Fuzzy Systems Engineering
Toward Human-Centric Computing

Witold Pedrycz
Department of Electrical & Computer Engineering
University of Alberta, Edmonton, Canada
and
Systems Research Institute,
Polish Academy of Sciences Warsaw, Poland

Fernando Gomide
Faculty of Electrical & Computer Engineering
Department of Computer Engineering & Automation
State University of Campinas, Campinas, Brazil

IEEE PRESS

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION
Fuzzy Systems Engineering
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
Fuzzy Systems Engineering
Toward Human-Centric Computing

Witold Pedrycz
Department of Electrical & Computer Engineering
University of Alberta, Edmonton, Canada
and
Systems Research Institute,
Polish Academy of Sciences Warsaw, Poland

Fernando Gomide
Faculty of Electrical & Computer Engineering
Department of Computer Engineering & Automation
State University of Campinas, Campinas, Brazil

IEEE PRESS
To Ewa, Thais, Adam, Tiago, Barbara, Flavia, Arthur, Ari, and Maria de Lourdes
Contents

Preface

xvii

1 Introduction

1. Digital communities and a fundamental quest for human-centric systems 1
2. A historical overview: towards a non-Aristotelian perspective of the world 3
3. Granular computing 5
 - 1.3.1 Sets and interval analysis 7
 - 1.3.2 The role of fuzzy sets: a perspective of information granules 8
 - 1.3.3 Rough sets 13
 - 1.3.4 Shadowed sets 15
4. Quantifying information granularity: generality versus specificity 16
5. Computational intelligence 16
6. Granular computing and computational intelligence 17
7. Conclusions 18
8. Exercises and problems 19
9. Historical notes 20
10. References 25

2 Notions and Concepts of Fuzzy Sets

2.1 Sets and fuzzy sets: a departure from the principle of dichotomy 27
2.2 Interpretation of fuzzy sets 31
2.3 Membership functions and their motivation 33
 - 2.3.1 Triangular membership functions 34
 - 2.3.2 Trapezoidal membership functions 35
 - 2.3.3 Γ-membership functions 36
 - 2.3.4 S-membership functions 36
 - 2.3.5 Gaussian membership functions 37
 - 2.3.6 Exponential-like membership functions 37
2.4 Fuzzy numbers and intervals 39
2.5 Linguistic variables 40
2.6 Conclusions 42
3 Characterization of Fuzzy Sets

3.1 A generic characterization of fuzzy sets: some fundamental descriptors 45
 3.1.1 Normality 46
 3.1.2 Normalization 46
 3.1.3 Support 47
 3.1.4 Core 47
 3.1.5 α-Cut 47
 3.1.6 Convexity 48
 3.1.7 Cardinality 49

3.2 Equality and inclusion relationships in fuzzy sets 50
 3.2.1 Equality 50
 3.2.2 Inclusion 50

3.3 Energy and entropy measures of fuzziness 52
 3.3.1 Energy measure of fuzziness 52
 3.3.2 Entropy measure of fuzziness 54

3.4 Specificity of fuzzy sets 54
3.5 Geometric interpretation of sets and fuzzy sets 56
3.6 Granulation of information 57
3.7 Characterization of the families of fuzzy sets 59
 3.7.1 Frame of cognition 59
 3.7.2 Coverage 59
 3.7.3 Semantic soundness 60
 3.7.4 Main characteristics of the frames of cognition 61

3.8 Fuzzy sets, sets and the representation theorem 62
3.9 Conclusions 64

4 The Design of Fuzzy Sets 67

4.1 Semantics of fuzzy sets: some general observations 67
4.2 Fuzzy set as a descriptor of feasible solutions 69
4.3 Fuzzy set as a descriptor of the notion of typicality 71
4.4 Membership functions in the visualization of preferences of solutions 72
4.5 Nonlinear transformation of fuzzy sets 73
4.6 Vertical and horizontal schemes of membership estimation 76
4.7 Saaty's priority method of pairwise membership function estimation 78
4.8 Fuzzy sets as granular representatives of numeric data 81
4.9 From numeric data to fuzzy sets 86
4.10 Fuzzy equalization 93
4.11 Linguistic approximation 95
4.12 Design guidelines for the construction of fuzzy sets 95
4.13 Conclusions 97
 Exercises and problems 97
 Historical notes 99
 References 99

5 Operations and Aggregations of Fuzzy Sets 101
5.1 Standard operations on sets and fuzzy sets 101
5.2 Generic requirements for operations on fuzzy sets 105
5.3 Triangular norms 105
 5.3.1 Defining t-norms 105
 5.3.2 Constructors of t-norms 108
5.4 Triangular conorms 112
 5.4.1 Defining t-conorms 112
 5.4.2 Constructors of t-conorms 115
5.5 Triangular norms as a general category of logical operators 118
5.6 Aggregation operations 120
 5.6.1 Averaging operations 121
 5.6.2 Ordered weighted averaging operations 123
 5.6.3 Uninorms and nullnorms 123
 5.6.4 Symmetric sums 128
 5.6.5 Compensatory operations 129
5.7 Fuzzy measure and integral 130
5.8 Negations 134
5.9 Conclusions 135
 Historical notes 135
 Exercises and problems 136
 References 137

6 Fuzzy Relations 139
6.1 The concept of relations 139
6.2 Fuzzy relations 141
6.3 Properties of the fuzzy relations 142

6.3.1 Domain and codomain of fuzzy relations 142
6.3.2 Representation of fuzzy relations 143
6.3.3 Equality of fuzzy relations 143
6.3.4 Inclusion of fuzzy relations 143

6.4 Operations on fuzzy relations 143

6.4.1 Union of fuzzy relations 144
6.4.2 Intersection of fuzzy relations 144
6.4.3 Complement of fuzzy relations 144
6.4.4 Transpose of fuzzy relations 144

6.5 Cartesian product, projections, and cylindrical extension of fuzzy sets 145

6.5.1 Cartesian product 145
6.5.2 Projection of fuzzy relations 145
6.5.3 Cylindrical extension 146

6.6 Reconstruction of fuzzy relations 149

6.7 Binary fuzzy relations 150

6.7.1 Transitive closure 152
6.7.2 Equivalence and similarity relations 153
6.7.3 Compatibility and proximity relations 155

6.8 Conclusions 155

Exercises and problems 155
Historical notes 156
References 156

7 Transformations of Fuzzy Sets 157

7.1 The extension principle 157

7.2 Compositions of fuzzy relations 161

7.2.1 Sup-t composition 162
7.2.2 Inf-s composition 165
7.2.3 Inf-φ composition 167

7.3 Fuzzy relational equations 168

7.3.1 Solutions to the estimation problem 170
7.3.2 Fuzzy relational system 172
7.3.3 Relation-relation fuzzy equations 172
7.3.4 Multi-input, single-output fuzzy relational equations 173
7.3.5 Solution of the estimation problem for equations with inf-s composition 174
7.3.6 Solution of the inverse problem 175
7.3.7 Relation-relation fuzzy equations 176
7.3.8 Multi-input, single-output fuzzy relational equations 177
7.3.9 Solvability conditions for maximal solutions 178

7.4 Associative memories 179
7.4.1 Sup-t fuzzy associative memories 179
7.4.2 Inf-s fuzzy associative memories 181

7.5 Fuzzy numbers and fuzzy arithmetic 181
7.5.1 Algebraic operations on fuzzy numbers 181
7.5.2 Computing with fuzzy numbers 183
7.5.3 Interval arithmetic and \(\alpha \)-cuts 183
7.5.4 Fuzzy arithmetic and the extension principle 185
7.5.5 Computing with triangular fuzzy numbers 187

7.6 Conclusions 191
Exercises and problems 191
Historical notes 192
References 193

8 Generalizations and Extensions of Fuzzy Sets 195
8.1 Fuzzy sets of higher order 195
8.2 Rough fuzzy sets and fuzzy rough sets 197
8.3 Interval-valued fuzzy sets 200
8.4 Type-2 fuzzy sets 201
8.5 Shadowed sets as a three-valued logic characterization of fuzzy sets 204
8.5.1 Defining shadowed sets 204
8.5.2 The development of shadowed sets 206
8.6 Probability and fuzzy sets 211
8.7 Probability of fuzzy events 213
8.8 Conclusions 216
Exercises and problems 217
Historical notes 218
References 218

9 Interoperability Aspects of Fuzzy Sets 220
9.1 Fuzzy set and its family of \(\alpha \)-cuts 220
9.2 Fuzzy sets and their interfacing with the external world 226
9.2.1 Encoding mechanisms 228
9.2.2 Decoding mechanisms 229
9.3 Encoding and decoding as an optimization problem of vector quantization 231
 9.3.1 Fuzzy scalar quantization 231
 9.3.2 Forming the mechanisms of the fuzzy quantization: beyond a winner-takes-all scheme 234
 9.3.3 Coding and decoding with the use of fuzzy codebooks 235

9.4 Decoding of a fuzzy set through a family of fuzzy sets 238
 9.4.1 Possibility and necessity measures in the encoding of fuzzy data 238
 9.4.2 The design of the decoder of fuzzy data 240

9.5 Taxonomy of data in structure description with shadowed sets 242
 9.5.1 Core data structure 244
 9.5.2 Shadowed data structure 244
 9.5.3 Uncertain data structure 244

9.6 Conclusions 248

Exercises and problems 248
Historical notes 249
References 250

10 Fuzzy Modeling: Principles and Methodology 252

10.1 The architectural blueprint of fuzzy models 252
10.2 Key phases of the development and use of fuzzy models 254
10.3 Main categories of fuzzy models: an overview 256
 10.3.1 Tabular fuzzy models 256
 10.3.2 Rule-based systems 257
 10.3.3 Fuzzy relational models and associative memories 258
 10.3.4 Fuzzy decision trees 260
 10.3.5 Fuzzy neural networks 260
 10.3.6 Network of fuzzy processing units 261

10.4 Verification and validation of fuzzy models 265
 10.4.1 Verification of fuzzy models 265
 10.4.2 Training, validation, and testing data in the development of fuzzy models 268
 10.4.3 Validation of fuzzy models 269

10.5 Conclusions 270

Exercises and Problems 271
11 Rule-Based Fuzzy Models 276

11.1 Fuzzy rules as a vehicle of knowledge representation 276

11.2 General categories of fuzzy rules and their semantics 277

11.2.1 Certainty-qualified rules 278
11.2.2 Gradual rules 278
11.2.3 Functional fuzzy rules 278

11.3 Syntax of fuzzy rules 279

11.4 Basic functional modules: rule base, database, and inference scheme 280

11.4.1 Input interface 281
11.4.2 Rule base 283
11.4.3 Main types of rule bases 290
11.4.4 Data base 297
11.4.5 Fuzzy inference 298

11.5 Types of rule-based systems and architectures 302

11.5.1 Linguistic fuzzy models 303
11.5.2 Functional (local) fuzzy models 312
11.5.3 Gradual fuzzy models 316

11.6 Approximation properties of fuzzy rule-based models 318

11.7 Development of rule-based systems 318

11.7.1 Expert-based development 319
11.7.2 Data-driven development 320

11.8 Parameter estimation procedure for functional rule-based systems 324

11.9 Design issues of rule-based systems – consistency, completeness, and the curse of dimensionality 326

11.9.1 Completeness of rules 327
11.9.2 Consistency of rules 327

11.10 The curse of dimensionality in rule-based systems 330

11.11 Development scheme of fuzzy rule-based models 330

11.12 Conclusions 331

Exercises and problems 331

Historical notes 331
References 333
12 From Logic Expressions to Fuzzy Logic Networks 335

12.1 Introduction 335

12.2 Main categories of fuzzy neurons 337
 12.2.1 Aggregative neurons 337
 12.2.2 Referential (reference) neurons 342

12.3 Uninorm-based fuzzy neurons 345
 12.3.1 Main classes of unineurons 345
 12.3.2 Properties and characteristics of the unineurons 347

12.4 Architectures of logic networks 349
 12.4.1 Logic processor in the processing of fuzzy logic functions: a canonical realization 351
 12.4.2 Fuzzy neural networks with feedback loops 353

12.5 The development mechanisms of the fuzzy neural networks 354
 12.5.1 The key design phases 355
 12.5.2 Gradient-based learning schemes for the networks 356

12.6 Interpretation of the fuzzy neural networks 360
 12.6.1 Retention of the most significant connections 361
 12.6.2 Conversion of the fuzzy network to the Boolean version 362

12.7 From fuzzy logic networks to Boolean functions and their minimization through learning 365

12.8 Interfacing the fuzzy neural network 366

12.9 Interpretation aspects—a refinement of induced rule-based system 367

12.10 Reconciliation of perception of information granules and granular mappings 371
 12.10.1 Reconciliation of perception of information granule 371
 12.10.2 The optimization process 372
 12.10.3 An application of the perception mechanism to fuzzy rule-based systems 374
 12.10.4 Reconciliation of granular mappings 374

12.11 Conclusions 378

Exercises and problems 379
Historical notes 381
References 382
13 Fuzzy Systems and Computational Intelligence 383

13.1 Computational intelligence 384
13.2 Recurrent neurofuzzy systems 386
 13.2.1 Recurrent neural fuzzy network model 386
 13.2.2 Learning algorithm 389
13.3 Genetic fuzzy systems 394
13.4 Coevolutionary hierarchical genetic fuzzy system 396
13.5 Hierarchical collaborative relations 398
 13.5.1 Fitness evaluation 400
 13.5.2 Pruning algorithm 401
13.6 Evolving fuzzy systems 407
 13.6.1 Functional fuzzy model 408
 13.6.2 Evolving participatory learning algorithm 409
13.7 Conclusions 415

Exercises and problems 415
Historical notes 416
References 417

14 Granular Models and Human-Centric Computing 419

14.1 The cluster-based representation of the input–output mappings 420
14.2 Context-based clustering in the development of granular models 423
14.3 Granular neuron as a generic processing element in granular networks 427
14.4 Architecture of granular models based on conditional fuzzy clustering 429
14.5 Refinements of granular models 431
 14.5.1 Bias of granular neurons 431
 14.5.2 Refinement of the contexts 432
14.6 Incremental granular models 433
 14.6.1 The principle of incremental fuzzy model and its design and architecture 434
14.7 Human-centric fuzzy clustering 439
 14.7.1 Fuzzy clustering with partial supervision 440
 14.7.2 The development of the human-centric clusters 443
 14.7.3 Proximity-based fuzzy clustering 446
 14.7.4 Interaction aspects of sources of information in the P-FCM 449
Contents

14.8 Participatory Learning in fuzzy clustering	450
14.9 Conclusions	457
Exercises and problems	458
Historical notes	459
References	459

15 Emerging Trends in Fuzzy Systems

15.1 Relational ontology in information retrieval | 461 |
15.1.1 Fuzzy relational ontological model | 462 |
15.1.2 Information retrieval model and structure | 463 |
15.1.3 Documents representation | 463 |
15.1.4 Query representation | 464 |
15.1.5 Information retrieval with relational ontological model | 464 |

15.2 Multiagent fuzzy systems | 469 |
15.2.1 Agents and multiagents | 469 |
15.2.2 Electricity market | 470 |
15.2.3 Genetic fuzzy system | 473 |

15.3 Distributed fuzzy control | 482 |
15.3.1 Resource allocation | 482 |
15.3.2 Control systems and economy | 483 |
15.3.3 Fuzzy market-based control | 484 |

15.4 Conclusions | 490 |
Exercises and problems | 491 |
Historical notes | 491 |
References | 491 |

APPENDIX A Mathematical Prerequisites | 494 |

APPENDIX B Neurocomputing | 502 |

APPENDIX C Biologically Inspired Optimization | 513 |

Index | 525 |
Preface

Over 40 years have already passed since the inception of fuzzy sets. During this period we have witnessed a truly impressive wealth of theoretical developments and conceptual pursuits, emergence of novel methodologies, algorithmic environments, and a variety of applications. Contemporary technologies in the areas such as information storage and retrieval, web search, image processing and understanding, control, pattern recognition, bioinformatics and computational biology, e-markets, autonomous navigation, and guidance have benefited considerably from the developments in fuzzy sets. What becomes equally important is that we have accumulated a body of knowledge, developed sound design practices, and gained a comprehensive insight into the role of the technology of fuzzy sets in system design and analysis.

With the existing affluence and apparent diversity of the landscape of intelligent systems, fuzzy sets exhibit an important and unique position by forming a unified framework supporting various facets of human-centric computing. Given the current trends in the information technology, it becomes apparent that the increasing level of intelligence, autonomy, and required flexibility comes hand in hand with the increased human centricity of resulting systems. This manifests at the end level when the delivered systems are expected to exhibit flexibility, significant communication abilities, user awareness, and a substantial level of adaptive behavior.

The human-centric facet of processing (or human centricity, briefly) supported by the use of fuzzy sets is concerned with (a) user-friendly nature of the resulting systems (manifesting though a high level of context awareness, realization of relevance feedback, etc.), (b) forming a sound trade-off between accuracy and transparency (interpretability), and (c) incorporation of designer-friendly mechanisms of system development facilitating an efficient aggregation of various sources of available information being present at several quite different levels of abstraction (say, a highly seamless integration of domain knowledge and numeric experimental data).

LEITMOTIV

The fundamental objective of this book is to offer a comprehensive, systematic, fully updated, and self-contained treatise of fuzzy sets that will be of vital interest to a broad audience of students, researchers, and practitioners. Our ultimate goal is to offer solid conceptual fundamentals, a carefully selected collection of design methodologies, a wealth of development guidelines, and pertinent, carefully selected illustrative material. The book constitutes a departure from the conventional approach to fuzzy systems engineering used to date. We explicitly cover concepts, design methodologies, and algorithms inherently coupled with interpretation,
analysis, and underlying engineering knowledge. This holistic view of the discipline is helpful in stressing the role of fuzzy sets as a fundamental component of computational intelligence (CI) and human-centric systems.

FOCAL POINTS

There are several focal points that make this book highly unique and relevant from the perspective of the key fundamentals and practice of fuzzy sets

- **Systematic exposure of the concepts, design methodology, and detailed algorithms:** Overall, we adhere to the top-down strategy starting with the concepts and motivating arguments and afterward proceeding with the detailed design that materializes in some specific algorithms.

- **A wealth of illustrative material:** All concepts covered are illustrated with a series of small, numeric examples to make the material more readable, motivating, and appealing.

- **Self-containment of the material:** No specific prerequisites are required (standard calculus, linear algebra, probability, and logic are deemed to be fully sufficient).

- **More advanced concepts explained in great detail and augmented by pertinent illustrative material:** Appendices offer a concise and focused coverage of the subjects of neural networks and biologically inspired optimization.

- **Down-to-earth exposure of the material:** Although we maintain a required level of formalism and necessary mathematical rigor, our ultimate goal is to present the material in the way it emphasizes its applied side so that the reader becomes fully aware of direct applicability and limitations of the presented concepts, algorithms, and modeling techniques.

- **Auxiliary editorial features:** Historical and bibliographical notes included in each chapter help the reader view the developments of fuzzy sets in a broader perspective. Each chapter comes with a suite of well-balanced exercises and problems.

CHAPTER SUMMARY

The following offers a concise summary of the topics covered in each chapter and underlines the essential aspects of each of them.

In Chapter 1—**Introduction**—we introduce the reader to the subject, highlight several motivating factors, elaborate on the origin of fuzzy sets, and cast them in a certain historical perspective. Similarly, it is shown what role fuzzy sets play vis-à-vis existing technologies. This discussion helps emphasize the enabling role of the technology of fuzzy sets as well as highlight its key role in human-centric systems when addressing the acute and widely spread problem of the semantic gap. Fuzzy sets are also linked to the ideas of granular computing treated as a generalized conceptual
and algorithmic environment. The fundamental areas of Artificial Intelligence and CI are concisely discussed and contrasted in the context of the development of intelligent systems. Some illustrative examples and case studies are covered.

Chapter 2—*Notions and Concepts of Fuzzy Sets*—serves as a coherent and systematic introduction of the fundamental concept of a fuzzy set with focus on the ideas of partial membership conveyed by membership functions, underlying rationale, examples, and most commonly encountered categories (classes) of membership functions. The ideas of fuzzy quantities and numbers are also introduced.

In Chapter 3—*Characterization of Fuzzy Sets*—major properties of membership functions are studied along with their interpretation. Discussed are geometric features of fuzzy sets to help underline the differences between sets and fuzzy sets in terms of operations defined therein, and in the sequel some global characterization of fuzzy sets (expressed through energy, granularity, etc.) is offered. The properties of families of fuzzy sets defined in the same space are presented. We emphasize here the semantics of information granules represented as fuzzy sets.

Chapter 4—*The Design of Fuzzy Sets*—elaborates on the development of fuzzy sets (membership functions) by emphasizing their syntax and semantics and linking those concepts with the user- and data-driven mechanisms of elicitation of membership functions. Some typical mechanisms supporting the construction of fuzzy sets are presented and contrasted. A great deal of attention is paid to fuzzy clustering that is regarded as one of the dominant technologies of information granulation.

In Chapter 5—*Operations and Aggregations of Fuzzy Sets*—we are concerned with operations (union, intersection, complement) on fuzzy sets. The presentation addresses the issues of formal requirements, interpretations, and realizations and possible parametric adjustments. Covered are triangular norms (t-norms and t-conorms) along with their conceptual and computing refinements such as, for example, ordinal sums, uninorms, and nullnorms.Outlined are the aspects of semantics conveyed by such logic operators and their possible parametric refinements invoked by available experimental data.

The predominant concept presented in Chapter 6—*Fuzzy Relations*—is relations. Fuzzy relations are fundamental concepts expanding the idea of fuzzy sets to a multivariable case. The very concept is introduced and illustrated. The closely linked ideas of Cartesian products, projections, and cylindric extensions of fuzzy relations are discussed.

In Chapter 7—*Transformations of Fuzzy Sets*—we introduce an idea of mappings of fuzzy sets between spaces and elaborate on its realization in the case of functions (extension principle) and relations (relational calculus). In particular, discussed are the principles of fuzzy arithmetic.

In Chapter 8—*Generalizations and Extensions of Fuzzy Sets*—various concepts and ideas that augment fuzzy sets and discussed. In this chapter, fuzzy sets are discussed in the framework of granular computing involving various formalisms of information granulation including interval analysis and rough sets. Through an extended contrastive analysis, we are able to emphasize the role played by fuzzy sets. The generalizations in the form of type-2 and order-2 fuzzy sets are covered. The concept of shadowed sets is presented as a vehicle of a more qualitative (three-valued) interpretation of fuzzy sets.
The orthogonality of fuzzy sets and probability is underlined and illustrated. Furthermore, hybrid constructs resulting through a joint treatment of fuzzy sets and probability, such as fuzzy probabilities, are discussed.

Chapter 9—Interoperability Aspects of Fuzzy Sets—is concerned with various dependencies between fuzzy sets and other environments of granular computing and numeric settings. In the latter case, the ideas of encoding and decoding (referred to as a fuzzification and defuzzification mechanism, respectively) are introduced and studied in detail. Both scalar and vector cases are investigated. The linkages between fuzzy sets and sets are revealed and articulated in the language of α-cuts.

Chapter 10—Fuzzy Modeling: Principles and Methodology—offers an in-depth discussion on the principles and underlying methodology of fuzzy modeling, their design objectives (accuracy, interpretability, etc.), an overall design process, and pertinent verification and validation procedures.

In Chapter 11—Rule-based Fuzzy Models—we concentrate on a class of models that play a dominant and highly noticeable role in fuzzy modeling. We introduce the main concepts and underlying terminology, classes of architectures, and discuss a variety of design processes. The mechanisms of structural and parametric learning with examples of the ensuing optimization vehicles are discussed as well.

The focal point of Chapter 12—From Logic Expressions to Fuzzy Logic Networks—is a category of fuzzy systems exhibiting logic-driven semantics and significant parametric flexibility. Different classes of logic neurons are introduced and afterward exploited as generic building components in the formation of highly heterogeneous logic networks. The underlying interpretability issues are raised and investigated in great detail.

In Chapter 13—Fuzzy Systems and Computational Intelligence—fuzzy systems are discussed vis-à-vis the research agenda and main concerns of CI. The synergistic linkages between fuzzy sets and other leading technologies of CI such as neural networks and evolutionary methods are discussed. Several representative examples are studied including recurrent neurofuzzy systems.

Human centricity of fuzzy systems is studied in Chapter 14—Granular Models and Human-Centric Computing—This chapter serves as a carefully organized compendium of human-centric architectures in the areas of data analysis, clustering, and granular modeling. It involves a general methodological discussion and formulates a series of guidelines. We highlight an important and active role of fuzzy sets in learning processes.

Chapter 15—Emerging Trends in Fuzzy Systems—ventures into several emerging and already promising areas of further developments of fuzzy sets with emphasis placed on their applied side. In particular, this concerns examples of relational ontology, information retrieval, and multiagent systems.

To make the material highly self-contained, we have included three appendices. The first one is a concise summary of the most useful and commonly encountered ideas and concepts of linear algebra and unconstrained and constrained optimization. The two others offer a brief view of the essence of neurocomputing and biologically inspired optimization that plays a vital role in the development of fuzzy systems and various constructs of CI, in general.
READERSHIP

Given the content of the book and an arrangement of the material, it will appeal to at least three large communities of readers:

Senior undergraduate students: The key objective is to present fuzzy sets as a coherent enabling technology that offers a unique and highly functional environment for building human-centric systems in numerous subject areas to which the students have been already exposed during the earlier years of their undergraduate programs. The pedagogy of the resulting course may succinctly highlight the capabilities fuzzy sets can offer as a coherent analysis platform augmenting, formalizing, and expanding the existing detailed subject knowledge. The fundamental design practices supported by fuzzy sets build upon the existing body of design knowledge being now substantially enriched by fuzzy sets. The book can be also used to deliver a standalone one-term course on fuzzy sets. Depending upon the objectives of the instructor, the material could be structured to emphasize the fundamentals of fuzzy sets or concentrate on their applied facet including modeling, classification, and data analysis.

Graduate students: The book supports the need of a broad audience of graduate students in engineering and science. Given this audience, we anticipate that the detailed presentation of the fundamentals of fuzzy sets (along with their necessary mathematical details) and the comprehensive design principles would be equally appealing to them. Again, we envision that this might involve students working in the realm of fuzzy sets or pursuing advanced research in other disciplines.

Researchers and practitioners: The organization and coverage of the material will appeal to all those who are already familiar with fuzzy sets and are interested in exploring further advancements in the area. The readers can benefit from a thorough, in-depth, and critical assessment of the current state of the art of the area. Along with the presentation of novel pursuits within the realm of the well-established domains of fuzzy sets, the book embarks on a number of emerging areas of fuzzy sets. For those who are looking for a brief yet highly informative introduction to fuzzy sets, the core of the book brings solid exposure to the area. The holistic view of the discipline embracing the fundamentals with the practice of fuzzy sets could greatly appeal to those interested in pursuing the applied side of fuzzy sets.

Throughout the book we emphasize the role of fuzzy sets as an enabling technology whose impact, contributions, and methodology stretch far beyond any specific community and research area. Taking this into account, a substantial interest arises from a vast array of disciplines like engineering, computer science, business, medicine, bioinformatics, computational biology, and so on.

THE ROADMAP

The book is intended to serve the needs of a broad audience by covering a wealth of territory of the discipline of fuzzy sets. Depending on the needs, several possible routes can be projected:
A one-semester undergraduate course could cover Chapters 1–4 (possibly excluding Sections 4.5, 4.8, and 4.10), Chapter 5–11.

A one-term graduate course could be composed of Chapters 1–12 with some selective choice of content of Chapters 13–15.

For some specialized, short-term courses one could consider covering Chapters 1–11.

INSTRUCTOR RESOURCES

Instructors will be provided with the following classroom-ready electronic resources:

- Viewgraphs to be used in class. They aim to be customized when used in more specialized presentations or short courses.
- Solution manual with graphics presenting answers to selected problems.
- Sample assignments and examinations.

Although we strived for the delivery of a flawless material, we are aware that some typos may be inevitable. Some concepts could have been presented differently. Some algorithms could have been outlined in a more readable manner. Some interesting generalizations could have been included. We greatly appreciate your comments; please drop us a line (pedrycz@ee.ualberta.ca or gomide@dca.fee.unicamp.br).

While working on this book, we enjoyed generous support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chair (CRC) program—W. Pedrycz, and the Brazilian National Research Council (CNPq)—F. Gomide.

We fully acknowledge assistance of Marcos Eduardo Ribeiro do Valle Mesquita who offered us a number of valuable and constructive comments.

We owe our thanks to the dedicated and friendly people at John Wiley: George Telecki, Rachel Witmer and S. Bhuvaneshwari who did a superb job in copy-editing of the manuscript. We greatly benefited from their encouragement and continuous professional assistance.

WITOLD PEDRYCZ
University of Alberta, Edmonton, Canada &
Systems
Science Institute Polish Academy of Sciences, Warsaw, Poland

FERNANDO GOMIDE
UNICAMP, Campinas, Brazil
January 2007
Chapter 1

Introduction

We live in the world of digital technology that surrounds us and without which we can barely function. There are myriads of examples (which we take for granted) in which computers bring a wealth of services. Computers constitute an omnipresent fabric of the society (Vasilakos and Pedrycz, 2006). As once succinctly captured by Weiser (1991), “the most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.”

There is an ongoing challenge of building intelligent systems whose functionality could make them predominantly human centric. Human centricity is one of the driving forces of ubiquitous and pervasive computing. Although there are interesting developments along this line, there is a still a long way to go. Some important milestones have been achieved, yet a lot of challenges lie ahead.

In this chapter, we investigate some fundamental features of human centricity of intelligent systems and in this context raise a need for comprehensive studies in information granulation and fuzzy sets, in particular.

1.1 DIGITAL COMMUNITIES AND A FUNDAMENTAL QUEST FOR HUMAN-CENTRIC SYSTEMS

Problem solving, design, and creative thinking—these are all endeavors in which we are inherently faced with conflicting requirements, incomplete information, numerous constraints, and finally collections of alternative solutions. All of these lead us to situations in which we have to effectively manage enormous amounts of heterogeneous data, deal with conflicting or missing evidence, and arrive at meaningful conclusions being aware of the confidence associated with our findings.

In spite of ever growing complexity of the problems, we somewhat manage to develop solutions. Both in analysis and in design (synthesis), we follow the key principles of abstraction and decomposition that help us handle a phenomenon of complexity and arrive at meaningful solutions. In essence, the effective use of abstraction means that instead of being buried in a flood of details and mountains
of data, we establish certain, perhaps most suitable conceptual perspective and set up a framework in which the problems could be tackled. Granularity of the problem representation is a fundamental manifestation of the principle of abstraction. The decomposition is a meaningful and commonly used strategy in which on the basis of some prudently established granularity we solve the problem by isolating its loosely connected subproblems and handling them on an individual basis.

Computing systems that are around us in so visible abundance operate on completely different principles of binary (Boolean logic), numeric information and solutions, and predefined models of the world of two-valued logic and human information processing. It becomes apparent that we are concerned with two conceptually distinct worlds. To make them work together and take full advantage of the computing faculties, we need a well-developed interface through which both worlds could talk to each other. This is the key rationale behind the emergence of human-centric systems and human-centric computing (HC2). The primary objective of the HC2 is to make computers adjust to people by being more natural and intuitive to use and seamlessly integrated within the existing environment. Various pursuits along the line of e-society include intelligent housing, ambient intelligence (Vasilakos and Pedrycz, 2006) and ubiquitous computing, semantic web, e-health, e-commerce and manufacturing, sensor networks, intelligent data analysis, and wearable hardware. All of these are concrete examples of the general tendency existing in the development of HC2 systems. Referring to the general architectural framework as portrayed in Figure 1.1, we easily note that in such endeavors a middleware of the semantic layer plays a crucial role in securing all necessary efficient interaction and communication between various sources of data and groups of users coming with their diversified needs and objectives. In the development of HC2 systems, we are ultimately faced with an omnipresent challenge known as a semantic gap. To alleviate its consequences, we have to focus on how to reconcile and interpret detailed numeric information with the qualitative, descriptive, and usually linguistic input coming from the user. For instance, in the design of a typical HC2 system, such

![Figure 1.1](image_url)
Figure 1.1 An overall architecture of human-centric systems; note a critical role of the semantic layer linking the layers of computing and humans together.
as a personalized digital photo album, we encounter a lot of detailed numeric data (pixels of images) and have to accommodate a significant and highly descriptive user’s input that comes in the form of some relevance feedback. The context awareness and personalization invoke numerous collaborative aspects of processing involving various sources of data and information (including those available directly from the users). The user-based processing capability is an important aspect of HC² systems that has to be taken into account in any design considerations.

The crux of the semantic layer lies in the formation and usage of entities that are easily perceived and processed by humans. The difficulty is that the world of numeric processing has to interact with humans who are quite resistant to the explicit use of numbers and uncomfortable to process them. We operate at the higher level of abstraction, and this essential design perspective has to be embraced by human-centric systems through their underlying functionality.

Let us offer a sample of examples in which human centricity plays a pivotal role (Table 1.1) (Frias-Martinez et al., 2005; Perkowitz and Etzioni, 2000; Spott and Nauck, 2006). Most of them heavily rely on the idea of an effective relevance feedback that needs to be implemented in an efficient manner.

Table 1.1 Selected Examples of Human-Centric Systems and their Underlying Objectives.

<table>
<thead>
<tr>
<th>Area</th>
<th>Key objectives, existing trends, and solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligent data analysis</td>
<td>Effective explanatory analysis, delivery of findings at the level of information granules, and effective mechanisms of summarization.</td>
</tr>
<tr>
<td>System modeling</td>
<td>Building transparent models that could be easily interpreted and whose outcomes are readily understood. Models should help the user justify decisions being taken.</td>
</tr>
<tr>
<td>Adaptive hypermedia</td>
<td>Personalization of hypermedia to meet needs of individual users, development of specialized web services, building collaborative filtering, recommendation, content-based filtering, personalization of web engines, and so on.</td>
</tr>
<tr>
<td>e-commerce</td>
<td>Expressing preferences of customers formulated at different levels of specificity (granularity).</td>
</tr>
<tr>
<td>Intelligent interfaces</td>
<td>Face expression, emotion recognition and tracking, formation and use of face-related features.</td>
</tr>
</tbody>
</table>

From the brief investigations covered above, it becomes apparent that in the realization of the quest for humancentricity of systems, the leitmotiv of many investigations is in building effective mechanisms of communication including various schemes of relevance feedback. Given that human processing is carried out at some level of
abstraction, a concept of information granules and information granulation plays a visible role. The question of dichotomy offered by some formal frameworks of information granules has to be revisited as well.

The concept of dichotomy becomes profoundly imprinted into our education, philosophy, and many branches of science, management, and engineering. Although the formalism and vocabulary of Boolean concepts being effective in handling various discrimination processes involving binary quantification (yes–no, true–false) has been with us from the very beginning of our education, it becomes evident that this limited, two-valued view at world is painfully simplified and in many circumstances lacks rapport with the reality. In real world, there is nothing like black–white, good–bad, and so on. All of us recognize that the notion of dichotomy is quite simple and does not look realistic. Concepts do not possess sharp boundaries. Definitions are not binary unless they tackle very simple concepts (say odd–even numbers). Let us allude here to the observation made by Russell (1923)

"... the law of excluded middle is true when precise symbols are employed, but it is not true when symbols are vague, as, in fact, all symbols are."

In reality, we use terms whose complexities are far higher and which depart from the principle of dichotomy. Consider the notions used in everyday life such as warm weather, low inflation, long delay, and so on. How could you define them if you were to draw a single line? Is 25°C warm? Is 24.9°C warm? Or is 24.95°C warm as well? Likewise in any image: Could you draw a single line to discriminate between objects such as sky, land, trees, and lake. Evidently, as illustrated in Figure 1.2, identifying boundaries delineating the objects in this way is a fairly futile task and in many cases produces pretty much meaningless results. Objects in images do not exhibit clear and unique boundaries (the location of the horizon line is not obvious at all) (Fig. 1.2(a)). Experimental data do not come in well-formed and distinct clusters; there are always some points in-between (Fig. 1.2(b)).

One might argue that these are concepts that are used in everyday language and, therefore, they need not possess any substantial level of formalism. Yet, one has to admit that the concepts that do not adhere to the principle of dichotomy are also

![Figure 1.2](image.png) **Figure 1.2** Objects, as we perceive and describe them, do not exhibit sharp boundaries. Such boundaries implementing a principle of dichotomy exhibit limitations. Practically, they may not exist at all: (a) images and (b) experimental data.
visible in science, mathematics, and engineering. For instance, we often carry out a linear approximation of nonlinear function and make a quantifying statement that such linearization is valid in some small neighborhood of the linearization point. Under these circumstances, the principle of dichotomy does not offer too much.

The principle of dichotomy, or as we say an Aristotelian perspective at the description of the world, has been subject to a continuous challenge predominantly from the standpoint of philosophy and logic. Let us recall some of the most notable developments that have led to the revolutionary paradigm shift. Indisputably, the concept of a three-valued and multivalued logic put forward by Jan Lukasiewicz and then pursued by others, including Emil Post, is one of the earliest and the most prominent logical attempts made toward the direction of abandoning the supremacy of the principle of dichotomy. As noted by Lukasiewicz (1920, 1930,) the question of the suitability or relevance of two-valued logic in evaluating the truth of propositions was posed in the context of those statements that allude to the future. “Tomorrow will rain.” Is this statement true? If we can answer this question, this means that we have already predetermined the future. We start to sense that this two-valued model, no matter how convincing it could be, is conceptually limited if not wrong. The non-Aristotelian view of the world was vividly promoted by Korzybski (1933). Although the concept of the three-valued logic was revolutionary in 1920s, we somewhat quietly endorsed it over the passage of time. For instance, in database engineering, a certain entry may be two-valued (yes–no), but the third option of “unknown” is equally possible—here we simply indicate that no value of this entry has been provided.

1.3 GRANULAR COMPUTING

Information granules permeate human endeavors (Zadeh, 1973, 1979, 1996, 1997, 2005; Pedrycz, 2001; Bargiela and Pedrycz, 2003). No matter what problem is taken into consideration, we usually cast it into a certain conceptual framework of basic entities, which we regard to be of relevance to the problem formulation and problem solving. This becomes a framework in which we formulate generic concepts adhering to some level of abstraction, carry out processing, and communicate the results to the external environment. Consider, for instance, image processing. In spite of the continuous progress in the area, a human being assumes a dominant and very much uncontested position when it comes to understanding and interpreting images. Surely, we do not focus our attention on individual pixels and process them as such but group them together into semantically meaningful constructs—familiar objects we deal with in everyday life. Such objects involve regions that consist of pixels or categories of pixels drawn together because of their proximity in the image, similar texture, color, and so on. This remarkable and unchallenged ability of humans dwells on our effortless ability to construct information granules, manipulate them, and arrive at sound conclusions. As another example, consider a collection of time series. From our perspective, we can describe them in a semiqualitative manner by pointing at specific regions of such signals. Specialists can effortlessly interpret
electrocardiograms (ECG signals). They distinguish some segments of such signals and interpret their combinations. Experts can interpret temporal readings of sensors and assess the status of the monitored system. Again, in all these situations, the individual samples of the signals are not the focal point of the analysis and the ensuing signal interpretation. We always granulate all phenomena (no matter if they are originally discrete or analog in their nature). Time is another important variable that is subjected to granulation. We use seconds, minutes, days, months, and years. Depending on which specific problem we have in mind and who the user is, the size of information granules (time intervals) could vary quite dramatically. To the high-level management, time intervals of quarters of year or a few years could be meaningful temporal information granules on the basis of which one develops any predictive model. For those in charge of everyday operation of a dispatching power plant, minutes and hours could form a viable scale of time granulation. For the designer of high-speed integrated circuits and digital systems, the temporal information granules concern nanoseconds, microseconds, and perhaps seconds. Even such commonly encountered and simple examples are convincing enough to lead us to ascertain that (a) information granules are the key components of knowledge representation and processing, (b) the level of granularity of information granules (their size, to be more descriptive) becomes crucial to the problem description and an overall strategy of problem solving, and (c) there is no universal level of granularity of information; the size of granules is problem oriented and user dependent.

What has been said so far touched a qualitative aspect of the problem. The challenge is to develop a computing framework within which all these representation and processing endeavors could be formally realized. The common platform emerging within this context comes under the name of granular computing. In essence, it is an emerging paradigm of information processing. Although we have already noticed a number of important conceptual and computational constructs built in the domain of system modeling, machine learning, image processing, pattern recognition, and data compression in which various abstractions (and ensuing information granules) came into existence, granular computing becomes innovative and intellectually proactive in several fundamental ways:

- It identifies the essential commonalities between the surprisingly diversified problems and technologies used there, which could be cast into a unified framework we usually refer to as a granular world. This is a fully operational processing entity that interacts with the external world (that could be another granular or numeric world) by collecting necessary granular information and returning the outcomes of the granular computing.

- With the emergence of the unified framework of granular processing, we get a better grasp as to the role of interaction between various formalisms and visualize a way in which they communicate.

- It brings together the existing formalisms of set theory (interval analysis), fuzzy sets, rough sets, and so on under the same roof by clearly visualizing that in spite of their visibly distinct underpinnings (and ensuing processing), they exhibit some fundamental commonalities. In this sense, granular computing