PROTOCOLS AND ARCHITECTURES FOR WIRELESS SENSOR NETWORKS

Holger Karl
University of Paderborn, GERMANY

Andreas Willig
Hasso-Plattner-Institute at the University of Potsdam, GERMANY
PROTOCOLS
AND ARCHITECTURES
FOR WIRELESS SENSOR
NETWORKS
PROTOCOLS AND ARCHITECTURES FOR WIRELESS SENSOR NETWORKS

Holger Karl
University of Paderborn, GERMANY

Andreas Willig
Hasso-Plattner-Institute at the University of Potsdam, GERMANY
Contents

Preface xiii
List of abbreviations xv
A guide to the book xxiii

1 Introduction 1
1.1 The vision of Ambient Intelligence 1
1.2 Application examples 3
1.3 Types of applications 6
1.4 Challenges for WSNs 7
 1.4.1 Characteristic requirements 7
 1.4.2 Required mechanisms 9
1.5 Why are sensor networks different? 10
 1.5.1 Mobile ad hoc networks and wireless sensor networks 10
 1.5.2 Fieldbuses and wireless sensor networks 12
1.6 Enabling technologies for wireless sensor networks 13

PART I ARCHITECTURES 15

2 Single-node architecture 17
2.1 Hardware components 18
 2.1.1 Sensor node hardware overview 18
 2.1.2 Controller 19
 2.1.3 Memory 21
 2.1.4 Communication device 21
 2.1.5 Sensors and actuators 31
 2.1.6 Power supply of sensor nodes 32
2.2 Energy consumption of sensor nodes 36
 2.2.1 Operation states with different power consumption 36
 2.2.2 Microcontroller energy consumption 38
 2.2.3 Memory 39
 2.2.4 Radio transceivers 40
2.2.5 Relationship between computation and communication 44
2.2.6 Power consumption of sensor and actuators 44

2.3 Operating systems and execution environments 45
2.3.1 Embedded operating systems 45
2.3.2 Programming paradigms and application programming interfaces 45
2.3.3 Structure of operating system and protocol stack 47
2.3.4 Dynamic energy and power management 48
2.3.5 Case Study: TinyOS and nesC 50
2.3.6 Other examples 53

2.4 Some examples of sensor nodes 54
2.4.1 The “Mica Mote” family 54
2.4.2 EYES nodes 54
2.4.3 BTnodes 54
2.4.4 Scatterweb 54
2.4.5 Commercial solutions 55

2.5 Conclusion 56

3 Network architecture 59

3.1 Sensor network scenarios 60
3.1.1 Types of sources and sinks 60
3.1.2 Single-hop versus multihop networks 60
3.1.3 Multiple sinks and sources 62
3.1.4 Three types of mobility 62

3.2 Optimization goals and figures of merit 63
3.2.1 Quality of service 64
3.2.2 Energy efficiency 65
3.2.3 Scalability 66
3.2.4 Robustness 67

3.3 Design principles for WSNs 67
3.3.1 Distributed organization 67
3.3.2 In-network processing 67
3.3.3 Adaptive fidelity and accuracy 70
3.3.4 Data centricity 70
3.3.5 Exploit location information 73
3.3.6 Exploit activity patterns 73
3.3.7 Exploit heterogeneity 73
3.3.8 Component-based protocol stacks and cross-layer optimization 74

3.4 Service interfaces of WSNs 74
3.4.1 Structuring application/protocol stack interfaces 74
3.4.2 Expressibility requirements for WSN service interfaces 76
3.4.3 Discussion 77

3.5 Gateway concepts 78
3.5.1 The need for gateways 78
3.5.2 WSN to Internet communication 79
3.5.3 Internet to WSN communication 80
3.5.4 WSN tunneling 81

3.6 Conclusion 81
PART II COMMUNICATION PROTOCOLS

4 Physical layer

4.1 Introduction 85
4.2 Wireless channel and communication fundamentals 86
 4.2.1 Frequency allocation 86
 4.2.2 Modulation and demodulation 88
 4.2.3 Wave propagation effects and noise 90
 4.2.4 Channel models 96
 4.2.5 Spread-spectrum communications 98
 4.2.6 Packet transmission and synchronization 100
 4.2.7 Quality of wireless channels and measures for improvement 102
4.3 Physical layer and transceiver design considerations in WSNs 103
 4.3.1 Energy usage profile 103
 4.3.2 Choice of modulation scheme 104
 4.3.3 Dynamic modulation scaling 108
 4.3.4 Antenna considerations 108
4.4 Further reading 109

5 MAC protocols 111

5.1 Fundamentals of (wireless) MAC protocols 112
 5.1.1 Requirements and design constraints for wireless MAC protocols 112
 5.1.2 Important classes of MAC protocols 114
 5.1.3 MAC protocols for wireless sensor networks 119
5.2 Low duty cycle protocols and wakeup concepts 120
 5.2.1 Sparse topology and energy management (STEM) 121
 5.2.2 S-MAC 123
 5.2.3 The mediation device protocol 126
 5.2.4 Wakeup radio concepts 127
 5.2.5 Further reading 128
5.3 Contention-based protocols 129
 5.3.1 CSMA protocols 129
 5.3.2 PAMAS 131
 5.3.3 Further solutions 132
5.4 Schedule-based protocols 133
 5.4.1 LEACH 133
 5.4.2 SMACS 135
 5.4.3 Traffic-adaptive medium access protocol (TRAMA) 137
 5.4.4 Further solutions 139
5.5 The IEEE 802.15.4 MAC protocol 139
 5.5.1 Network architecture and types/roles of nodes 140
 5.5.2 Superframe structure 141
 5.5.3 GTS management 141
 5.5.4 Data transfer procedures 142
 5.5.5 Slotted CSMA-CA protocol 142
 5.5.6 Nonbeaconed mode 144
 5.5.7 Further reading 145
5.6 How about IEEE 802.11 and bluetooth? 145
5.7 Further reading 146
5.8 Conclusion 148
9 Localization and positioning

9.1 Properties of localization and positioning procedures

9.2 Possible approaches
9.2.1 Proximity
9.2.2 Trilateration and triangulation
9.2.3 Scene analysis

9.3 Mathematical basics for the lateration problem
9.3.1 Solution with three anchors and correct distance values
9.3.2 Solving with distance errors

9.4 Single-hop localization
9.4.1 Active Badge
9.4.2 Active office
9.4.3 RADAR
9.4.4 Cricket
9.4.5 Overlapping connectivity
9.4.6 Approximate point in triangle
9.4.7 Using angle of arrival information

9.5 Positioning in multihop environments
9.5.1 Connectivity in a multihop network
9.5.2 Multihop range estimation
9.5.3 Iterative and collaborative multilateration
9.5.4 Probabilistic positioning description and propagation

9.6 Impact of anchor placement

9.7 Further reading

9.8 Conclusion

10 Topology control

10.1 Motivation and basic ideas
10.1.1 Options for topology control
10.1.2 Aspects of topology-control algorithms

10.2 Controlling topology in flat networks – Power control
10.2.1 Some complexity results
10.2.2 Are there magic numbers? – bounds on critical parameters
10.2.3 Some example constructions and protocols
10.2.4 Further reading on flat topology control

10.3 Hierarchical networks by dominating sets
10.3.1 Motivation and definition
10.3.2 A hardness result
10.3.3 Some ideas from centralized algorithms
10.3.4 Some distributed approximations
10.3.5 Further reading

10.4 Hierarchical networks by clustering
10.4.1 Definition of clusters 274
10.4.2 A basic idea to construct independent sets 277
10.4.3 A generalization and some performance insights 278
10.4.4 Connecting clusters 278
10.4.5 Rotating clusterheads 279
10.4.6 Some more algorithm examples 280
10.4.7 Multihop clusters 281
10.4.8 Multiple layers of clustering 283
10.4.9 Passive clustering 284
10.4.10 Further reading 284

10.5 Combining hierarchical topologies and power control 285
10.5.1 Pilot-based power control 285
10.5.2 Ad hoc Network Design Algorithm (ANDA) 285
10.5.3 CLUSTERPOW 286

10.6 Adaptive node activity 286
10.6.1 Geographic Adaptive Fidelity (GAF) 286
10.6.2 Adaptive Self-Configuring sEnsor Networks’ Topologies (ASCENT) 287
10.6.3 Turning off nodes on the basis of sensing coverage 288

10.7 Conclusions 288

11 Routing protocols 289
11.1 The many faces of forwarding and routing 289
11.1.2 Gossiping and agent-based unicast forwarding
11.2.1 Basic idea 292
11.2.2 Randomized forwarding 292
11.2.3 Random walks 293
11.2.4 Further reading 294

11.3 Energy-efficient unicast 295
11.3.1 Overview 295
11.3.2 Some example unicast protocols 297
11.3.3 Further reading 301
11.3.4 Multipath unicast routing 301
11.3.5 Further reading 304

11.4 Broadcast and multicast 305
11.4.1 Overview 305
11.4.2 Source-based tree protocols 308
11.4.3 Shared, core-based tree protocols 314
11.4.4 Mesh-based protocols 314
11.4.5 Further reading on broadcast and multicast 315

11.5 Geographic routing 316
11.5.1 Basics of position-based routing 316
11.5.2 Geocasting 323
11.5.3 Further reading on geographic routing 326

11.6 Mobile nodes 328
11.6.1 Mobile sinks 328
11.6.2 Mobile data collectors 328
11.6.3 Mobile regions 329

11.7 Conclusions 329
12 Data-centric and content-based networking 331

12.1 Introduction 331
12.1.1 The publish/subscribe interaction paradigm 331
12.1.2 Addressing data 332
12.1.3 Implementation options 333
12.1.4 Distribution versus gathering of data – In-network processing 334

12.2 Data-centric routing 335
12.2.1 One-shot interactions 335
12.2.2 Repeated interactions 337
12.2.3 Further reading 340

12.3 Data aggregation 341
12.3.1 Overview 341
12.3.2 A database interface to describe aggregation operations 342
12.3.3 Categories of aggregation operations 343
12.3.4 Placement of aggregation points 345
12.3.5 When to stop waiting for more data 345
12.3.6 Aggregation as an optimization problem 347
12.3.7 Broadcasting an aggregated value 347
12.3.8 Information-directed routing and aggregation 350
12.3.9 Some further examples 352
12.3.10 Further reading on data aggregation 355

12.4 Data-centric storage 355
12.5 Conclusions 357

13 Transport layer and quality of service 359

13.1 The transport layer and QoS in wireless sensor networks 359
13.1.1 Quality of service/reliability 360
13.1.2 Transport protocols 361

13.2 Coverage and deployment 362
13.2.1 Sensing models 362
13.2.2 Coverage measures 364
13.2.3 Uniform random deployments: Poisson point processes 365
13.2.4 Coverage of random deployments: Boolean sensing model 366
13.2.5 Coverage of random deployments: general sensing model 368
13.2.6 Coverage determination 369
13.2.7 Coverage of grid deployments 374
13.2.8 Further reading 375

13.3 Reliable data transport 376
13.3.1 Reliability requirements in sensor networks 377

13.4 Single packet delivery 378
13.4.1 Using a single path 379
13.4.2 Using multiple paths 384
13.4.3 Multiple receivers 388
13.4.4 Summary 389

13.5 Block delivery 389
13.5.1 PSFQ: block delivery in the sink-to-sensors case 389
13.5.2 RMST: block delivery in the sensors-to-sink case 395
13.5.3 What about TCP? 397
13.5.4 Further reading 399
13.6 Congestion control and rate control 400
 13.6.1 Congestion situations in sensor networks 400
 13.6.2 Mechanisms for congestion detection and handling 402
 13.6.3 Protocols with rate control 403
 13.6.4 The CODA congestion-control framework 408
 13.6.5 Further reading 411

14 Advanced application support 413
 14.1 Advanced in-network processing 413
 14.1.1 Going beyond mere aggregation of data 413
 14.1.2 Distributed signal processing 414
 14.1.3 Distributed source coding 416
 14.1.4 Network coding 420
 14.1.5 Further issues 421
 14.2 Security 422
 14.2.1 Fundamentals 422
 14.2.2 Security considerations in wireless sensor networks 423
 14.2.3 Denial-of-service attacks 423
 14.2.4 Further reading 425
 14.3 Application-specific support 425
 14.3.1 Target detection and tracking 426
 14.3.2 Contour/edge detection 429
 14.3.3 Field sampling 432

Bibliography 437

Index 481
Preface

Integrating simple processing, storage, sensing, and communication capabilities into small-scale, low-cost devices and joining them into so-called wireless sensor networks opens the door to a plethora of new applications – or so it is commonly believed. It is a struggle to find a business model that can turn the bright visions into a prosperous and actually useful undertaking. But this struggle can be won by applying creative ideas to the underlying technology, assuming that this technology and its abilities as well as shortcomings and limitations are properly understood. We have written this book in the hope of fostering this understanding.

Understanding (and presenting) this new type of networks is a formidable challenge. A key characteristic is the need to understand issues from many diverse areas, ranging from low-level aspects of hardware and radio communication to high-level concepts like databases or middleware and to the very applications themselves. Then, a joint optimization can be attempted, carefully tuning all system components, drawing upon knowledge from disciplines like electrical engineering, computer science and computer engineering, and mathematics. Such a complex optimization is necessary owing to the stringent resource restrictions – in particular, energy – by which these networks are constrained. As a consequence, a simple explanation along the lines of the ISO/OSI model or a similar layering model for communication networks fails. Nonetheless, we have attempted to guide the reader along the lines of such a model and tried to point out the points of interaction and interdependence between such different “layers”.

In structuring the material and in the writing process, our goal was to explain the main problems at hand and principles and essential ideas for their solution. We usually did not go into the details of each of (usually many) several solution options; however, we did provide the required references for the readers to embark on a journey to the sources on their own. Nor did we attempt to go into any detail regarding performance characteristics of any described solution. The difficulty here lies in presenting such results in a comparable way – it is next to impossible to find generally comparable performance results in scientific publications on the topic of wireless sensor networks. What is perhaps missing is a suite of benchmarking applications, with clearly delimited rules and assumptions (the use of a prevalent simulator is no substitute here). Tracking might be one such application, but it clearly is not the only important application class to which wireless sensor networks can be applied.

Often, a choice had to be made whether to include a given idea, paper, or concept. Given the limited space in such a textbook, we preferred originality or an unusual but promising approach over papers that present solid but more technical work, albeit this type of work can make the difference whether a particular scheme is practicable at all.

We also tried to avoid, and explicitly argue against, ossification but rather tried to keep and promote an open mind-set about what wireless sensor networks are and what their crucial research topics entail. We feel that this still relatively young and immature field is sometimes inappropriately narrowed down to a few catchwords – energy efficiency being the most prominent example – which,
although indubitably important, might prevent interesting ideas from forming and becoming publicly known. Here, we tried to give the benefit of the doubt and at least tried to include pointers and references to some “unusual” or odd approaches.

Nonetheless, we had to omit a considerable amount of material; areas like middleware, security, management, deployment, or modeling suffered heavily or were, in the end, entirely excluded. We also had to stop including new material at some point in time – at the rate of new publications appearing on this topic, this book would otherwise never be completed (if you feel that we have overlooked important work or misrepresented some aspects, we encourage you to contact us). We still hope that it can serve the reader as a first orientation in this young, vigorous, and fascinating research area. Visit the website accompanying this book, www.wiley.com/go/wnsn, for a growing repository of lecture slides on ad hoc and sensor networks.

Audience and Prerequisites

The book is mainly targeted at senior undergraduate or graduate-level students, at academic and industrial researchers working in the field, and also at engineers developing actual solutions for wireless sensor networks. We consider this book as a good basis to teach a class on wireless sensor networks (e.g. for a lecture corresponding to three European Credit Transfer System points).

This book is not intended as a first textbook on wireless networking. While we do try to introduce most of the required background, it will certainly be helpful for the reader to have some prior knowledge of wireless communication already; some first contact with mobile ad hoc networking can be beneficial to understand the differences but is not essential. We do, however, assume general networking knowledge as a given.

Moreover, in several parts of the book, some concepts and results from discrete mathematics are used. It will certainly be useful for the reader to have some prior idea regarding optimization problems, NP completeness, and similar topics.

Acknowledgments

We are indebted to numerous people who have helped us in understanding this research field and in writing this book. A prominent place and heartfelt thanks are owed to our colleagues at the Telecommunication Networks Group at the Technische Universität Berlin, especially Prof. Adam Wolisz, Vlado Handziski, Jan-Hinrich Hauer, Andreas Köpke, Martin Kubisch, and Günther Schäfer. Also, we are grateful to many colleagues with whom we had the pleasure and the privilege to discuss WSN research issues – colleagues from different research projects like the EU IST project EYES and the German federal funded project AVM deserve a special mention here. Robert Mitschke from the Hasso Plattner Institute did an excellent job in proofreading and criticizing an intermediate version of this book. The anonymous reviewers provided us with many useful comments. The help of our editors and the support team at Wiley – in particular, Birgit Gruber, Julie Ward and Joanna Tootill – was very valuable.

We also want to express our deep gratitude to all the researchers in the field who have made their results and publications easily available over the World Wide Web. Without this help, collecting the material discussed in the present book alone would have been too big a challenge to embark on.

And last, but most importantly, both of us are very deeply indebted to our families for bearing with us during the year of writing, grumbling, hoping, and working.

Berlin & Paderborn
April 2005
List of abbreviations

ABR Associativity-Based Routing
ACPI Advanced Configuration and Power Interface
ACQUIRE ACtive QUery forwarding In sensoR nEtworks
ADC Analog/Digital Converter
AIDA Application-Independent Data Aggregation
ANDA Ad hoc Network Design Algorithm
AODV Ad hoc On-demand Distance Vector
APIT Approximate Point in Triangle
API Application Programming Interface
ARQ Automatic Repeat Request
ASCENT Adaptive Self-Configuring sEnsor Networks Topologies
ASIC Application-Specific Integrated Circuit
ASK Amplitude Shift Keying
AVO Attribute Value Operation
AWGN Additive White Gaussian Noise
BCH Bose–Chaudhuri–Hocquenghem
BER Bit-Error Rate
BIP Broadcast Incremental Power
BPSK Binary Phase Shift Keying
BSC Binary Symmetric Channel
CADR Constrained Anisotropic Diffusion Routing
CAMP Core-Assisted Mesh Protocol
CAP Contention Access Period
CCA Clear Channel Assessment
CCK Complementary Code Keying
CDMA Code Division Multiple Access
CDS Connected Dominating Set
CGSR Clusterhead Gateway Switch Routing
CIR Carrier to Interference Ratio
CMMBCR Conditional Max–Min Battery Capacity Routing
CODA COngestion Detection and Avoidance
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSD Cumulative Sensing Degree
CSIP Collaborative Signal and Information Processing
CSMA Carrier Sense Multiple Access
CTS Clear To Send
DAC Digital/Analog Converter
DAD Duplicate Address Detection
DAG Directed Acyclic Graph
DAML DARPA Agent Markup Language
DBPSK Differential Binary Phase Shift Keying
DCF Distributed Coordination Function
DCS Data-Centric Storage
DCS Dynamic Code Scaling
DHT Distributed Hash Table
DISCUS Distributed Source Coding Using Syndromes
DLL Data Link Layer
DMCS Dynamic Modulation-Code Scaling
DMS Dynamic Modulation Scaling
DPM Dynamic Power Management
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQPSK</td>
<td>Differential Quaternary Phase Shift Keying</td>
</tr>
<tr>
<td>DREAM</td>
<td>Distance Routing Effect Algorithm for Mobility</td>
</tr>
<tr>
<td>DSDV</td>
<td>Destination-Sequenced Distance Vector</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>DSR</td>
<td>Dynamic Source Routing</td>
</tr>
<tr>
<td>DSSS</td>
<td>Direct Sequence Spread Spectrum</td>
</tr>
<tr>
<td>DVS</td>
<td>Dynamic Voltage Scaling</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>EHF</td>
<td>Extremely High Frequency</td>
</tr>
<tr>
<td>ESRT</td>
<td>Event-to-Sink Reliable Transport</td>
</tr>
<tr>
<td>FDMA</td>
<td>Frequency Division Multiple Access</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction</td>
</tr>
<tr>
<td>FFD</td>
<td>Full Function Device</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FHSS</td>
<td>Frequency Hopping Spread Spectrum</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In First Out</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field-Programmable Gate Array</td>
</tr>
<tr>
<td>FSK</td>
<td>Frequency Shift Keying</td>
</tr>
<tr>
<td>GAF</td>
<td>Geographic Adaptive Fidelity</td>
</tr>
<tr>
<td>GAMER</td>
<td>Geocast Adaptive Mesh Environment for Routing</td>
</tr>
<tr>
<td>GEAR</td>
<td>Geographic and Energy Aware Routing</td>
</tr>
<tr>
<td>GEM</td>
<td>Graph EMbedding</td>
</tr>
<tr>
<td>GHT</td>
<td>Geographic Hash Table</td>
</tr>
<tr>
<td>GOA-FR</td>
<td>Greedy and (Other Adaptive) Face Routing</td>
</tr>
<tr>
<td>GPSR</td>
<td>Greedy Perimeter Stateless Routing</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GRAB</td>
<td>GRAdient Broadcast</td>
</tr>
<tr>
<td>GTS</td>
<td>Guaranteed Time Slot</td>
</tr>
<tr>
<td>HHBA</td>
<td>Hop-by-Hop Broadcast with Acknowledgments</td>
</tr>
<tr>
<td>HHB</td>
<td>Hop-by-Hop Broadcast</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HHRA</td>
<td>Hop-by-Hop Reliability with Acknowledgments</td>
</tr>
<tr>
<td>HHR</td>
<td>Hop-by-Hop Reliability</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov Model</td>
</tr>
<tr>
<td>HVAC</td>
<td>Humidity, Ventilation, Air Conditioning</td>
</tr>
<tr>
<td>IDSQ</td>
<td>Information-Driven Sensor Querying</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IFS</td>
<td>InterFrame Space</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Frequency</td>
</tr>
<tr>
<td>ISI</td>
<td>InterSymbol Interference</td>
</tr>
<tr>
<td>ISM</td>
<td>Industrial, Scientific, and Medical</td>
</tr>
<tr>
<td>LAR</td>
<td>Location-Aided Routing</td>
</tr>
<tr>
<td>LBM</td>
<td>Location-Based Multicast</td>
</tr>
<tr>
<td>LEACH</td>
<td>Low-Energy Adaptive Clustering Hierarchy</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>LNA</td>
<td>Low Noise Amplifier</td>
</tr>
<tr>
<td>LOS</td>
<td>Line Of Sight</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
</tr>
<tr>
<td>MANET</td>
<td>Mobile Ad Hoc Network</td>
</tr>
<tr>
<td>MBCR</td>
<td>Minimum Battery Cost Routing</td>
</tr>
<tr>
<td>MCDS</td>
<td>Minimum Connected Dominating Set</td>
</tr>
<tr>
<td>MDS</td>
<td>Minimum Dominating Set</td>
</tr>
<tr>
<td>MDS</td>
<td>MultiDimensional Scaling</td>
</tr>
<tr>
<td>MEMS</td>
<td>MicroElectroMechanical System</td>
</tr>
<tr>
<td>MIP</td>
<td>Multicast Incremental Power</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimation</td>
</tr>
<tr>
<td>MMBCR</td>
<td>Min–Max Battery Cost Routing</td>
</tr>
<tr>
<td>MPDU</td>
<td>MAC-layer Protocol Data Unit</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Squared Error</td>
</tr>
<tr>
<td>MST</td>
<td>Minimum Spanning Tree</td>
</tr>
<tr>
<td>MTPR</td>
<td>Minimum Total Transmission Power Routing</td>
</tr>
</tbody>
</table>
MULE Mobile Ubiquitous LAN extension
MWIS Maximum Weight Independent Set
NAT Network Address Translation
NAV Network Allocation Vector
NLOS Non Line Of Sight
OOK On-Off-Keying
PAN Personal Area Network
PA Power Amplifier
PCF Point Coordination Function
PDA Personal Digital Assistant
PEGASIS Power-Efficient GAthering in Sensor Information Systems
PHY Physical Layer
PPDU Physical-layer Protocol Data Unit
PPM Pulse Position Modulation
PSD Power Spectral Density
PSFQ Pump Slowly Fetch Quickly
PSK Phase Shift Keying
PTAS Polynomial Time Approximation Scheme
QAM Quadrature Amplitude Modulation
QPSK Quaternary Phase Shift Keying
QoS Quality of Service
RAM Random Access Memory
RFD Reduced Function Device
RF ID Radio Frequency Identifier
RF Radio Frequency
RISC Reduced Instruction Set Computer
RMST Reliable Multisegment Transport
RNG Relative Neighborhood Graph
ROHC RObust Header Compression
ROM Read-Only Memory
RSSI Received Signal Strength Indicator
RS Reed–Solomon
RTS Request To Send
SAR Sequential Assignment Routing
SDMA Space Division Multiple Access
SFD Start Frame Delimiter
SINR Signal to Interference and Noise Ratio
SMACS Self-Organizing Medium Access Control for Sensor Networks
SNR Signal-to-Noise Ratio
SPIN Sensor Protocol for Information via Negotiation
SPT Shortest Path Tree
SQL Standard Query Language
SRM Scalable Reliable Multicast
SSR Signal Stability Routing
STEM Sparse Topology and Energy Management
TAG Tiny Aggregation
TBF Trajectory-Based Forwarding
TCP Transmission Control Protocol
TDMA Time Division Multiple Access
TDoA Time Difference of Arrival
TORA Temporally Ordered Routing Algorithm
TRAMA Traffic-Adaptive Medium Access
TTDD Two-Tier Data Dissemination
TTL Time To Live
ToA Time of Arrival
UML Unified Modeling Language
UTM Universal Transverse Mercator
UWB UltraWideBand
VCO Voltage-Controlled Oscillator
VLF Very Low Frequency
VOR VHF Omnidirectional Ranging
VPCR Virtual Polar Coordinate Routing
VPCS Virtual Polar Coordinate Space
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
WRP Wireless Routing Protocol
WSDL Web Service Description Language
WSN Wireless Sensor Network
A guide to the book

The design and optimization of a wireless sensor network draws on knowledge and understanding of many different areas: properties of the radio front end determine what type of MAC protocols can be used, the type of application limits the options for routing protocols, and battery self-recharge characteristics influence sleeping patterns of a node. A book, on the other hand, is a linear entity. We are therefore forced to find a consecutive form of presenting an inherently nonconsecutive, but densely interwoven, topic.

To overcome this problem, we structured the book in two parts (Figure 1). The three chapters of the first part give a high-level overview of applications and problems, of hardware properties, and of the essential networking architecture. These first three chapters build a foundation upon which we build a detailed treatment of individual communication protocols in the second part of the book.

This second part is loosely oriented along the lines of the standard ISO/OSI layering model but, of course, focuses on algorithms and protocols relevant to wireless sensor networks. We start out by looking at the protocols needed between two neighboring nodes in the physical, link, and medium access layers. Then, a discussion about names and addresses in a wireless sensor network follows. The next three chapters – time synchronization, localization and positioning, and topology control – describe functionality that is important for the correct or efficient operation of a sensor network but that is not directly involved in the exchange of packets between neighboring nodes. In a sense, these are “helper protocols”.

On the basis of this understanding of communication between neighbors and on essential helper functionality, the following three chapters treat networking functionality regarding routing protocols in various forms, transport layer functionality, and an appropriate notion of quality of service. The book is complemented by a final chapter on advanced application support. For extra learning materials in the form of lecture slides, go to the accompanying website, www.wiley.com/go/wsn, which is gradually being populated.

A Full Course

Selecting the material for a full course from this book should be relatively easy. Essentially, all topics should be covered, more or less in depth, using a variable number of the example protocols discussed in the book.

A Reduced Course

If time does not permit covering of all the topics, a selection has to be made. We consider the following material rather important and recommend to cover it, if at all possible.
Chapter 1: Introduction Completely.

Chapter 2: Single node architecture Treat at least Sections 2.1 and 2.2 to some level of detail. Section 2.3 on operating systems can be covered relatively briefly (depending on the focus of the course, this might not be very important material).

Chapter 3: Network architecture Cover Sections 3.1 to 3.3. The sections on service interface and gateways can be omitted for a first reading.

Chapter 4: Physical layer Depending on previous knowledge, this chapter can be skipped entirely. If possible, Section 4.3 should, however, be covered.

Chapter 5: MAC protocols An important chapter that should be covered, if possible, in its entirety. If time is short, some examples for each of different protocol classes can be curtailed.

Chapter 6: Link layer protocols Any of the three Sections 6.2, 6.3, or 6.4 can be selected for a more detailed treatment.

Chapter 7: Naming and addressing This chapter should be treated fairly extensively. Sections 7.3 and 7.4 can be omitted.

Chapter 8: Time synchronization This chapter can be skipped.

Chapter 9: Localization and positioning This chapter can be skipped.

Chapter 10: Topology control While this chapter can, in principle, be skipped as well, some of the basic ideas should be covered even in a condensed course. We would suggest to cover Section 10.1 and a single example from Sections 10.2 to 10.6 each.
Chapter 11: **Routing protocols** An important chapter. Sections 11.2 and 11.6 may be omitted.\(^1\)

Chapter 12: **Data-centric and content-based networking** Quite important and characteristic for wireless sensor networks. Should receive extensive treatment in a lecture.

Chapter 13: **Transport layer and Quality of Service** This chapter also should be treated extensively.

Chapter 14: **Advanced application support** Much of this chapter can be skipped, but a few examples from Section 14.3 should make a nice conclusion for a lecture.

Evidently, the amount of detail and the focus of a lecture can be controlled by the number of examples discussed in class. It is probably infeasible to discuss the entire book in a lecture.

\(^1\) We would like to make the reader aware of the Steiner tree problem described in Section 11.4.2. It did surprise us in preparing this book how often this problem has been "rediscovered" in the sensor network literature, often without recognizing it for what it is.
Introduction

Objectives of this Chapter

Applications should shape and form the technology for which they are intended. This holds true in particular for wireless sensor networks, which have, to some degree, been a technology-driven development. This chapter starts out by putting the idea of wireless sensor networks into a broader perspective and gives a number of application scenarios, which will later be used to motivate particular technical needs. It also generalizes from specific examples to types or classes of applications. Then, the specific challenges for these application types are discussed and why current technology is not up to meeting these challenges.

At the end of this chapter, the reader should have an appreciation for the types of applications for which wireless sensor networks are intended and a first intuition about the types of technical solutions that are required, both in hardware and in networking technologies.

Chapter Outline

1.1 The vision of Ambient Intelligence 1
1.2 Application examples 3
1.3 Types of applications 6
1.4 Challenges for WSNs 7
1.5 Why are sensor networks different? 10
1.6 Enabling technologies for wireless sensor networks 13

1.1 The vision of Ambient Intelligence

The most common form of information processing has happened on large, general-purpose computational devices, ranging from old-fashioned mainframes to modern laptops or palmtops. In many applications, like office applications, these computational devices are mostly used to process information that is at its core centered around a human user of a system, but is at best indirectly related to the physical environment.
In another class of applications, the physical environment is at the focus of attention. Computation is used to exert control over physical processes, for example, when controlling chemical processes in a factory for correct temperature and pressure. Here, the computation is integrated with the control; it is embedded into a physical system. Unlike the former class of systems, such embedded systems are usually not based on human interaction but are rather required to work without it; they are intimately tied to their control task in the context of a larger system.

Such embedded systems are a well-known and long-used concept in the engineering sciences (in fact, estimates say that up to 98% of all computing devices are used in an embedded context [91]). Their impact on everyday life is also continuing to grow at a quick pace. Rare is the household where embedded computation is not present to control a washing machine, a video player, or a cell phone. In such applications, embedded systems meet human-interaction-based systems.

Technological progress is about to take this spreading of embedded control in our daily lives a step further. There is a tendency not only to equip larger objects like a washing machine with embedded computation and control, but also smaller, even dispensable goods like groceries; in addition, living and working spaces themselves can be endowed with such capabilities. Eventually, computation will surround us in our daily lives, realizing a vision of “Ambient Intelligence” where many different devices will gather and process information from many different sources to both control physical processes and to interact with human users. These technologies should be unobtrusive and be taken for granted – Marc Weiser, rightfully called the father of ubiquitous computing, called them disappearing technologies [867, 868]. By integrating computation and control in our physical environment, the well-known interaction paradigms of person-to-person, person-to-machine and machine-to-machine can be supplemented, in the end, by a notion of person-to-physical world [783]; the interaction with the physical world becomes more important than mere symbolic data manipulation [126].

To realize this vision, a crucial aspect is needed in addition to computation and control: communication. All these sources of information have to be able to transfer the information to the place where it is needed – an actuator or a user – and they should collaborate in providing as precise a picture of the real world as is required. For some application scenarios, such networks of sensors and actuators are easily built using existing, wired networking technologies. For many other application types, however, the need to wire together all these entities constitutes a considerable obstacle to success: Wiring is expensive (figures of up to US$200 per sensor can be found in the literature [667]), in particular, given the large number of devices that is imaginable in our environment; wires constitute a maintenance problem; wires prevent entities from being mobile; and wires can prevent sensors or actuators from being close to the phenomenon that they are supposed to control. Hence, wireless communication between such devices is, in many application scenarios, an inevitable requirement.

Therefore, a new class of networks has appeared in the last few years: the so-called Wireless Sensor Network (WSN) (see e.g. [17, 648]). These networks consist of individual nodes that are able to interact with their environment by sensing or controlling physical parameters; these nodes have to collaborate to fulfill their tasks as, usually, a single node is incapable of doing so; and they use wireless communication to enable this collaboration. In essence, the nodes without such a network contain at least some computation, wireless communication, and sensing or control functionalities. Despite the fact that these networks also often include actuators, the term wireless sensor network has become the commonly accepted name. Sometimes, other names like “wireless sensor and actuator networks” are also found.

These WSNs are powerful in that they are amenable to support a lot of very different real-world applications; they are also a challenging research and engineering problem because of this very flexibility. Accordingly, there is no single set of requirements that clearly classifies all WSNs, and there is also not a single technical solution that encompasses the entire design space. For example, in many WSN applications, individual nodes in the network cannot easily be connected to a wired power supply but rather have to rely on onboard batteries. In such an application, the energy