THE PYRAZINES

G. B. Barlin

THE AUSTRALIAN NATIONAL UNIVERSITY CANBERRA

AN INTERSCIENCE[®] PUBLICATION

JOHN WILEY & SONS

NEW YORK * CHICHESTER * BRISBANE * TORONTO * SINGAPORE

THE PYRAZINES

This is the Forty-First Volume in the Series

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

A SERIES OF MONOGRAPHS

ARNOLD WEISSBERGER AND EDWARD C. TAYLOR

Editors

THE PYRAZINES

G. B. Barlin

THE AUSTRALIAN NATIONAL UNIVERSITY CANBERRA

AN INTERSCIENCE[®] PUBLICATION

JOHN WILEY & SONS

NEW YORK * CHICHESTER * BRISBANE * TORONTO * SINGAPORE

An Interscience[®] Publication Copyright © 1982 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

Barlin, G. B.

The pyrazines.

(The Chemistry of heterocyclic compounds ; v. 41) "An Interscience publication." Includes index. 1. Pyrazine. I. Title. II. Series: Chemistry of heterocyclic compounds ; v. 41.

QD401.B2235 547'.593 81-7569 ISBN 0-471-38119-5 AACR2

10 9 8 7 6 5 4 3 2 1

The Chemistry of Heterocyclic Compounds

The chemistry of heterocyclic compounds is one of the most complex branches of organic chemistry. It is equally interesting for its theoretical implications, for the diversity of its synthetic procedures, and for the physiological and industrial significance of heterocyclic compounds.

A field of such importance and intrinsic difficulty should be made as readily accessible as possible, and the lack of a modern detailed and comprehensive presentation of heterocyclic chemistry is therefore keenly felt. It is the intention of the present series to fill this gap by expert presentations of the various branches of heterocyclic chemistry. The subdivisions have been designed to cover the field in its entirety by monographs which reflect the importance and the interrelations of the various compounds, and accommodate the specific interests of the authors.

In order to continue to make heterocyclic chemistry as readily accessible as possible new editions are planned for those areas where the respective volumes in the first edition have become obsolete by overwhelming progress. If, however, the changes are not too great so that the first editions can be brought up-to-date by supplementary volumes, supplements to the respective volumes will be published in the first edition.

ARNOLD WEISSBERGER

Research Laboratories Eastman Kodak Company Rochester, New York

EDWARD C. TAYLOR

Princeton University Princeton, New Jersey

Preface

This volume summarizes published pyrazine chemistry with emphasis on syntheses, properties, and reactions of pyrazines and pyrazine N-oxides (Chapters I-X). Treatment of theoretical aspects is minimal. Although not strictly relevant, Chapter XI is presented as a summary of earlier reviews and more recent literature of reduced pyrazines (including piperazines). The literature recorded in *Beilstein* to 1929 and *Chemical Abstracts* through 1978 (Volume 89) has been covered together with selected references to 1980. Whereas every reasonable effort has been made to incorporate most significant material, no attempt has been made to include all relevant data. Tables have been incorporated in the text to extend the range of examples.

The tables in the Appendix provide access to the literature, melting points, and some other physical data for most known simple pyrazines and pyrazine N-oxides.

I have been helped greatly in the collection of the data and in the preparation of this manuscript over several years by many people. Dr. D. J. Brown has generously provided constant advice, assistance, and encouragement, and he has carefully read and advised on the entire text. Professor A. Albert advised in many ways and provided unpublished data. Mrs. Y. Yap, Mrs. Z. Pakulska, Mr. I. Brown, Mr. K. McAndrew, and the late Miss V. Richardson assisted with the collection of published data. Drs. K. Ienaga, T. Nagamatsu, Y. Iwai, and K. Shinozuka helped with translations of Japanese, Dr. H. Stünzi with German, and Mrs. Z. Pakulska and Professor L. Strękowski with Polish papers. Drs. W. L. F. Armarego, W. V. Brown, M. D. Fenn, D. D. Perrin, E. Spinner, and Professor B. Stanovnik helped with the provision and interpretation of data. Mesdames S. Schenk, J. White, and D. Dick typed the manuscript and prepared the formulas. To these people, and others not mentioned, I express my gratitude and thanks for their assistance in so many ways.

G. B. BARLIN

Canberra, Australia January 1982

Contents

I.	INTRODUCTION TO PYRAZINES	1		
1.	History	1		
2.	Occurrence			
3.	Structure			
4.	Biological Activity and Uses	8		
5.	Nomenclature	10		
II.	PRIMARY SYNTHESES OF PYRAZINES	11		
1.	Self-condensation of α -(Primary Amino) Carbonyl Compounds	11		
	A. Preformed α-Amino Carbonyl Compounds	12		
	B. Reduction of α-Hydroxyimino Carbonyl Compounds	12		
	C. Ammonolysis of a-Halogeno Carbonyl Compounds	15		
	D. Oxidation of α -Amino Alcohols	18		
	E. Reduction of α -Amino Acids	18		
	F. Reaction of α -Hydroxy Carbonyl Compounds or Polyhydroxy			
	Compounds with Ammonia, Ammonium Salts, or Formamide	18		
	G. Reaction of α , β -Dicarbonyl Compounds with Ammonia	20		
	H. Bisulfite Compounds of α -Hydroxyimino Ketones with Potassium			
	Cyanide	20		
	I. Hydrolysis of Acetamidoacetone Derivatives Formed from			
	α -Amino Acids, Acetic Anhydride, and Pyridine	21		
	J. Rearrangement of Some Oximes	22		
	K. Reduction of α -Azo, α -Diazo, or α -Azido Ketones	23		
	L. Hydrolysis of 3-Imidazolines (Isoxazoles and Oxazoles)	24		
	M. 1,2-Dicarbonyl Compounds with α -Amino Acids	25		
	N. α-Amino Acids through Piperazine-2,5-diones	25		
	O. Aldehyde Cyanohydrins	26		
•	P. Miscellaneous	27		
2.	Condensation of α,β -Dicarbonyl Compounds with α,β -Diamino			
2	Compounds, etc.	28		
3.	ryrazines from α, β -Diamino or α, β -Dimino Compounds and Reagents			
	other than α, β -Dicarbonyl Compounds	35		
4.	Uxidation of Quinoxalines and Other Fused Pyrazines to Pyrazine-			
~	carboxylic Acids	37		
5.	Cleavage of Pteridines and Related Systems to Pyrazines	-38		

Contents	S
----------	---

6. 7.	Dehydrogenation of Piperazines Ring Closures Involving the CC-N-CC, NCC-NCC, and	48
8.	N-C-C-N-C-C-N Systems Condensation of a Bromopropional (or a Bromophenylacetyl) Deriva-	49
0	tives of Aminomethyl Ketones with Ammonia to Acylaminopyrazines Bing, Transformations, of Puridezines, and Other, Heterogyales, to	53
2.	Pyrazines	53
10.	Miscellaneous	57
III.	PRIMARY SYNTHESES OF PYRAZINE N-OXIDES	59
1.	2-Aminopyrazine 1-Oxides from α -Amino Nitriles and α -Hydroxyimino	50
2	Carbonyl Compounds 3. Substituted Dynamics 1 Oxides from 2. Amino. 2 deoxyl Dynusse (or	39
2.	Mannose) Oxime with Glyoxal	62
3.	2-Hydroxypyrazine 1-Oxides from α -Aminohydroxamic Acids and	01
	1,2-Dicarbonyl Compounds or α,β -Unsaturated α -Bromoaldehydes	63
4.	2-Hydroxy-3,6-dimethylpyrazine I-Oxide from the Bisulfite Derivative	61
5	Of Pyruvonydroxamic Acid and Aminoacetone D ing Closure of the $C = C = N = C = N = C$ System	04 64
5. 6.	Miscellaneous	66
IV.	PYRAZINE, ITS C-ALKYL, C-ARYL, AND N-OXIDE DERIVATIVES	68
1.	Pyrazine (Unsubstituted)	68
	A. Preparation of Pyrazine	68
	B. Properties of Pyrazine	69
	C. Reactions of Pyrazine	70
2.	C-Alkyl and C-Arylpyrazines	72
	A. Preparation of Alkyl- and Arylpyrazines	72
	(1) Primary Syntheses, 72	
	 (2) Alkylation at Nuclear Carbon, 73 (3) Extranuclear C-Alkylation (and Acylation), 74 	
	(4) Decarboxylation of Alkyl Carboxy Pyrazines, 76	
	(5) Replacement of Halogeno Substituents by	
	Alkyl Groups, 76	
	(6) Preparations of Particular Methyl-, Dimethyl-, and Vinyl-	
	B Properties of Alkylnyrazines	77
	C Deastions of Alkulaurozines	70
	U. Reactions of Alkvadytazines	- 79
	(1) Oxidation, 79	79
	 (1) Oxidation, 79 (2) Halogenation, 79 	19
	 (1) Oxidation, 79 (2) Halogenation, 79 (3) Reduction, 80 	19
	 (1) Oxidation, 79 (2) Halogenation, 79 (3) Reduction, 80 (4) Alkylation, 81 	19

х

Contents

		(b) C-Alkylation, 81	
		(5) Aldol-Type Condensation, 81	
		(a) Dehydration of Carbinols from Aldol-Type Conden-	
		(6) Mannich Reaction, 83	
		(7) Vilsmeier Reaction, 83	
		(8) Amination at Ring Carbon and Nitrogen, 83	
		(9) Ring Transformations, 84	
		(10) Photoeliminations, 84 (11) Addition Reactions, 85	
		(12) Miscellaneous 85	
		(13) Reactions of Vinylpyrazine, 86	
3.	Pyr	azine N-Oxides, their C-Alkyl and C-Aryl Derivatives	86
	Á.	Preparation of Alkyl- and Arylpyrazine N-Oxides by Oxidation	86
	B.	Properties of Pyrazine N-Oxides and their C-Alkyl Derivatives	86
	C.	Reactions of Alkylpyrazine N-Oxides	88
		(1) Halogenation and Deoxygenation, 88	
		(2) Halogenation, 90	
		(3) Rearrangement with Acetic Anhydride, 90	
		(4) N-Amination, 91	
		(5) Methyl- to Styrylpyrazine N-Oxides, 92 (6) Decovygenation 92	
		(7) Miscellaneous, 93	
V.	HA	LOGENOPYRAZINES AND N-OXIDE DERIVATIVES	95
,	ጥኬ	Democratics of Nuclear Helener opposition	05
1.		Direct Chloringtion with Chloring	95
	А.	(1) Simple Come 05	95
		(1) Simple Cases, 95 (2) In the Presence of Amino Croups, 96	
		(2) In Other Cases, 97	
	B.	Direct Bromination with Bromine	97
		(1) Simple Cases, 97	
		(2) In the Presence of Amino and Carboxy Groups, 97	
		(3) In the Presence of Amino and Other Groups, 98	
	~	(4) In the Presence of Hydroxy Groups, 98	00
	C.	Phosphoryl Chloride with Hydroxypyrazines	99
		(1) Simple Cases, 99 (2) In the Presence of Amino Crouns 100	
		(2) In the Presence of Carboxy Groups, 100	
		(4) In the Presence of Nitro Groups, 101	
		(5) From Amino Acid Anhydrides and Piperazinones, 101	
	D.	Chlorinations with Phosphorus Pentachloride	102
	E.	Chlorinations with Sulfuryl Chloride and Thionyl Chloride	103
	F.	Brominations with Phosphorus Bromides and Other Reagents	104
	G.	Pyrazine N-Oxides with Phosphoryl Chloride (and Other Acid	
		Chlorides)	105
	H.	The Preparation of Fluoropyrazines	110
	I.	The Preparation of Iodopyrazines	111

Contents	;
----------	---

	J.	Interconversion of Halogeno Substituents	111
	K.	Conversion of Amino to Bromo Substituents	112
	L.	Primary Syntheses	113
	М.	Degradation	113
	N.	Ring Transformations	113
	0.	Miscellaneous	113
2.	Th	e Preparation of Extranuclear Halogenopyrazines	114
	А.	By Direct Halogenation	114
	B.	By Reaction of N-Oxides with Phosphoryl Chloride	114
	C.	By Primary Synthesis	115
	D.	Ring Transformations	115
	E.	Miscellaneous	115
3.	The	e Preparation of Nuclear and Extranuclear Halogenopyrazine	• • •
	N-0	Dxides	116
	Α.	By N-Oxidation of Halogenopyrazines	116
	B.	By Direct Synthesis	116
	C.	By Halogenation	116
	D.	By Reaction of Pyrazine 1.4-Dioxide with Phosphoryl Chloride	
		(and Other Acid Chlorides)	119
4.	Pro	perties of Halogenopyrazines	119
5.	Rea	actions of Nuclear Halogenopyrazines	121
	Α.	Removal of Halogeno Substituents	121
		(1) By Catalytic Hydrogenation, 121	
		(2) By Other Methods, 123	
	B.	Replacement of Halogeno Substituents by Amino Groups	123
		(1) With One Halogeno Substituent, 123	
		(2) With One Halogeno and Other Substituents, 125	
		(3) With Two Halogeno Substituents, 128 (4) With Two Halogeno and Other Substituents, 128	
		(5) With Three Halogeno Substituents, 130	
		(6) With Four Halogeno Substituents, 131	
	C.	Replacement of Halogeno Substituents by Hydrazino, Azido, and	
		Amido Groups	132
	D.	Replacement of Halogeno Substituents by Alkoxy Groups	133
		(1) With One Halogeno Substituent, 133	
		(2) With One Halogeno and Other Substituents, 134	
		(3) With Two Halogeno Substituents, 135	
		(4) With I wo Halogeno and Other Substituents, 137 (5) With Three of Four Halogeno Substituents, 137	
	F	Penlacement of Halogeno Substituents by Hydroxyl Croups	138
	Б. Б	Replacement of Halogeno Substituents by Alkulthia Groups	120
	Г. С	Replacement of Halogeno Substituents by Marganto Groups	133
	о. ц	Replacement of Halogeno Substituents by Mercapio Groups	141
	11.	Carbon Carbon Bond (except C-CN)	147
	т	Replacement of Halogeno Substituents by Cyano, Sulfo, and Silvi	142
	1.	Croupe	144
	T	Other Reactions	144
	э.	Unici Reactions	140

		Contents	xiii
6.	Re	actions of Extranuclear Halogenopyrazines	145
	Α.	Replacement of Halogeno Substituents by Alkoxy, Hydroxy, and	• • •
		Alkylthio Groups	145
	В.	Replacement of Halogeno Substituents by Amines	147
	Ċ.	Replacement of Halogeno Substituents by Other Groups	148
7.	Re	actions of Halogenopyrazine N-Oxides	149
	A.	Reactions of Nuclear Halogenopyrazine N-Oxides	149
		(1) Replacement of Halogeno Substituents by Amine Groups 149	
		 (2) Replacement of Halogeno Substituents by Hydroxy Groups 150 	
		 (3) Replacement of Halogeno Substituents by Other Groups, 151 	
		 (4) Reactions Involving Removal of Halogeno Substituents and/ or the N-Oxide Function 152 	
		(5) Other Reactions, 153	
	B.	Reactions of Extranuclear Halogenopyrazine N-Oxides	
		(1) Deoxygenation, 154	
		(2) Replacement of Halogeno Substituents by Triphenyl-	
		phosphine, 154 (2) Depleasement of Helesene Substituents by	
		(5) Replacement of Halogeno Substituents by Other Groups 155	
VI.	НҮ	DROXYPYRAZINES AND THEIR DERIVATIVES	156
1	Dra	paration of Hudrovupurazines	156
1.	A	By Primary Synthesis	156
	R.	By Hudrolusis of Helogenopyrazines	157
	Б. С	From Aminopyrazines	158
	D.	From Alkovyovrazines	160
	E.	From Methylsulfonyl- and Methylsulfinylnyrazines	161
	F.	By Hydrolysis of Acetoxypyrazines	162
	G.	By Hydrolysis of Other Substituted Pyrazines	162
	H.	By Other Reactions	163
2.	Pre	paration of Extranuclear Hydroxypyrazines	164
	Α.	By Primary Synthesis	164
	B.	From Halogenopyrazines	165
	C.	From Carboxylic Acid Derivatives	165
	D.	From Alkylpyrazine N-Oxides with Acetic Anhydride Followed	
		by Hydrolysis	166
	E.	From Alkylpyrazines with Aldehydes and Ketones	166
	F.	By Other Reactions	167
3.	Pre	paration of Alkoxy- and Aryloxypyrazines	168
	Α.	From Halogenopyrazines	168

А.	From Halogenopyrazines	108
В.	By Alkylation of Hydroxypyrazines	168
C.	From Aminopyrazines	169

Contents

	D. By Dehydrogenation	169
	E. From Other Ring Systems	170
	F. By Other Reactions	170
4.	Preparation of Extranuclear Alkoxypyrazines	172
5.	Properties and Structure of Hydroxy- and Alkoxypyrazines	172
6.	Reactions of Hydroxypyrazines	175
	A. Conversion to Halogenopyrazines	175
	B. Conversion to Mercaptopyrazines	175
	C. Bromination of Hydroxypyrazines	175
	D. Alkylation of Hydroxypyrazines	175
	E. Nitration and Coupling With Diazonium Salts	179
	F. Other Reactions of Hydroxypyrazines	180
7.	Reactions of Extranuclear Hydroxypyrazines	181
8.	Reactions of Alkoxypyrazines	182
9.	N-Alkylated Oxodihydropyrazines	184
	A. Preparation	184
	(1) By Primary Synthesis, 184	
	(2) By Alkylation of Hydroxypyrazines, 184	
	(3) By Rearrangement of Alkoxypyrazines, 184 (4) By Quidation of MAlbul (or Apul) piperazinenes with	
	(4) By Oxidation of W-Alkyl (or Aryl) piperazinones with Phosphorus Pentachloride 184	
	(5) By Other Means, 185	
	B. Properties and Reactions	185
10.	Preparation of Hydroxypyrazine N-Oxides and Extranuclear Hydroxy-	
	pyrazine N-Oxides	186
	A. By Primary Synthesis	186
	B. By N-Oxidation	187
	C. By Hydrolysis of Halogenopyrazine N-Oxides	187
	D. From Aminopyrazine N-Oxides	188
	E. From Alkoxypyrazine N-Oxides	188
	F. By Other Means	188
11.	Preparation of C- and N-Alkoxypyrazine N-Oxides	189
	A. From Halogenopyrazine N-Oxides	189
	B. By Oxidation	189
	C. By Alkylation	190
	D. By Other Means	190
12.	Preparation of 4-Alkyl-3-oxo-3,4-dihydropyrazine 1-Oxides	190
13.	Properties and Structure of Hydroxy- and Alkoxypyrazine N-Oxides	191
14.	Reactions of Hydroxypyrazine N-Oxides	191
	A. Chlorination and N-Deoxygenation with Phosphoryl Chloride	191
	B. Acetoxylation in Conjunction with N-Deoxygenation	192
	C. N-Deoxygenation	192
	D. Alkylation	193
	E. Other Reactions	194
15.	Reactions of C- and N-Alkoxypyrazine N-Oxides	194
	- · · · · · · · · · · · · · · · · · · ·	

	Contents	xv
VII.	MERCAPTOPYRAZINES AND THEIR DERIVATIVES	196
1.	Preparation of Mercaptopyrazines	196
	A. From Halogenopyrazines	196
	B. From Hydroxypyrazines	196
	C. By Degradation	196
2.	Preparation of Alkylthio- and Arylthiopyrazines	197
	A. By Alkylation of Mercaptopyrazines	197
	B. From Halogenopyrazines	198
	C. By Cleavage of Pteridines and Other Ring Systems	198
3	D. By Other Reactions Structure and Properties of Mercanto, and Alkylthionyrazines	108
З. Л	Beactions of Mercantonyrazines	200
4. 5	Reactions of Alkulthionyrazines	200
5.	A Ovidation of Alkylthionyrazines	200
	B Displacement of Alkylthic Substituents	200
6	Displacement of Alkynino Substituents	201
0. 7	Alkyleulfonyl, and Alkyleulfinylnyrazines	202
<i>'</i> .	A Prenaration	202
	B Properties	202
	C Reactions	203
8.	Other Derivatives of Mercaptopyrazines	204
VIII	AMINOPYRAZINES THEIR N-OXIDES AND RELATED	
,	NITROGENOUS DERIVATIVES	205
1.	Aminopyrazines	205
	A. Preparation of Aminopyrazines	205
	(1) By Primary Synthesis, 205	
	(2) By Direct Amination, 207	
	(3) From Halogenopyrazines, 207 (4) From Manager Albudation Albudation and Albudation	
	(4) From Mercapto-, Alkyltnio-, Alkylsullonyl-, and Alkyl- sulfinylnyrazines 207	
	(5) From Carbamoylpyrazines, 207	
	(6) From Acid Azides and Hydrazides and Urethanes (Alkoxy-	
	carbonylaminopyrazines), 208	
	(1) By Reduction of Nitro- and Phenylazopyrazines, 209 (8) By Other Methods 210	
	B Preparation of Extranuclear Aminonvrazines	211
	(1) By Reduction of a Nitrile Imine or Hydroxyamino	
	Compound, 211	
	(2) By the Mannich Reaction, 212	
	(3) From Halogenopyrazines, 212	

- From Amides by the Hofmann Reaction, 212 By Other Reactions, 212 (3) (4) (5)

Contents

	C.	Properties of Aminopyrazines	213
	D.	Reactions of Aminopyrazines	215
		(1) Replacement of Amino by Hydroxy and Alkoxy Groups 215	
		(2) Replacement of Amino (and Hydrazino) by Halogeno Substituents 215	
		(3) Formation of Anils (Schiff Bases), 215	
		(4) Acyl Derivatives of Aminopyrazines, 215	
		(a) Acetylation, 215	
		(b) Formylation, 217 (a) Reproved tion and Other Aculations, 217	
		(d) Deacylation of Acylaminonyrazines 217	
		(e) Arylsulfonamidopyrazines, 218	
		(5) Diazotization, 220	
		(6) Bicyclic Heterocycles from Aminopyrazines, 220	
		(7) C-Substitution of Aminopyrazines, 220	
		(a) Halogenation, 220 (b) Nuclear and Externuclear C. Albulation, 220	
		(8) Replacement of Hydrazino Substituents by Hydrogen 232	
		(9) Other Reactions. 232	
	E.	Urethanes (Alkoxycarbonylaminopyrazines)	234
	F.	Ureidopyrazines	234
	G.	Other Substituted Aminopyrazines	235
		(1) Dimethylaminomethyleneamines,	
		Hydroxyiminomethylamines,	
		and Alkoxymethyleneamines, 235	
		(2) Chloroamines, 236 (2) Extrapulate Quaternized Purezines, 236	
		(4) Guanidinopyrazines, 237	
2.	Nit	ro- and Phenylazopyrazines	237
	А.	Preparation of Nitropyrazines	237
	B.	Reactions of Nitropyrazines	237
	C.	Preparation of Arylazopyrazines	239
	D.	Reactions of Arylazopyrazines	239
3.	An	ninopyrazine N-Oxides	239
	А.	Preparation of Aminopyrazine N-Oxides	239
		(1) By Primary Synthesis, 239	
		(2) Cleavage of N-Oxides of Pteridines and Related Systems, 239	
		(4) By Oxidation of Aminopyrazines 241	
		(5) By Other Methods 241	
	B.	Properties of Aminopyrazine N-Oxides	242
	C.	Reactions of Aminopyrazine N-Oxides	242
		(1) Replacement of Amino by Hydroxy Groups, 242	
		(2) Acetylation and Deacetylation, 242	
		 Bicyclic Compounds from Aminopyrazine N-Oxides, 243 Downson time 242 	
		(4) DEOXYGENATION, 243 (5) Deoxygenation with Formation of Chloro- Acetoxy, and	
		Methoxypyrazines, 245	

(6) Other Reactions, 245

x vi

	Contents	xvii
D	. THE PYRAZINECARBOXYLIC ACIDS AND RELATED DERIVATIVES	247
1.	 The Carboxypyrazines A. Preparation of Carboxypyrazines (1) By Primary Synthesis, 247 (2) By Hydrolysis of Esters, Amides, and Nitriles, 247 (a) Pyrazine Esters, 247 (b) Pyrazine Amides, 248 (c) Pyrazine Nitriles, 249 	247 247
	(3) By Oxidation of Alkyl-, Styryl-, Hydroxyalkyl-, and Fused Pyrazine Systems, 250	
	(4) By Other Methods, 252	
	B. Properties of Carboxypyrazines	252
	C. Reactions of Carboxypyrazines	253
	 Decarboxylation, 253 Esterification, 258 Formation of Acid Chlorides, 260 Formation of Anhydrides and Their Reactions, 260 Other Reactions, 262 	
2.	Alkoxycarbonylpyrazines (Pyrazine Esters)	264
	A. Preparation of Esters	264
	 (1) By Finnary Synthesis, 204 (2) By Esterification of Carboxypyrazines, 264 (3) From Acid Chlorides and Anhydrides, 264 (4) By Hydrolysis of Iminoethers (and Iminothioethers), 265 (5) From Halogenopyrazines, 265 (6) By Other Methods, 265 	
	B. Properties of Esters	266
	 C. Reactions of Esters Hydrolysis, 266 Formation of Amides and Related Compounds, 266 Amides, 266 Hydrazides, 269 N-Hydroxamides (Hydroxamic Acids), 270 N-Cyanamides, 270 Guanidinocarbonylpyrazines, 270 Guanidinocarbonylpyrazines, 270 Guanidinocarbonylpyrazines, 272 Ureidocarbonylpyrazines, 272 Reduction, 272 Formation of Ketones, 274 	266
3.	Carbamoylpyrazines (Amides) and Related Compounds (Hydrazides,	
	Azides, etc.)	275
	 A. Preparation of Amides (1) From Esters, Acid Chlorides, and Acids, 275 (2) By Primary Synthesis, 276 (3) By Partial Hydrolysis of Nitriles, 276 (4) By Other Means, 278 	275

	B.	Properties of Carbamoylpyrazines	278
	C.	Reactions of Amides	279
		(1) Dehydration of Amides to Nitriles, 279	
		(2) Transamination of Amides, 280 (2) Other Practices, 281	
	Л	(3) Other Reactions, 201 Proposition and Departicular of Thiosemides	202
	D. E	Preparation and Reactions of Thioannues	202
	E.	(1) Brancastion 282	205
		(1) Preparation, 283 (a) From Esters 283	
		(b) From Amides, 283	
		(c) From Acids, 283	
		(d) From Nitriles, 284	
		(2) Reactions of Hydrazides and Azides, 284	
	F.	Preparation of Guanidinocarbonyl-, Guanidinocarbamoyl-, and	
		Ureidocarbonylpyrazines	287
4.	Ру	razine Nitriles	288
	А.	Preparation of Cyanopyrazines	288
		(1) By Primary Synthesis, 288	
		(2) By Dehydration of Amides, 289	
		(3) From Halogenopyrazines, 289 (4) By Other Methods, 289	
	R	Properties of Nitriles	280
	C.	Reactions of Cyanopyrazines	207
	с.	(1) With Hydrazine 290	290
		(2) With Alcohols (and Thioalcohols) and Hydrogen	
		Chloride, 290	
		(3) With Amines, 292	
		(4) With Grignard Reagents, 293	
		(5) WITH Alkoxide Ions, 295 (6) Other Reactions 294	
5	Pv	razine Aldehydes and Their Acetals	294
	A.	Preparation of Formylpyrazines	294
		(1) By Primary Synthesis 294	
		(2) By C-Formylation, 295	
		(3) By Oxidative Processes, 295	
		(4) By Reductive Processes, 295	
		(5) From Hydrazides, 295	
	Ð	(6) By Other Methods, 295 Departicular of Formulauronings	296
	Б.	(1) Ovidation and Reduction 206	270
		(1) Oxidation and Reduction, 296 (2) Formation of the Usual Aldehyde Derivatives, 296	
6	Pvi	razine Ketones and Derivatives	297
0.	A	Prenaration of C-Acyl Derivatives	297
		(1) By Primary Synthesis, 297	
		(2) From Methylpyrazines, 298	
		(3) From Cyanopyrazines, 298	
		(4) By Oxidation, 298	
		(5) From Acid Chlorides and Esters, 299	

(6) By Other Methods, 299

	Contents	xix
	B Properties of Acetylnyrazines	300
	C. Reactions of C-Acylpyrazines	300
7.	Isocvanato- and Thiocyanatopyrazines	301
8.	Carboxypyrazine N-Oxides	302
	A. Preparation of Carboxypyrazine N-Oxides	302
	(1) By Primary Synthesis, 302	
	(2) By Hydrolysis of Amides and Esters, 302	
	(3) By Oxidation, 302	202
	B. Reactions of Carboxypyrazine N-Oxides	303
	(1) Decarboxylation, 303 (2) Exterification, 202	
	(2) Esternication, 505 (3) Deoxygenation, 303	
	(4) Other Reactions, 303	
9.	Alkoxycarbonylpyrazine N-Oxides	303
	A. Preparation	303
	B. Reactions	304
10.	Carbamoylpyrazine N-Oxides and Related Compounds (Hydrazides,	
	Guanidinocarbonyl Compounds, etc.)	305
	A. Preparation of Carbamoylpyrazine N-Oxides	305
	(1) By Primary Synthesis, 305	
	(2) From Esters, 305	
	(3) By Partial Hydrolysis of Nitriles, 305 (4) By Oxidation 205	
	(4) By Oxidation, 505 B. Basations of Carbamovinversing N Oxides	306
	C. Propagation and Reactions of Hydrazinogathonyl-	500
	Cuaniding carbamoul and Cuaniding carbonylnyrazine N-Oxides	307
11	Guandinocarbanoyi, and Guandinocarbonyipyrazine N -Oxides	308
11.	A Preparation	308
	R. Reparations	308
	C Properties	308
12	Formyl- and Acetylpyrazine N-Oxides and Derivatives	308
14.	A. Preparation	308
	B. Reactions	309
v	THE LONIZ ATION AND SDECTDA OF DVD AZINES	210
х.	The IUNIZATION AND SPECTRA OF FTRAZINES	510
1	Ionization of Purazines	310
2	Liltraviolet Spectra of Pyrazines	314
3	Nuclear Magnetic Resonance Spectra of Pyrazines	328
4	Infrared, Mass, and Other Spectra of Pyrazines	338
XI.	THE REDUCED PYRAZINES	344
1.	Di- and Tetrahydropyrazines	344
	A. 1,2-Dihydropyrazines	344

		(1) Preparation, 344 (2) Reactions 347	
	B.	2.3-Dihvdropyrazines	348
		(1) Preparation, 348	
		(2) Reactions, 349	
	С.	2,5-Dihydropyrazines	352
		 Preparation, 352 Reactions, 354 	
	D.	1,4-Dihydropyrazines	355
		(1) Preparation, 355 (2) Protections (and Properties) 357	
	F	(2) Reactions (and Hopernes), 557 Tetrahydropyrazines	358
		(1) Preparation 358	550
		(2) Reactions, 361	
	F.	Dihydropyrazine N-Oxides	362
		(1) Preparation, 362	
	-	(2) Reactions, 363	2/2
2.	Pip	Provide A service and the serv	363
	А.	Piperazin-2-ones	363
		(1) Preparation, 303 (2) Reactions 365	
	B.	Piperazine-2.3-diones	366
	C.	Piperazine-2,5-diones	366
		(1) Preparation, 366	
		(2) Reactions, 367	
	D.	Piperazine-2,6-diones	369
		 Preparation, 369 Reactions, 371 	
	E.	Piperazine-2,3,5-triones and Piperazinetetraones	372
	F.	Piperazinethiones	372
3.	Pip	erazines	372
	A.	Preparation	312
	B .	Properties	370
	C.	Keactions	511
APPI	END	IX: SYSTEMATIC TABLES OF SIMPLE PYRAZINES	382
Intro	oduc	tion	382
Pyrazines Excluded from the Tables			382
Terms Used in the Tables		382	
Use of the Tables			383
Tabl	eA.	Alkyl- and Arylpyrazines	384
Tabl	e A.	2 Aminopyrazines	387
Tabl	e A.	3 Carboxypyrazines	392
Tabl	e A.	4 Halogenopyrazines	399
Tabl	e A.	5 Oxypyrazines without C- or N-Alkyl Groups	402

	Contents	xxi
Table A.6	Oxypyrazines with C- but without N-Alkyl Groups	404
Table A.7	Oxypyrazines with Any N-Substituent	408
Table A.8	Sulfonylpyrazines	409
Table A.9	Thiopyrazines	409
Table A.10	Amino-carboxypyrazines	410
Table A.11	Amino-halogenopyrazines	420
Table A.12	Amino-oxypyrazines	422
Table A.13	Amino-thiopyrazines	423
Table A.14	Amino-carboxyl-halogenopyrazines	424
Table A.15	Amino-carboxy-oxypyrazines	435
Table A.16	Amino-carboxy-sulfonylpyrazines	436
Table A.17	Amino-carboxy-thiopyrazines	436
Table A.18	Amino-halogenopyrazines with Other Functional Groups	
	Except Carboxy	436
Table A.19	Amino-oxythiopyrazines	437
Table A.20	Amino-carboxy-halogenopyrazines with Other Functional	
	Groups	437
Table A.21	Carboxy-halogenopyrazines	438
Table A.22	Carboxy-oxypyrazines	440
Table A.23	Carboxy-sulfonylpyrazines	442
Table A.24	Carboxy-thiopyrazines	442
Table A.25	Carboxy-halogenopyrazines with Other Functional Groups	
	Except Amino	443
Table A.26	Halogeno-nitro(and oxy)pyrazines	443
Table A.27	Halogeno-sulfonyl(and thio)pyrazines	446
Table A.28	Nitro-oxypyrazines	446
Table A.29	Oxy-sulfonyl(and thio)pyrazines	447
Table A.30	Alkyl- and Arylpyrazine N-Oxides	447
Table A.31	Aminopyrazine N-Oxides	448
Table A.32	Carboxypyrazine N-Oxides	451
Table A.33	Halogenopyrazine N-Oxides	452
Table A.34	Oxypyrazine N-Oxides	453
Table A.35	Thiopyrazine N-Oxides	456
REFERENCE	S	457
AUTHOR IN	DEX	5 0 9
SUBJECT IN	DEX	577

CHAPTER I

Introduction to Pyrazines

1. HISTORY

The first recorded synthesis of a pyrazine (1) was that of tetraphenylpyrazine by Laurent (1) in 1855. In this preparation α -phenyl- α -(benzylideneamino)acetonitrile, PhCH=NCHPhCN ("benzoylazotid," prepared from crude benzaldehyde, that is, benzaldehyde containing some hydrogen cyanide, by treatment with ammonia), was subjected to dry distillation to give (1, $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = \mathbb{R}^4 = \mathbb{P}h$), which Laurent called "amarone" [Table I.1 lists the names assigned by early workers (1-14) to some simple pyrazines]. Tetraphenylpyrazine was also prepared by Erdmann (11) from the reaction of ammonia on benzoin, but on this occasion it was named "benzoinimide."

Pyrazine	Name	Refs.
Unsubstituted	Pyrazine	2, 3
	Aldine	4
	Piazine	5,6
	Paradiazine	5,6
2,5-Dimethyl	Ketine	7,8
	Glycolin	9
2,5-Diphenyl	Isoindol	10
Tetraphenyl	Amarone	1
	Benzoinimide	11
	Ditolanazotide	12
	Tetraphenylazine	13
	Tetraphenylpyrazine	14

TABLE I.1 NAMES ASSIGNED TO SOME SIMPLE PYRAZINES BY EARLY WORKERS

2,5-Diphenylpyrazine (1, $R^1 = R^3 = Ph$, $R^2 = R^4 = H$) was the second pyrazine synthesized, and it was prepared by Staedel and Rügheimer (10) in 1876 by the action of ammonia on ω -chloroacetophenone and was named "isoindol." These authors postulated the first structure for a pyrazine as an inner anhydride (2) of an amino ketone.

Alkylpyrazines were then described in a series of papers from Victor Meyer's laboratory at Zürich. Gutknecht (15, 16) examined the reduction of the monoxime of diacetyl (then thought to be a true nitroso derivative of ethyl methyl ketone,

from which it was derived with nitrous acid) with tin and hydrochloric acid to give tetramethylpyrazine, which was also assigned the formula of an inner anhydride of the amino ketone. Treadwell (8) found from vapor density determinations on the analogous product from methyl propyl ketone that the molecular weight was about twice that which would be expected from an inner anhydride, and by analogy with the reduction of acetone to pinacol, Treadwell assigned the formula (3) to the product. He and Meyer (7, 8) also proposed the name "ketine" for the product (2,5-dimethylpyrazine) derived from acetone, and dimethylketine and diethylketine for those derived from ethyl methyl ketone and methyl propyl ketone, respectively.

Meanwhile Étard (9) in 1881 found that 2,5-dimethylpyrazine (which he termed "glycolin") could be isolated from the heating of a mixture of glycerol and an ammonium salt.

Meyer (17) in the following year then expressed the view that the products of the action of nitrous acid on the ketones were not true nitroso compounds (4) but isomeric oximes (5), and he considered their reduction to be analogous to the conversion of a nitro to amino group, rather than that of ketone to pinacol. Thereafter the Treadwell formulation of pyrazines was abandoned.

Wleügel (18), who examined the reduction of (iso) "nitrosoacetic acid" ester (from ethyl acetoacetate and nitrous acid) to the diethyl ester of dicarboxydimethylpyrazine ("ketinedicarboxylic acid"), was the first to propose for the pyrazine nucleus a six-membered ring structure analogous to pyridine, in which one -CH= group para to the ring nitrogen was replaced by another ring nitrogen atom. However, the position of substituents assigned by Wleügel was in error. Oeconomides (19) reported that Wleügel's product (7) did not form an anhydride, as would be expected for an o-dicarboxylic acid, and he claimed its identity by a synthesis from "iminoisonitrosobutyric ester" (6) by heating with fused zinc chloride. Hinsberg (20) had also recently shown that quinoxaline could be synthesized from o-phenylenediamine and glyoxal.

The reaction of ammonia on benzoin described by Erdmann was reinvestigated by Japp and Wilson (12) and Japp and Burton (13) and the product, tetraphenylpyrazine, renamed "ditolanazotide" and "tetraphenylazine," respectively.

In 1887 two workers, Mason (2) and Wolff (3), independently suggested the name "pyrazine" for the nucleus to point out the analogy with pyridine, but the name had been used in the same year by Knorr (21) for pyrrole tetrahydride, and Braun and Meyer (4), in objecting (to pyrazine), proposed the name "aldine" because it would result from self-condensation of the hypothetical aminoacetaldehyde. Widman (5) then clarified the situation with a systematic nomenclature for azines. Compounds containing a six-membered ring consisting of two nitrogen and four carbon atoms were called diazines; these were further classified into o-diazines, m-diazines, and p-diazines according to whether the nitrogen atoms were ortho, meta, or para, respectively. These names were also condensed to oiazine, miazine, and piazine. Although the name "piazine" was promoted by Mason (6), it did not gain acceptance and the term pyrazine has since been employed.

Proof of the structure of the pyrazines was established in 1893 by Wolff (22), who converted tetramethylpyrazine to piperazine (8) by the series of reactions shown. The conversion of α -amino ketones to pyrazines requires the loss of hydrogen as well as the loss of water. Gabriel and Pinkus (23) obtained considerably higher yields when oxidizing agents were added to the reaction mixture after the condensation had been allowed to take place. Snape and Brooke (14) in 1897 established that "amarone" was identical with benzoinimide, ditolanazotide, tetraphenylazine, and tetraphenylpyrazine.

Introduction to Pyrazines

The bond structure of pyrazines had yet to be established. Kekulé type (9) and Dewar type (10) formulas were each proposed and supported by various groups (24-28), but the Kekulé structure was finally selected after a study of molecular refractions of a number of pyrazine derivatives by Brühl (29).

The parent compound of this series, pyrazine, was first prepared in trace amounts by Wolff (30) by heating aminoacetaldehyde diethyl acetal $[H_2NCH_2CH(OEt)_2]$ with anhydrous oxalic acid at 110–190°C, and later in better yield by heating the mercuric or platinic chloride double salts (of the aminoacetaldehyde acetal) with hydrochloric acid (31); it was also obtained from aminoacetaldehyde with mercuric chloride in sodium hydroxide (23). Wolff in 1893 (22) also prepared pyrazine by decarboxylation of the tetracarboxylic acid, obtained by oxidation of tetramethylpyrazine; and Stoehr (32) prepared it by the distillation of piperazine with lime and zinc dust. Brandes and Stoehr (33) in 1896 described the preparation of pyrazine by heating glucose with 25% aqueous ammonia at 100°C.

Significant reviews of pyrazine chemistry have been published by Newbold and Spring (34), Krems and Spoerri (35), Pratt (36), Ramage and Landquist (37), Nováček et al. (38), Cheeseman and Werstiuk (39), and Sasaki (39a).

2. OCCURRENCE

Pyrazines occur in nature in relatively small quantities, and the introduction in the early 1960s of coupled gas-liquid chromatography - mass spectrometry assisted greatly in the isolation and identification of these compounds. Some sources are described below. Fusel oils contain 2,5-dimethyl-, 2,5-diethyl-, trimethyl-, tetramethyl-, and triethylmethylpyrazine (33, 40-44), and it is probable that these compounds are produced from proteins during the fermentation. Ammoniations of inverted molasses have been found to give 2,6-dimethylpyrazine, 2-hydroxymethylpyrazine, 5-hydroxy-2-methylpyrazine, and 2-methyl-5(and 6)-(arabo-tetrahydroxybutyl)pyrazines (45-47); and D-glucose with aqueous ammonia gives a complex mixture from which 2-methyl-5[and 6(?)]-(arabo-tetrahydroxybutyl)pyrazine have been isolated and identified (48). Galbanum oil has been shown to contain various alkyl- and methoxyalkylpyrazines (49, 50). Cocoa butter and cocoa beans contain 2,3-dimethylpyrazine, 2-ethyl-5-methylpyrazine, trimethylpyrazine, 3-ethyl-2,5dimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, and tetramethylpyrazine; the pyrazine content appeared to be greatest in samples from countries where beans were traditionally fermented (51, 52). Tetramethylpyrazine was the only pyrazine detected in unroasted beans, and then only in fermented samples.

A large number of alkyl- and vinylpyrazines have been identified in coffee (53),

Occurrence

17 alklypyrazines have been identified in the products of pyrolysis of water-soluble components of fresh beef (54), and 33 pyrazines have been identified in flavor concentrates isolated from beef cooked superatmospherically at $162.7^{\circ}C$ (55). Tetramethylpyrazine has been isolated from "natto," obtained from fermented soy(a) bean (56), and the volatile compounds of Emmentaler and Gouda cheeses have been found to contain alkylpyrazines (57, 58).

Three extremely odorous pyrazines, 3-isopropyl-2-methoxypyrazine, 2-s-butyl-3-methoxypyrazine, and 2-isobutyl-3-methoxypyrazine have been shown to be present in green peas, and are likely to be of major significance in the flavor of peas (59). The volatile oil of green bell peppers has been found to contain 2-isobutyl-3-methoxypyrazine as a major component (60, 61). The alkylpyrazines in potato chips (62, 63) and roasted peanuts (63) have been examined. 2-Isopropyl-3methoxypyrazine has been characterized in the vacuum steam volatile oil of potatoes (64), 2-ethyl-3-methoxypyrazine in cooked potato (65), and 3-ethyl-2,5dimethylpyrazine and 2-ethyl-3,5-dimethylpyrazine as the components important to the aroma of baked potato (66). A variety of alkylpyrazines have been identified in roasted sesame seeds (67); and 21 pyrazines have been identified in the aroma components isolated from roasted green tea (68).

A review listing the extensive occurrence of pyrazines (mostly alkylpyrazines) in foods and a discussion of the theories of pyrazine formation has been published by Maga and Sizer (69), and a review of the natural occurrence and mass spectra of pyrazines by Brophy and Cavill (69a).

3-Isopentyl-2,5-dimethylpyrazine, 2,5-dimethyl-3-propylpyrazine and the (Z) and (E) isomers of 2,5-dimethyl-3-styrylpyrazine have been characterized in the heads of Argentine ants (70, 71). Mandibular gland secretions of the ponerine ants Odontomachus hastatus, O. clarus, and O. brunneus have been shown to contain alkylpyrazines; 3-isopentyl-2,5-dimethylpyrazine has been demonstrated in O. hastatus and O. clarus, and 3,5-dimethyl-2-pentyl-, -butyl-, -propyl-, and -ethylpyrazines in O. brunneus (72). 3-Isopentyl-2,5-dimethylpyrazine is also the main constituent in the mandibular gland secretions of workers of Hypoponera opacior and Ponera pennsylvanica (73). See also reference (74a).

Metasternal gland secretions from the cerambycid beetle have been found to contain 3-isopentyl-2,5-dimethylpyrazine (principally) and the 3-propyl, 3-butyl, 3-pentyl, and 3-(2'-methylbutyl) analogues as major components in one genus, and as minor components in several other genera (74b).

Recent work has shown the presence of pyrazine and 2,6-dimethylpyrazine in leek (75), pyrazine and alkylpyrazines in the volatile constituents of tamarind (76), five alkylpyrazines in soong-neung (extract of cooked and roasted rice) (77) and in shoyu (soy sauce) (78), and alkylpyrazines in white bread (79). Murray and Whitfield (80) have examined vegetable tissue for 2-isopropyl-, 2-s-butyl-, and 2-isobutyl-3-methoxypyrazines and observed at least one of these compounds in 23 of the 27 samples studied. 2-Methylpyrazine and 2,5- and 2,6-dimethylpyrazines have been determined in black tobacco and in the smoke of nonfilter cigarettes made from these tobaccos (81).

Pyrazines are produced by certain molds. Thus White (82) and White and Hill

(83) first reported the isolation of the bactericidal antibiotic aspergillic acid from a strain of Aspergillus flavus, and after much work (84-93), its structure proved to be 6-s-butyl-2-hydroxy-3-isobutylpyrazine 1-oxide (11). Hydroxyaspergillic acid was isolated also from cultures of A. flavus grown on a medium containing brown sugar (84) and its structure was established later as 2-hydroxy-6-(1'-hydroxy-1'methylpropyl)-3-isobutylpyrazine 1-oxide (12) (94); further work by Dunn et al. (95) led to the discovery of flavacol, 3-hydroxy-2,5-diisobutylpyrazine (13), in culture filtrates of A. flavus. Macdonald (96) has also studied the production of pyrazines by A. flavus. Neohydroxyaspergillic acid (97, 98), 2-hydroxy-6-(1'-hydroxy-2'-methylpropyl)-3-isobutylpyrazine 1-oxide (14), and 2-hydroxy-3,6-diisobutylpyrazine 1-oxide (15) (98) have been isolated from cultures of A. sclerotiorum; and the pigment pulcherrimin, produced by the yeast Candida pulcherrima (Linder) Windisch, has been shown to be a polymeric ferric ion complex of pulcherriminic acid (16) or the tautomer (17) (99-101). Nakamura (102) isolated muta-aspergillic acid (a growth inhibitant against hiochi-bacilli) from culture filtrates of A. oryzae and determined its structure as 2-hydroxy-6-(1'-hydroxy-1'-methylethyl)-3-isobutylpyrazine 1-oxide (18) (103, 104);and A. oryzae A21 grown in media containing 0.05 M valine and 0.01 M isoleucine gave 3-s-butyl-2-hydroxy-6-isopropylpyrazine 1-oxide (104a). Tetramethylpyrazine has been obtained from a strain of Bacillus subtilis (105) and from B. natto (106), and emimycin, 3-hydroxypyrazine 1-oxide (19), has been isolated from the broth of Streptomyces No 2020-1 (107, 108).

