fellow, Elective Orthopaedics, Sydney South West Area Health Service, NSW, Australia; Conjoint Senior Lecturer, UNSW; Honorary Fellow, University of Sydney. She has research interest in the fields of joint replacement surgery and cardiopulmonary physiotherapy. Research and Quality Manager, Whitlam Joint Replacement Centre, Fairfield Hospital, New South Wales, Australia email: Justine.Naylor@swsahs.nsw.gov.au

Jennifer A. Pryor
PhD, MBA, MSc, FNZSP, MCSP
Jennifer Pryor trained as a physiotherapist in New Zealand, but has worked for many years at Royal Brompton Hospital, London. She is currently the Senior Research Fellow in Physiotherapy at the Hospital, and an Honorary Lecturer at University College London. At University College she is involved with the MSc and Certificate Courses in Advanced Cardiorespiratory Physiotherapy. She is co-editor of the textbook *Physiotherapy for Respiratory and Cardiac Problems: adults and children* and her doctorate was on airway clearance in people with cystic fibrosis. She has many peer review publications and has lectured throughout Europe and in the United States, Brazil and New Zealand. Royal Brompton Hospital, Sydney St., London SW3 6NP UK email: J.Pryor@rbh.nthames.nhs.uk

Paulette M. Van Vliet
PhD, MSc, BAppSc (Physio)
Paulette is currently a research fellow at the School of Health Sciences at the University of Birmingham in the UK. She worked as a physiotherapist in neurological rehabilitation for ten years, before moving on to a career researching and lecturing on the subject. Her research interests are recovery of upper limb motor control after stroke; evaluation and development of physiotherapy intervention for stroke patients; and skill acquisition following stroke. Recent research has involved a randomised controlled trial comparing a Bobath-based and a Movement Science-based approach to stroke rehabilitation. Current research focuses on the temporal coordination of reach-to-grasp in patients with stroke, and the effects of different types of feedback on motor learning after stroke. She also lectures to post-graduate and undergraduate physiotherapy students on issues related to stroke rehabilitation. School of Health Sciences, University of Birmingham, Edgbaston B15 2TT UK email: paulette.vanvliet@ntworld.com

Richard Walker
MBBS, FRACS (Orth)
Orthopaedic Surgeon, Arthroplasty and Trauma Surgeon at Sydney Bone and Joint Clinic, VMO Liverpool Hospital, Sydney South West Area Health Service, NSW, Australia.
Nicola Walsh
MSc, MCSP
After gaining clinical experience in a variety of musculoskeletal settings, including professional sport and a diagnostic gait laboratory, Nicola was employed as a lecturer/practitioner at King’s College London. She then worked as a research associate for four years on an Arthritis Research Campaign (ARC) funded randomised controlled trial (RCT) of a clinical cost-effective rehabilitation programme for chronic knee pain and osteoarthritis (OA) in primary care. This work forms part of her ongoing PhD (funded by the ARC) investigating long-term physiotherapy management strategies for lower limb osteoarthritis. In addition, she is lead investigator on a UK Physiotherapy Research Foundation RCT looking at an exercise and self management regimen for hip OA. Currently Nicola is employed as a senior lecturer at the University of the West of England. Faculty of Health and Social Care, Glenside Campus, University of West England, Blackberry Hill, Bristol BS16 1DD UK email: Walsh@uwe.ac.uk

Audrey Wang
MSNZS
Audrey Wang is a Clinical Specialist Physiotherapist at INPUT, Pain Management Unit, St Thomas’ Hospital, London. Her experience includes working in interdisciplinary teams in chronic fatigue management (Essex Centre for Neurosciences) and pain management services, including return to work rehabilitation and case management in the United Kingdom. Her involvement in research projects includes the Job Retention and Rehabilitation Pilot (Work Care) – a Department of Work and Pensions and Department of Health initiative – and fatigue in primary care. She has also worked within the public and private sector in New Zealand. Having completed her Bachelor’s degree in Physiotherapy at Otago University, Dunedin, New Zealand, she is presently undertaking her dissertation for her Master of Science in Applied Biomechanics with the University of Strathclyde, Glasgow. Audrey is also a member of the British Pain Society, Chartered Society of Physiotherapy (UK), and Physiotherapy Pain Association (UK).
Introduction

CECILY PARTRIDGE

The purpose of this book, the second in the series, is to enable those with an interest in physiotherapy to keep up to date with recent research relating to the profession, and in particular to provide information about the current bases of evidence for treatments frequently used for common conditions. The first book was restricted to the evidence-base for physiotherapy for neurological conditions; this one also deals with other conditions treated by physiotherapists, including respiratory, musculoskeletal, surgical, orthopaedic, post-operative and pain problems.

The book will be of interest to a wide range of physiotherapists, both undergraduate and post-graduate, to those who refer their patients for physiotherapy, and to administrators and others who commission physiotherapy services.

Each chapter starts with a Case Report of a real patient. This format was adopted to encourage dialogue between clinicians and researchers and stress the relevance of research to practice. A gap is often evident between the two but it is essential for the advancement of the profession that research both is, and is seen as, relevant to practice.

The authors of the chapters were selected as specialists in their own fields and as having both clinical and research expertise. Brief biographies are given to provide some idea of their very wide range of experience and specialisation. To ensure some consistency, authors were asked to follow the style of the previous book. Essentially they were asked to use the patient in the Case Report as a starting point to describe the treatment approaches they would prescribe, then to ask clinically relevant questions as a way of citing the current evidence-base for the treatment.

To enable the reader to estimate the strength of the evidence presented, authors were asked to rate the references they cited on the scale provided. This was adapted for physiotherapy from those first presented by Sackett et al. (2000). The original medical scales were not considered appropriate for physiotherapy because the randomised controlled trial (RCT) is widely regarded as the gold standard in medical research but has not yet been demonstrated as such in physiotherapy. In most evaluations of medical treatment there is a clear diagnosis ratified by clear criteria and usually supported by laboratory tests; the treatment can be administered in pre-specified doses; medication for the control group can be indistinguishable from the active preparation; and results can again be confirmed by the use of well validated tests. In many areas of physiotherapy the diagnosis is often unclear, as can be seen from the...
case reports; interventions may be adapted to suit the individual, and cannot therefore be pre-specified; and in addition, outcomes are often behaviourally defined. These all mitigate against using the RCT as the gold standard in physiotherapy. Some authors also question its status in medicine. Goodman (1998, 1999) maintained that ‘most RCTs are conducted on unrepresentative populations of heterogeneous patients and interpretation of results is usually far from straightforward’.

The three broad categories of the scale are given below:

A Based on the results of sound research, citing the results clearly, often a clinical trial, but to include single case study design. Also sound qualitative research, for example exploring patients’ mood states or opinions.

B Laboratory based investigations in, for example, biomechanics, or neurophysiology where results help to inform practice but have not been evaluated in the treatment of patients.

C Statements provided by authority figures. Also citations from textbooks and consensus statements.

Reviews were marked as R. References without any letter did not fit any of these categories. Where, infrequently, unpublished PhDs were cited they were labelled as A/R.

The authors themselves assigned the reference categories using these criteria. Though the term ‘evidence-based practice’ is currently widely used, key to developing sound practice is the collaboration between researchers and clinicians to try to ensure researchers are tackling clinically relevant questions. One of the strengths of this book is the overt linking of practice to research, with authors having both research and clinical experience.

REFERENCES

I Cardiorespiratory
1 Physiotherapy and the Adult with Non-Cystic Fibrosis Bronchiectasis

JENNIFER A. PRYOR

INTRODUCTION

Bronchiectasis is defined as ‘abnormal chronic dilatation of one or more bronchi’ (Wilson 2003 C). The face of bronchiectasis is changing (Greenstone 2002 C). It used to be characterised by large volumes of purulent sputum, but today may also be characterised by a persistent and irritating non-productive cough. With the increasing use of antibiotics in the treatment of pulmonary infections in childhood, many patients with bronchiectasis have an underlying disease that predisposes them to chronic or recurrent infection, for example cystic fibrosis, immunodeficiency including HIV, primary ciliary dyskinesia, allergic bronchopulmonary aspergillosis and Mycobacterium avium complex (Rosen 2006 C). Diagnosis was by plain chest radiograph, with the extent of the disease assessed by bronchography (injection of contrast into the bronchial airway), but this was an invasive and unpleasant procedure. Today high-resolution computed tomography (thin slices taken through both lungs) allows identification of thickened bronchial walls, bronchial dilatation and ring opacities containing air-fluid levels (Copley et al. 2002 C) (see Figure 1.1).

This chapter will present two cases with diagnoses of bronchiectasis, referred for ‘chest physiotherapy’, one with severe bronchiectasis and one with mild bronchiectasis. Both patients had significant problems.

CASE REPORT I

Mrs AH, aged 58, presented with a chronic cough productive of copious amounts of purulent sputum and fatigue. Mrs AH’s high-resolution computed tomography showed extensive bronchiectasis in both lower lobes associated with patchy consolidation and mucus plugging. The distribution was thought to be typical for a post-pertussis syndrome as the cause of her bronchiectasis. Her full lung function studies indicated severe airflow limitation with three-quarters of a litre of gas trapping and marked reduction in spirometric indices. Her gas transfer coefficient was ‘reasonably’ well preserved. End capillary carbon dioxide was at the upper limit of normal and there
was evidence of mild hypoxaemia. Haematological and biochemical indices showed mild microcytosis with no significant anaemia or abnormality in immunoglobulins. Her sputum cultured Pseudomonas aeruginosa. On auscultation there were coarse crackles throughout both lung fields.

Mrs AH’s medical management included the introduction of an aggressive cyclical antibiotic regimen to reduce the bacterial load and an inhaled corticosteroid was introduced to suppress airway inflammation. She had received physiotherapy for her chest, in the form of airway clearance, in the Middle East. This had comprised the head-down tilt position with chest clapping from an assistant, and coughing when secretions reached the upper airways. The physiotherapist visited twice a week, no airway clearance was undertaken in between times and there was no encouragement to undertake a programme of physical exercise.

QUESTION 1

Which airway clearance regimen should be recommended for an adult with bronchiectasis?

A search for the evidence for airway clearance in bronchiectasis was undertaken in February 2006 using the key words ‘physiotherapy’ or ‘physical therapy’
and ‘bronchiectasis’. This revealed nothing on the Cochrane database but using ‘bronchiectasis’ alone, two systematic reviews of interest were identified: ‘Bronchopulmonary hygiene physical therapy for chronic obstructive pulmonary disease and bronchiectasis’ (Jones & Rowe 2006 R) and ‘Physical training for bronchiectasis’ (Bradley et al. 2006 R). Jones and Rowe identified seven trials, which were said to be small and not generally of high quality. The authors said that in most comparisons, bronchial hygiene physical therapy produced no significant effects on pulmonary function, apart from clearing sputum. They concluded that there was not enough evidence to show whether there are benefits from chest physiotherapy to remove secretions from the lungs of people with chronic obstructive pulmonary disease or bronchiectasis.

The key word ‘bronchiectasis’ was used in the PEDro physiotherapy evidence database and identified 16 studies, 14 in English. Ten of these studies related to airway clearance and two to exercise. This database is one of the most efficient ways for the busy clinician to access some of the evidence, but not all clinical trials of relevance are included and it is therefore important to be aware of related publications in the field which can be accessed via Medline, Embase and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). A systematic review requires evidence from randomised controlled trials and few have been undertaken in cardiorespiratory physiotherapy. This does not mean the evidence from other types of trial is invalid, but rather it means that valid ‘low-grade’ evidence, which may be of clinical significance, will probably not have been included in any systematic review.

The reviews on airway clearance do not address the physiological benefits of the removal of excess purulent secretions from the airways. Hypothetically, airway clearance techniques can decrease mucus plugging and aid in removing secretions containing inflammatory cells and by-products, thus decreasing damage to epithelia. In addition, movement and removal of bronchial secretions containing bacteria, especially Pseudomonas, may decrease local inflammatory responses and delay the change of Pseudomonas to mucoid morphology (Lapin C (2006) Personal communication C). Clinical expertise would support the practice of using an airway clearance technique in people with chronic sputum production and it is important to remember the definition of evidence by Sackett et al. (1996 C), that is, the integration of clinical expertise and the best available evidence from systematic research.

There are several airway clearance techniques which have been shown to aid the mobilisation and clearance of excess mucus from the airways. These include postural drainage and percussion (the regimen Mrs AH had been using, with assistance, in the Middle East) (Pryor et al. 1979 A), the active cycle of breathing techniques (Pryor et al. 1979 A; Thompson & Thompson 1968 A), autogenic drainage (Schöni 1989, C), positive expiratory pressure (Falk et al. 1984 A), oscillating positive expiratory pressure (Cegla et al. 1997 A; Konstan et al. 1994 A), high frequency chest wall oscillation (Warwick & Hansen 1991 A), intrapercussive pulmonary ventilation (Newhouse et al. 1998 A; Varekojis et al. 2003 A) and resistive inspiratory manoeuvres (Chatham et al. 2004 A; Patterson et al. 2004 A). Over 27 years ago, postural drainage and percussion was shown to be less effective than the active cycle of breathing techniques (Pryor et al. 1979 A) and yet it is still practised in many countries.
Many of the airway clearance studies have been undertaken in people with cystic fibrosis. Extrapolation to people with non-cystic fibrosis bronchiectasis must be with caution, but it is likely that the regimens of the active cycle of breathing techniques, autogenic drainage, positive expiratory pressure, oscillating positive expiratory pressure and high frequency chest wall oscillation are equally effective (Accurso et al. 2004 A; Patterson et al. 2005 A; Pryor 2005 A; Thompson et al. 2002 A). The choice of regimen may be one of personal preference, but this is likely to be influenced by the knowledge and experience of the physiotherapist. It is also likely that adherence to treatment will be increased if the airway clearance regimen is one which appeals to the patient and if they have been involved in the selection process. What is as yet unknown is whether a change of regimen, at intervals, will increase adherence to treatment.

Many countries use the sitting position for airway clearance. A study by Cecins et al. (1999 A), in people with bronchiectasis associated and not associated with cystic fibrosis, concluded that the side-lying position was as effective as the head-down tipped position and was preferred by the patients. Cystic fibrosis, in the early stages, is a disease which primarily affects the upper lobes bilaterally (Tomasheski et al. 1986 B). Bronchiectasis not associated with cystic fibrosis often presents with a middle and/or lower lobe distribution, indicative of a childhood viral infection. Generalised changes suggest an underlying host defence defect and an upper lobe unilateral problem, either post-tuberculosis or allergic bronchopulmonary aspergillosis (Greenstone 2002 C). The sitting position may be effective for people with cystic fibrosis, but this is not necessarily the best position for people with bronchiectasis not associated with cystic fibrosis and affecting the middle and/or lower lobes. In the individual patient, it is not difficult to solve this clinical problem. The patient should begin by using the selected airway clearance regimen in the sitting position. When the patient and the therapist have decided that continuing the treatment will not result in further expectoration of sputum, side lying with positioning for the affected segments should be tried. If more sputum is mobilised and cleared this will indicate there is benefit in using a side lying (lower lobes) or side lying 1/4 turn from supine (middle zones) position.

Traditionally the emphasis for the use of gravity assisted positioning has been on the drainage of secretions (Ewart 1901 C). Wong et al. (1977 A), using radionuclide imaging techniques in patients with cystic fibrosis, demonstrated that an abnormal tracheal mucus clearance approached normal when the patients were placed in a 25 degree head-down tipped position. More recent work, using inhaled radio-labelled particles, found during postural drainage in people with cystic fibrosis that mucus clearance was greater from the dependent lung than from the uppermost lung (Lannefors & Wollmer 1992 A). This suggests that in mucus clearance the effect of the increase in regional lung ventilation may be greater than the direct effect of gravity.

An abscess cavity is likely to drain more effectively when the opening of the cavity points downwards, but today many people with bronchiectasis have only minor dilatation of the airway walls and the movement of mucus along these bronchiecatic airways may be better facilitated by the increase in airflow in the dependent lung than
by the drainage effects of gravity in the uppermost lung, which were useful in the past. Theory would therefore indicate a patient with minimal right lower lobe bronchiectatic changes should be positioned in right side lying first, to increase ventilation, and then changed to left side lying.

Airflow is essential for airway clearance (Lapin 2002 B). There are similarities across most of the airway clearance regimens. All except autogenic drainage include the forced expiratory manoeuvre of huffing (Thompson & Thompson 1968 A), which increases expiratory flow, and this is now recognised as the most effective component of airway clearance (van der Schans 1997 B). Autogenic drainage utilises an unforced manoeuvre to augment expiratory flow (Schöni 1989 B), and the increase in expiratory flow of both the huff and an autogenic drainage breath should reduce the viscosity of mucus. This can be explained by its thixotropic property (Selsby & Jones 1990 B). The movement of secretions along the airways is said to be by either slug or annular flow (Lapin 2002 B; Selsby & Jones 1990 B). In addition, with the forced expiratory manoeuvre of the huff there is an oscillation of the airway walls (Freitag et al. 1989 B) which should further help to loosen secretions from them. Most of the regimens include a technique to increase lung volume and this is said to increase airflow via the collateral ventilatory channels (Macklem 1971 B), allowing air to flow behind secretions and to assist in mobilising them.

To return to Mrs AH, it was ethical to introduce an airway clearance regimen independent of an assistant to give her the opportunity to take responsibility for her management, and one which had been shown to be more effective than that of postural drainage and percussion. The two regimens not only independent of an assistant but also independent of a device are the active cycle of breathing techniques and autogenic drainage. The therapist’s selection of one or other is probably influenced by their familiarity with the regimens.

For Mrs AH the active cycle of breathing techniques was chosen. The physiology behind the techniques of the active cycle of breathing was explained to Mrs AH. This included the loosening effect of the thoracic expansion exercises, utilising collateral ventilation to get the air in behind the mucus; the rest periods of breathing control; and the squeezing up of the excess bronchial secretions, from the choke points proximal to the equal pressure points, with huffing (the forced expiration technique (Pryor et al. 1979 A)). The techniques were practised with effect, initially in the sitting position and then in alternate side lying as the change in posture led to an increase in audible crackles from the airways. It was not long before Mrs AH developed an appreciation of how short or long a huff was required, dependent on the position of secretions within the airways, and a moderately copious amount of purulent secretions was expectorated. Mrs AH expressed her disappointment that she had not received any chest clapping and initially was not enthusiastic about continuing the regimen twice daily herself.

Self-chest clapping, in the stable clinical state, has not been shown to increase the expectoration of sputum (Webber et al. 1985 A). It could be argued that Mrs AH was not in a stable clinical state, but it was important to introduce a regimen which she could continue on her return to the Middle East and the introduction of
self-chest clapping was likely to increase the work involved and detract from effective huffing.

Mrs AH returned for reassessment the following week. She had conscientiously undertaken the airway clearance regimen twice a day. Her sputum had decreased in purulence and quantity and she said that she was feeling much better and had more energy. The improvement is likely to have been owing to the combination of the medical management and adherence to an effective self-airway clearance regimen.

Additional techniques which may increase airway clearance in people with bronchiectasis include the nebulisation of normal saline and hypertonic saline (Kellett et al. 2005 A), humidification (Conway et al. 1992 A) and adrenoceptor agonists (Sutton et al. 1988 A). These, used together with airway clearance techniques, may enhance mucus clearance. Dornase alfa has not been shown to be of benefit in non-cystic fibrosis bronchiectasis and may lead to a reduction in lung function (Wills et al. 1996 A). Oral mucolytics, combined with antibiotics, may help sputum production and clearance (Crockett et al. 2006 A).

QUESTION 2

What is the evidence for physical training in an adult with bronchiectasis?

The fatigue experienced by Mrs AH is a characteristic of chronic chest infection and is usually associated with a decrease in exercise capacity together with increasing breathlessness on exertion, leading to a vicious cycle of increasing inactivity. Bradley, Moran and Greenstone (2006 R), in their systematic review on physical training for bronchiectasis, identified only two reports suggesting some benefits from inspiratory muscle training on exercise capacity, quality of life and respiratory muscle function. They concluded that further research is needed to assess the benefits of other types of physical training and pulmonary rehabilitation in bronchiectasis.

Much of the research in pulmonary rehabilitation has been in people with chronic obstructive pulmonary disease but people with bronchiectasis whose quality of life has been reduced by chronic breathlessness may also benefit (British Thoracic Society Standards of Care Subcommittee 2001 A). Newall et al. (2005 A), in people with bronchiectasis, compared pulmonary rehabilitation plus sham inspiratory muscle training, pulmonary rehabilitation with targeted inspiratory muscle training, and a control group with no intervention. They concluded that exercise training (pulmonary rehabilitation) improved exercise capacity in this group of patients and that inspiratory muscle training conferred no additional benefit.

Access to a full pulmonary rehabilitation programme is not always available and the vicious cycle of increasing inactivity can be broken by the simple progressive stair climbing programme designed by McGavin et al. (1977 A) and modified by Webber for use on the flat (Pryor 2004 C; Webber 1980 C). As Mrs AH was to return to her own country, which was different from that in which she was receiving treatment, the McGavin programme on the stairs was selected. The programme encourages the patient to exercise to breathless, in a defined and short period of time (eight weeks), with the understanding that breathlessness in this context is uncomfortable but not harmful. In between this daily exercise, breathlessness on exertion can be lessened
by the introduction of breathing control (Rose 1999 A) to minimise the work of breathing. Positions which encourage the use of breathing control are said to be effective by altering the length tension status of the diaphragm, but the evidence is controversial (Gosselink et al. 1995 A) and it is important to assess and reassess the outcomes in the individual patient.

OUTCOME MEASUREMENTS

Outcome measurements for Case I could include: sputum volume or weight, sputum purulence (Miller 1963 C) (but sputum purulence is also likely to be affected by the antibiotic regimen), a field exercise test to measure exercise capacity (six-minute walking test (Butland et al. 1982 A) or shuttle walking test (Singh et al. 1992 A)) in association with a Borg scale (Borg 1982 A) of breathlessness and limb fatigue, and lung function.

CASE REPORT II

Mr SB, aged 30, presented with an irritating non-productive cough of 12 months, with each episode of coughing lasting for several minutes at a time, and being particularly troublesome at night on lying down. His partner had moved to a separate bedroom as she was unable to sleep with the persistent coughing. Stress, a change in air temperature and a change in posture could all precipitate bouts of coughing. Mr SB was a life-long non-smoker. There was no abnormality on his plain chest radiograph, and he had been given several courses of antibiotics and asthma management (British Thoracic Society & Scottish Intercollegiate Guidelines Network 2005), including inhaled sympathomimetic bronchodilators and inhaled corticosteroids, without effect. There was no evidence of a post-nasal drip or gastro-oesophageal reflux. He was finally referred to a specialist respiratory physician. High-resolution computed tomography revealed some changes in the right middle zone which just met the diagnostic criteria for bronchiectasis. His full lung function studies and gas transfer coefficient were all within the normal ranges. End capillary carbon dioxide was normal, and haematological and biochemical indices were normal with no immunoglobulin abnormality. His sputum culture was reported as ‘No significant bacterial growth’ and his chest was clear on auscultation, with normal breath sounds and no added sounds. The cause of his bronchiectasis was unknown, but may have been related to an episode of pneumonia in childhood. He was referred for physiotherapy.

QUESTION 1

Which is the evidence-based airway clearance regimen for an adult with bronchiectasis?

The literature search was as for Case I, but most of the subjects in the studies were expectorating sputum. Mr SB was not expectorating any sputum.
From previous clinical experience, the active cycle of breathing techniques was introduced with positioning for the right middle lobe. The first position was that of right side lying 1/4 turn from supine to increase ventilation to the right middle zone. Mr SB’s huff was initially dry sounding and non-productive, but with the breathing exercises it became moist sounding and Mr SB said that he could feel mucus coming up into the back of his throat, which he was aware of swallowing. The exercises were continued in left side lying 1/4 turn from supine with similar results. The treatment time was about 15 minutes shared between the two positions, twice daily, and each session concluded with one or two huffs combined with breathing control in the sitting position.

Two days later, Mr SB was no longer complaining of a cough. The ongoing programme was a short daily check, in the sitting position, using the active cycle of breathing techniques. In the presence of any audible crackles on huffing, Mr SB was to progress to the side lying positions and to increase the time for treatment. He was also to follow this regimen if he thought he was getting, or if he developed, a chest infection. An alternative airway clearance regimen to that of the active cycle of breathing techniques could have been used dependent on the therapist’s knowledge and expertise, and patient preference.

Using the forced expiration technique of the active cycle of breathing techniques, patients can be taught to recognise early crackles on huffing as a sign of excess mucus in the airways. The forced expiratory manoeuvre of huffing can be explained using the concept of the equal pressure point (West 1997 B). The equal pressure point (EPP) is the point where the pressure within the airway is equal to the pressure surrounding the airway. The airway downstream of the equal pressure point, towards the mouth, is compressed. This dynamic compression is an important mechanism which determines the efficacy of cough (Macklem 1974 B) and also applies to the forced expiratory manoeuvre of the huff. Proximal to the equal pressure point is the choke point (Dawson & Elliott 1977 B; Selsby & Jones 1990 C) and it is from this point, up towards the mouth, that there is a squeezing effect on the airway owing to the higher pressure outside the airway.

The positions of the equal pressure points are dependent on lung volume (West 1997 B). During normal tidal breathing and at a high lung volume, for example a spontaneous cough, the equal pressure points are said to be at the level of the carina or larger bronchi (Mead et al. 1967 B). As lung volume decreases, the equal pressure points move peripherally, allowing progressively deeper parts of the airways to be cleared. Without the need for a stethoscope, excess bronchial secretions produce audible coarse crackles during huffing. Crackles which occur with high lung volume huffing represent secretions in the larger proximal upper airways. If they occur with huffing at low lung volumes, secretions are likely to be in the smaller more peripheral airways and can be mobilised from bronchiectatic lung segments to non-bronchiectatic lung segments, where the normal mucociliary escalator should be effective in the cephalad movement of bronchial secretions.

Mr SB was not complaining of any increase in shortness of breath on exertion and was attending the gymnasium at his work place five days a week.
OUTCOME MEASUREMENTS

With computed tomography, bronchiectasis can be identified before the patient has developed a productive cough and the amount of sputum expectorated may not be an appropriate outcome measure for the effectiveness of treatment in these patients. Outcome measurements for Case II could include a visual analogue scale of cough or a valid and reliable cough-specific health-related quality of life instrument (Irwin et al. 2006 A).

COMMENT

The evidence and, in particular, systematic reviews alone are not yet able to answer many clinical questions in cardiorespiratory physiotherapy. The randomised controlled trial is not necessarily the best research methodology for clinical research questions in physiotherapy, but usually only research using the randomised controlled trial is considered for inclusion in systematic reviews. Recently the Cochrane Reviews have included the generic inverse variance method for meta-analysis of data from cross-over trials and data from parallel-designed trials, but even with these included the systematic review data for physiotherapy in bronchiectasis is limited.

Physiotherapy, rather than being ‘evidence-based practice’, should be ‘practice-based evidence’ (Lewis E (2004) Personal communication C), where the clinician generates the research questions for the researcher. This approach will lead more quickly to effective patient management and patient benefit. If the current approach to evidence-based practice, which has not itself been validated, is to continue, many physiotherapy techniques will be lost, not because they are ineffective but either because the randomised controlled trial has not been undertaken or because the right measurement tool has not been used or is not yet available. Future generations of physiotherapists must be very cautious in their interpretation of the evidence and take into consideration not only A grade evidence but also C grade evidence, of clinical experience and expertise.

REFERENCES