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Preface 

This text is a self-contained introduction to the fundamentals of analysis. The only 
prerequisite is some experience with mathematical language and proofs. That is, it 
helps to be familiar with the structure of mathematical statements and with proof meth- 
ods, such as direct proofs, proofs by contradiction, or induction. With some support 
in the right places, mostly in the early chapters, this text can also be used without 
prerequisites in a first proof class. 

Mastering proofs in analysis is one of the key steps toward becoming a mathe- 
matician. To develop sound proof writing techniques, standard proof techniques are 
discussed early in the text and for a while they are pointed out explicitly. Throughout, 
proofs are presented with as much detail and as little hand waving as possible. This 
makes some proofs (for example, the density of C[a,  b] in LP[a,  b] in Part 11) notation- 
ally a bit complicated. With computers now being a regular tool in mathematics, the 
author considers this appropriate. When code is written for a problem, all details must 
be implemented, even those that are omitted in proofs. Seeing a few highly detailed 
proofs is reasonable preparation for such tasks. Moreover, to facilitate the transition 
to more abstract settings, such as measure, inner product, normed, and metric spaces, 
the results for single variable functions are proved using methods that translate to these 
abstract settings. For example, early proofs rely extensively on sequences and we also 
use the completeness of the real numbers rather than their order properties. 

Analysis is important for applications, because it provides the abstract background 
that allows us to apply the full power of mathematics to scientific problems. This text 
shows that all abstractions are well motivated by the desire to build a strong theory 
that connects to specific applications. Readers who complete this text will be ready 
for all analysis-based and analysis-related subjects in mathematics, including complex 
analysis, differential equations, differential geometry, functional analysis, harmonic 
analysis, mathematical physics, measure theory, numerical analysis, partial differential 
equations, probability theory, and topology. Readers interested in motivation from 
physics are advised to browse Chapter 21, even if they have not read any of the earlier 
chapters. 

Aside from the topics covered, readers interested in applications should note that 
the axiomatic approach of mathematics is similar to problem solving in other fields. 
In mathematics, theories are built on axioms. Similarly, in applications, models are 
subject to constraints. Neither the axioms, nor the constraints can be violated by the 
theory or model. Building a theory based on axioms fosters the reader's discipline to 
not make unwarranted assumptions. 



xii Preface 

Organization of the content. The text consists of three large parts. Part I, com- 
prised of Chapters 1-13, presents the analysis of functions of one real variable, includ- 
ing a motivated introduction to the Lebesgue integral. Chapters 1-6 and 10-13 could 
be called “single variable calculus with proofs.” For a smooth transition from calculus 
and a gradual increase in abstraction, Chapters 1-6 require very little set theory. Chap- 
ter 1 presents the properties of the real line and limits of sequences are introduced in 
Chapter 2. Chapters 3-5 present the fundamentals on continuity, differentiation, and 
(Riemann) integration in this order and Chapter 6 gives a first introduction to series. 

Chapters 6-8 are motivated by the desire to further explore the Riemann integral 
while avoiding the excessive use of Riemann sums. This exploration is done with 
the Lebesgue criterion for Riemann integrability. Although this criterion requires the 
Lebesgue measure, the payoff is that many proofs become simpler. To quickly reach 
this criterion, the first presentation of series in Chapter 6 is deliberately kept short. 
It presents enough about series to allow the definition of Lebesgue measure. Chap- 
ter 7 presents fundamental notions of set theory. Most of these ideas are needed for 
Lebesgue measure, but, overall, Chapter 7 contains all the set theory needed in the re- 
mainder of the text. Chapter 8 finishes the presentation of the Riemann integral. With 
Lebesgue measure available, it is natural to investigate the Lebesgue integral in Chap- 
ter 9. This chapter could also be delayed to the end of Part I, but the author believes 
that early exposure to the crucial ideas will ease the later transition to measure spaces. 

The analysis of single variable functions is finished with the rigorous introduc- 
tion of the transcendental functions. The necessary background on power series is 
explored in Chapter 10. Chapter 11 presents some fundamentals on the convergence of 
sequences of functions and Chapter 12 is devoted to the transcendental functions them- 
selves. Chapter 13 discusses general numerical methods, but transcendental functions 
provide a rich test bed for the methods presented. 

Part I of the text can be read or presented in many orders. Figure 1 shows the 
prerequisite structure of the text. Prerequisites for each chapter have deliberately been 
kept minimal. In this fashion, the order of topics in the reader’s first contact with 
proofs in analysis can be adapted to many readers’ preferences. Most notably, the 
intentionally early presentation of Lebesgue integration can be postponed to the end 
of Part I if so desired. Throughout, the author intends to keep the reader engaged by 
providing motivation for all abstractions. Consequently, as Figure 1 and the table of 
contents indicate, some concepts and results are presented in a “just-in-time’’ fashion 
rather than in what may be considered their traditional place. If a concept is needed 
in an exercise before the concept is “officially” defined in the text, the concept will be 
defined in the exercise and in the text. 

Part 11, comprised of Chapters 14-20, explores how the appropriate abstractions 
lead to a powerful and widely applicable theoretical foundation for all branches of ap- 
plied mathematics. The desire to define an integral in d-dimensional space provides a 
natural motivation to introduce measure spaces in Chapter 14. This chapter facilitates 
the transition to more abstract mathematics by frequently referring back to correspond- 
ing results for the one dimensional Lebesgue integral. The proofs of these results 
usually are verbatim the same as in the one-dimensional setting. Moreover, this early 
introduction makes LP spaces available as examples for the rest of the text. The ab- 
stract venues of analysis are then presented in Chapter 15, which provides all examples 
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for the rest of Part 11. 
The fundamentals on metric spaces and continuity are presented in Chapter 16. As 

with measure spaces, for several results on metric spaces the reader is referred back to 
the corresponding proof for single variable functions. Proofs are no longer verbatim the 
same and abstraction is facilitated by translating proofs from a familiar setting to the 
new setting while analyzing similarities and differences. In a class, the author suggests 
that the teacher fill in some of these proofs to demonstrate the process. 

Chapter 17 presents the fundamentals on normed spaces and differentiation. Again, 
ideas are similar to those for functions of a single variable, but this time the abstraction 
goes beyond translation. With all three fundamental concepts (integration, continuity, 
and differentiation) available in the abstract setting, Chapter 18 shows the interrelation- 
ship between concepts presented separately before, culminating in the Multivariable 
Substitution Formula. 

The second part is completed by a presentation of the fundamentals of analysis on 
manifolds, together with a physical interpretation of key concepts in Chapter 19 and by 
an introduction to Hilbert spaces in Chapter 20. 

The remaining chapters give a brief outlook to applied subjects in which analysis 
is used, specifically, physics in Chapter 21, ordinary differential equations in Chapter 
22, and partial differential equations and the finite element method in Chapter 23. Each 
of these chapters can only give a taste of its subject and I encourage the reader to go 
deeper into the utterly fascinating applications that lie behind part 111. The mathemati- 
cal preparation through this text should facilitate the transition. 

It should be possible to cover the bulk of the text in a two course sequence. Al- 
though Chapters 14-16 should be read in order, depending on the available time, the 
pace and the choice of topics, any of Chapters 17-23 can serve as a capstone experience. 

How to read this text. Mathematics in general, and analysis in particular, is not 
a spectator sport. It is learned by doing. To allow the reader to “do” mathematics, 
each section has exercises of varying degrees of difficulty. Some exercises require the 
adaptation of an argument in the text. These exercises are also intended to make the 
reader critically analyze the argument before adapting it. This is the first step toward 
being able to write proofs. Of course the need for very critical (and slow) reading of 
mathematics is nicely summed up in the old quote that “To read without a pencil is 
daydreaming.” The reader should ask himherself after every sentence “What does this 
mean? Why is this justified?’ Making notes in the margin to explain the harder steps 
will allow the reader to answer these questions more easily in the second and third 
readings of a proof. So it is important to read thoroughly and slowly, to make notes 
and to reread as often as needed. The extensive index should help with unknown or 
forgotten terminology as necessary. Other exercises have hints on how to create a proof 
that the reader has not seen before. These exercises require the use of proof techniques 
in a new setting. Finally, there are also exercises without hints. Being able to create 
the proof with nothing but the result given is the deepest task in a mathematics course. 
This is not to say that exercises without hints are always the hardest and adaptations 
are always the easiest, but in many cases this is true. Finally, some exercises give a 
sequence of hints and intermediate results leading up to a famous theorem or a specific 
example. These exercises could also be used as mini-projects. In a class, some of them 
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could be the basis for separate lectures that spotlight a particular theorem or example. 
To get the most out of this text, the reader is encouraged to not look for hints and 

solutions in other background materials. In fact, even for proofs that are adaptations 
of proofs in this text, it is advantageous to try to create the proof without looking up 
the proof that is to be adapted. There is evidence that the struggle to solve a problem, 
which can take days for a single proof, is exactly what ultimately contributes to the 
development of strong skills. “Shortcuts,” while pleasant, can actually diminish this 
development. Readers interested in quantitative evidence that shows how the struggle 
to acquire a skill actually can lead to deeper learning may find the article [4] quite 
enlightening. A better survival mechanism than shortcuts is the development of con- 
nections between newly learned content and existing knowledge. The reader will need 
to find these connections to hisher existing knowledge, but the structure of the text is 
intended to help by motivating all abstractions. Readers interested in how knowledge 
is activated more easily when it was learned in a known context may be interested in 
the article [5] .  

Acknowledgments. Strange as it may sound, I started writing this text in the spring 
of 1987, as I prepared for my oral final examination in the traditional Analysis I- 
111 sequence in Germany. Basically, I took all topics in the sequence and arranged 
them in what was the most logical fashion to me at the time. Of course, these notes 
are, in retrospect, immature. But they did a lot to shape my abilities and they were 
a good source of ideas and exercises. In this respect, I am indebted to my teachers 
for this sequence: Professor Wegener and teaching assistant Ms. Lange for Analysis 
I, Professor Kutzler and teaching assistant Herr Bottger for Analysis 11-111 as well as 
Professor Herz in whose Differential Equations class I first saw analysis “at work.” 
With all due respect to the other individuals, to me and many of my fellow students, 
the force that drove us in analysis (and beyond) was Herr Bottger. This gentleman 
was uncompromising in his pursuit of mathematical excellence and we feared as well 
as looked forward to his demanding exercise sets. He was highly respected because 
he was ready to spend hours with anyone who wanted to talk mathematics. Those 
who kept up with him were extremely well prepared for their mathematical careers. 
Incidentally, Dr. Ansgar Jungel, whose notes I used for the chapter on the finite element 
method, took the above mentioned classes with me. The thorough preparation through 
these classes is the main reason why most of this text was comparatively easy to write. 
If this text does half as good a job as Herr Bottger did with us, it has more than achieved 
its purpose. 

It was thrilling to test my limitations, it was humbling to find them and ultimately 
I was left awed once more by the beauty of mathematics. When my abilities were in- 
sufficient to proceed, I used the texts listed in the bibliography for proofs, hints or to 
structure the presentation. To make the reader fully concentrate on matters at hand, and 
to force myself to make the exposition self-contained, outside references are limited to 
places where results were beyond the scope of this exposition. A solid foundation will 
allow readers to judiciously pick their own resources for further study. Nonetheless, it 
is appropriate to recognize the influence of the works of a number of outstanding indi- 
viduals. I used Adams [2], Renardy and Rogers [23], Yosida [33] and Zeidler [34] for 
Sobolev spaces, Aris 131, Cramer’s http: //www. navier-stokes .net/, and 
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Welty, Wicks and Wilson [31] for fluid dynamics, Chapman [6] for heat transfer, Cohn 
[7] for measure theory, DieudonnC [8] for differentiation in Banach spaces, Dodge [9] 
and Halmos [ 131 for set theory, Ferguson [ 101, Sandefur [24] and Stoer and Bulirsch 
[28] for numerical analysis, Halliday, Resnick and Walker [ 121 for elementary physics, 
Hewitt and Stromberg [14], Heuser [15], [16], Johnsonbaugh and Pfaffenberger [20], 
Lehn [22] and Stromberg [29] for general background on analysis, Heuser [17] for 
functional analysis, Hurd and Loeb [18] for the use of quantifiers in logic, Jiingel [21] 
and Solin [25] for the finite element method, Spivak [26], [27] for manifolds, Torchin- 
sky [30] for Fourier series, Willard [32] for topology, and the Online Encyclopaedia of 
Mathematics http : / /eom. springer. de/  for quick checks of notation and defi- 
nitions. Readers interested in further study of these subjects may wish to start with the 
above references. 

The first draft of the manuscript was used in my analysis classes in the Winter and 
Spring quarters of 2007. The first class covered Chapters 1-9, the second covered 
Chapters 11 and 14-18 (with some strategic “fast forwards”). This setup assured that 
graduating students would have full exposure to the essentials of analysis on the real 
line and to as much abstract analysis as possible without “handwaving arguments.” I 
am grateful to the students in these classes for keeping up with the pace, solving large 
numbers of homework problems, being patient with the typos we found and also for 
suggesting at least one order in which to present the material that I had not considered. 
The students’ evaluations (my best ever) also reaffirmed for me that people will enjoy, 
or at least accept and honor, a challenge, and that an ambitious, motivated course should 
be the way to go. Devery Rowland once more did an excellent job printing drafts of 
the text for the classes. 

Aside from the referees, several colleagues also commented on this text and I owe 
them my thanks for making it a better product. In particular, I would like to thank Na- 
talia Zotov for some comments on an early version that significantly improved the pre- 
sentation, and Ansgar Jiingel for pointing out some key references on Sobolev spaces. 
Although I hope that we have found all remaining errors and typos, any that remain are 
my responsibility and mine alone. I request readers to report errors and typos to me 
so I can post an errata. My contacts at Wiley, Susanne Steitz, Jacqueline Palmieri, and 
Melissa Yanuzzi bore with me when the stress level rose and their patience made the 
publishing process very smooth. 

As always, this work would not have been possible without the love of my family. 
It is truly wonderful to be supported by individuals who accept your decision to spend 
large amounts of time reliving your formative years. 

Finally, I was sad to learn that Herr Bottger died unexpectedly a few years after I 
had my last class with him. Sir, this one’s for you. 

Ruston, LA, August 30,2007 

Bernd Schroder 



Part I 

Analysis of Functions 

of a Single Real Variable 



Chapter 1 

The Real Numbers 

This investigation of analysis starts with minimal prerequisites. Regarding set theory, 
the terms “set” and “element” will remain undefined, as is customary in mathematics 
to avoid paradoxes. The empty set 0 is the set that has no elements. The statement 
“e E S” says that e is an element of the set S. The statement “ A  G B” says that every 
element of A is an element of B.  Sets A and B are equal if and only if A C B and 
B C A .  The statement “A c B” says that A E B and A # B.  Subsets will be defined 
as “ A  = {x E S : (property)},” that is, with a statement from which set S the elements 
of A are taken and a property describing them. The union of two sets A and B is 
A U B = {x : x E A o r x  E B } ,  theintersectionis A n B = {x : x E A andx E B ) .  

Union and intersection of finitely many sets are denoted u A j  and n A j ,  respec- 

tively, and the relative complement of B in A is A \ B = {x E A : x @ B ) .  Further 
details on set theory are purposely delayed until Section 7.1. Until then, we focus on 
analytical techniques. Any required notions of set theory will be clarified on the spot. 

To define properties, sometimes the universal quantifier “V” (read “for all”) or the 
existential quantifier “3” (read “there exists”) are used. Formal logic is described in 
more detail in Appendix A. Finally, the reader needs an intuitive idea what a function, 
a relation and a binary operation are. Details are relegated to Appendices B.2 and C.2. 

The real numbers R are the “staging ground” for analysis. They can be charac- 
terized as the unique (up to isomorphism) mathematical entity that satisfies Axioms 
1.1, 1.6, and 1.19. That is, they are the unique linearly ordered, complete field (see 
Exercise 1-30). In this chapter, we introduce the axioms for the real numbers and some 
fundamental consequences. These results assure that the real numbers indeed have the 
properties that we are familiar with from algebra and calculus. 

n n 

j = l  j = 1  

1.1 Field Axioms 

The description of the real numbers starts with their algebraic properties. 

1 
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Axiom 1.1 The real numbers R are a field. That is, R has at least two elements 
and there are two binary operations, addition + : R x R + R and multiplication 
. : R x R -+ R, so that 

1. Addition is associative, that is, for all x ,  y ,  z E R we have 

(x + y )  + z = x + ( y  + z ) .  

2. Addition is commutative, that is, for all x ,  y E R we have 

x + y = y + x .  

3. There is a neutral element 0 for  addition, that is, there is an element 0 E R so 
tha t fora l lx  E R we havex + 0 = x .  

4. For every element x E R there is an additive inverse element (-x) so that 

x + (-x) = 0. 

5. Multiplication is associative, that is, for all x ,  y,  z E R we have 

(x . y )  . z = x . ( y  . z ) .  

6. Multiplication is commutative, that is, for all x ,  y E R we have 

x ‘ 4 ’  = y .x. 

7. There is a neutral element 1 f o r  multiplication, that is, there is an element 1 E R 
so that for all x E R we have 1 . x = x .  

8. For every element x E R \ {0} there is a multiplicative inverse element x - l  so 
tha tx  . x - l  = 1. 

9. Multiplication is (left) distributive over addition, that is, for  all a ,  x ,  y E R we 
have a .  (x + y) = a, .x + a .  y.  

As is customary for multiplication, the dot between factors is usually omitted. 

Fields are investigated in detail in abstract algebra. For analysis, it is most effective 
to remember that the field axioms guarantee the properties needed so that we can per- 
form algebra and arithmetic “as usual.” Some of these properties are exhibited in this 
section and in the exercises. The exercises also include examples that show that not 
every field needs to be infinite (see Exercises 1-7-1-9). 

Theorem 1.2 The following are true in R: 

1. For all x E R, we have Ox = 0. 

2.  0 # 1. 

3. Additive inverses are unique. That is, i f x  E R and x’ and X both have the 
property in part 4 ofAxiom 1.1, then x’ = X. 

4. For all x E R, we have (- l)x = -x. 
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Proof. Early in the text, proofs will sometimes be interrupted by comments in italics 

To prove part 1, let x E R. Then the axioms allow us to obtain the following 
to point out standard formulations and proof techniques. 

equation. Ox = (O+O)x = x(O+O) = xO+xO = Ox +Ox. This implies Ax.3 Ax.6 Ax.9 Ax.6 

as was claimed. The proof of part I shows how every step in a proof needs to be 
just$ed. Usually we will not explicitly justify each step in a computation with an axiom 
or a previous result. Howevel; the reader should always mentally fill in the justi3cation. 
The practice of filling in these justiJcations should be started in the computations in 
the remainder of this proot 

To prove part 2, first note that, because R has at least two elements, there is an 
x E R \ (0) .  Now suppose for a contradiction (see Standard Proof Technique 1.4 
below) that 0 = 1. Then x = 1 . x = 0 .  x = 0 is a contradiction to x E R \ (0) .  

For part 3, note that if x’ and X both have the property in part 4 of Axiom 1.1, then 
x’ = x’+O = x’+(x+X) = (x’+x)+X = (x+x’)+X = O+X = X+O = X. Note that 
the statement of part 3 already encodes the typical approach to a uniqueness proof (see 
Standard Proof Technique 1.5 below). 

Finally, for part 4 note that x + (- l ) x  = l x  + (- 1)x = (1 + (- 1)). = Ox = 0. 
Because by part 3 additive inverses are unique, (- l)x must be the additive inverse 
-x of x .  The last step is a typical application of modus ponens, see Standard Proof 
Technique 1.3 below. 

To familiarize the reader with standard proof techniques, these techniques will be 
pointed out explicitly in the early part of the text. The techniques presented in Chapter 1 
are general proof techniques applicable throughout mathematics. Techniques presented 
in later chapters are mostly specific to analysis. 

Standard Proof Technique 1.3 The simplest mathematical proof technique is a di- 
rect proof in which a result that says “ A  implies B” is applied after we have proved 
that A is true. Truth of A and of “ A  implies B” guarantees truth of B.  This technique 
is also called modus ponens. An example is in the proof of part 4 of Theorem 1.2. 0 

Standard Proof Technique 1.4 In a proof by contradiction, we suppose the contrary 
(the negation, also see Appendix A.2) of what is claimed is true and then we derive 
a contradiction. Typically, we derive a statement and its negation, which is a contra- 
diction, because they cannot both be true. For an example, see the proof of part 2 of 
Theorem 1.2 above. Given that the reasoning that led to the contradiction is correct, the 
contradiction must be caused by the assumption that the contrary of the claim is true. 
Hence, the contrary of the claim must be false, because true statements cannot imply 
false statements like contradictions (see part 3 of Definition A.2 in Appendix A). But 
this means the claim must be true. 

We will usually indicate proofs by contradiction with a starting statement like “sup- 
pose for a contradiction.” 0 
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Standard Proof Technique 1.5 For many mathematical objects it is important to as- 
sure that they are the only object that has certain properties. That is, we want to assure 
that the object is unique. In a typical uniqueness proof, we assume that there is more 
than one object with the properties under investigation and we prove that any two of 
these objects must be equal. Part 3 of Theorem 1.2 shows this approach. 

Exercises 
1-1. Prove that ( -1) .  (-1) = 1. 

1-2. . is right distributive over +. Prove that for all x ,  y ,  z E R we have (x + y ) z  = xz + yz. 

1-3. Multiplicative inverses are unique. Prove that if x E W and x' and X both have the property in part 
8 of Axiom 1.1 then x' = X. 

1-4. Prove that 0 does not have a multiplicative inverse. 

1-5. Prove that if x ,  y # 0, then ( x y ) - '  = y - l x - ' .  Conclude in particular that x y  # 0. 

1-6. Prove each of the binomial formulas below. Justify each step with the appropriate axiom 

(a) (a  + b)2 = a* + 2ab + b2 

(c) (a + b)(a  - b )  = a2 - b2 

(b) (a  - b)* = a2 - 2ab + b2 

1-7. Prove that the set (0, 1) with the usual multiplication and the usual addition, except that 1 + 1 := 0, is 
a field. That is, prove that the set and addition and multiplication as stated have the properties listed 
in Axiom 1.1. 

1-8. Prove that the set (0, 1. 2)  with the sum and product of two elements being the remainder obtained 
when dividing the regular sum and product by 3 is a field. 

1-9. A property and some finite fields 

(a) Let F be a field and let x ,  y E F .  Prove that x y = 0 if and only if x = 0 or y = 0 

(b) Prove that the set [O. 1, 2. 3 )  with the sum and product of two elements being the remainder 
obtained when dividing the regular sum and product by 4 is not a field. 

(c) Prove that the set (0, 1, . , , , p - 1) with the sum and product of two elements being the 
remainder obtained when dividing the regular sum and product by p is a field if and only if p 
is a prime number. 

1.2 Order Axioms 

Exercises 1-7-1-9c show that the field axioms alone are not enough to describe the real 
numbers. In fact, fields need not even be infinite. However, aside from executing the 
familiar algebraic operations, we can also compare real numbers. This section presents 
the order relation on the real numbers and its properties. 

Axiom 1.6 The real numbers R contain a subset R+, called the positive real numbers 
such that 

1. For all x ,  y E R+, we have x + y E E%+ and x y  E E%+, 

2. For all x E R, exactly one of the following three properties holds. 

Either x E R+ or -x E Rt or x = 0. 
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A real number x is called negative if and only if -x E R+. 
Once positive numbers are defined, we can define an order relation. As usual, 

instead of writing y + (-x) we write y - x and call it the difference of x and y. The 
binary operation “-” is called subtraction. 

The phrase “if and only if,” which is used in definitions and biconditionals, is nor- 
mally abbreviated with the artificial word “iff.” 

Definition 1.7 For x, y E R, we say x is less than y, in symbols x < y, i f f y  -x E R+. 
We say x is less than or equal to y, denoted x 5 y, ifSx < y or x = y. Finally, we say 
x is greater than y, denoted x > y, i r y  < x, and we say x is greater than or equal 
to y ,  denoted x 2 y, ifsy 5 x. 

The relation 5 satisfies the properties that define an order relation. 

Proposition 1.8 The relation 5 is an order relation on R. That is, 

1. 5 is reflexive. For all x E R we have x 5 x, 

2. 5 is antisymmetric. For all x, y E R we have that x 5 y and y 5 x implies 
x = y, 

3. 5 is transitive. For all x, y ,  z E X ,  we have that x 5 y and y 5 z implies 
x 5 z.  

Moreovel; the relation 5 is a total order relation, that is, for  any two x, y E R we 
have that x 5 y or y 5 x. 

Proof. The relation 5 is reflexive, because it includes equality. 
For antisymmetry, let x 5 y and y 5 x and suppose for a contradiction that x + y.  

Then x - y E R+ and -(x - y )  = y - x E R+, which cannot be by Axiom 1.6. Thus 
- < must be antisymmetric. 

For transitivity, let x 5 y and y 5 z .  There is nothing to prove if one of the 
inequalities is an equality. Thus we can assume that x y and y < z ,  which means 
y - x E Rf and z - y E R+. But then R+ contains (7, - y)  + ( y  - x) = z - x, and 
hence x < z .  We have shown that for all x, y.  z E R the inequalities x 5 y and y I: z 
imply x 5 z ,  which means that 5 is transitive. 

For the “moreover” part note that if x, y E R, then y - x E R and we have 
either y - x E R+, which means x < y ,  or y - x = 0, which means y = x, or 
x - y  = - (y-x)  ER+,whichmeansy  <x. Thereforeforallx,y E R o n e o f x  5 y 
or y 5 x holds, and hence 5 is a total order. 

Once an order relation is established, we can define intervals. 

Definition 1.9 An interval is a set I C R so that for all c ,  d E I and x E R the 
inequalities c < x < d imply x E I .  In particular for a ,  b E R with a < b we define 

1. [a ,  b] := (X E R : a 5 x 5 b}, 

2. ( a ,  b )  := (x E R : a < x < b] ,  ( a ,  00) := (x E R : a < x}, 
(-00. b )  := (X E R : x < b}, (-w, 00) := R, 
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3. [a ,  b )  := {x E R : a 5 x < b} ,  [a ,  00) := { X  E R : u 5 x}, 

4. ( a ,  b ]  := {X E R : u < x 5 b ] ,  (-w, b ]  := ( X  E R : x 5 b].  

The points a and b are also called the endpoints of the interval. An  interval that 
does not contain either of its endpoints (where &m are also considered to be "end- 
points") is called open, An interval that contains exactly one of its endpoints is called 
half-open and an interval that contains both its endpoints is called closed. 

For the first part of this text, the domains of functions will almost exclusively be 
intervals. Because analysis requires extensive work with inequalities, we need to in- 
vestigate how the order relation relates to the algebraic operations. 

Theorem 1.10 Properties of the order relation. Let x ,  y ,  z E R. 

1. The number x is positive i f sx  > 0 and x is negative c r x  < 0. 

2.  I f x  5 y ,  then x + z 5 y + z .  

3. I f x  5 y and z > 0, then xz 5 y z .  

4. I f x  5 y and z < 0, then xz 2 yz .  

5. l f 0  < x 5 y ,  then y-' 5 x-'. 

Similar results can be proved for  other combinations of strict and nonstrict inequalities. 
We will not state these here, but instead trust that the reader can make the requisite 
translation from the statements in this theorem. 

Proof. Parts 1 and 2 are left to the reader as Exercises 1-10a and 1-lob. Throughout 
this text, parts of proofs will be delegated to the reader to facilitate a better connection 
to the material presented. 

For part 3 ,  let x 5 y and let z > 0. Then, y - x E R+ or y = x. In case y = x, 
we obtain y z  = x z  and thus, in particular, xz 5 yz .  In case y - x E R+, note that 
z > 0 means z E R+, and hence y z  - xz = ( y  - x ) z  E R+. By definition, this implies 
xz < y z ,  and in particular xz 5 yz .  Because we have shown xz 5 y z  in each case, 
the result is established. All proofs in this section are done with the above kind of case 
distinction (see Standard Proof Technique 1.1 1). 

For part 4, let x 5 y and let z < 0. Then, y - x E R+ or y = x. In case y = x, 
we obtain y z  = x z ,  and hence xz 2 y z .  In case y - x E Rf, note that z < 0 means 
-2 E B+, and hence xz - yz  = ( x  - y ) z  = ( y  - x ) ( - z )  E R+. By definition, this 
implies y z  < xz, and hence y z  5 xz, which establishes the result. 

For part 5, first note that there is nothing to prove if x = y .  Hence, we can assume 
that x < y .  Suppose for a contradiction that x - l  < y-' . Then by part 3 we have that 

Standard Proof Technique 1.11 When several possibilities must be considered in a 
proof, the proof usually continues with separate arguments for each possibility. The 
proof is complete when each separate argument has led to the desired conclusion. This 

1 = x - l x  < y - ' x ,  and hence x < y . 1 < y y - ' x  = x, contradiction. 

type of proof is also called a proof by case distinction. 0 
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We conclude this section by introducing the absolute value function and some of 
its properties. 

Definition 1.12 For x E R, we set Ix I = 

value of x .  

x; i f x  1.0, 
-x; i f x  < 0, 

and we call it the absolute 

Theorem 1.13 summarizes the properties of the absolute value. The numbering is 
adjusted so that properties 1 ,2 ,  and 3 correspond to the analogous properties for norms 
(see Definition 15.38). We will formulate many results in the jirst part of the text to 
be analogous or easily generalizable to more abstract settings, but we will usually do 
so without explicit forward references. In this fashion many abstract situations will be 
more familiar because of similarities to situations investigated in the jirst part. 

Theorem 1.13 Properties of the absolute value. 

0. For all x E R, we have Ix I > 0, 

1. For all x E R, we have 1x1 = 0 i y x  = 0, 

2. F o r a l l x , y  ER, wehave lxyl = Ixllyl, 

3. Triangular inequality. For all x, y E R, we have Ix + y I 5 lx I + I y 1 .  

4. Reverse triangular inequality. For all x ,  y E R, we have 1 Ix I - I y I 1 I Ix - y I .  

Proof. For part 0, let x E R. In case x > 0, by Definition 1.12 we have /x 1 = x > 0. 
In case x < 0, we have x @ R+ and by part 2 of Axiom 1.6 we conclude -x > 0. 
Because in this case Ix I = -x > 0, part 0 follows. 

Throughout the text, the two implications of a biconditional “ A  iff B” will be re- 
ferred to as “+,” denoting “if A,  then B ” and “+,” denoting “if B,  then A.” 

For part 1, note that the direction “+=” is trivial, because (01 = 0. For the direction 
“j,” let x E R be so that /x I = 0 and suppose for a contradiction that x + 0. If x > 0, 
then 0 < x = 1x1 = 0, a contradiction. (Note that the previous sentence is a shortproof 
by contradiction that is part of a longer proof by contradiction.) Therefore x < 0. But 
then 0 < -x = 1x1 = 0, a contradiction. Hence, x must be equal to 0. 

For part 2 ,  let x ,  y E R. If x 2 0 and y 1. 0, then by part 3 of Theorem 1.10 
xy 1. 0, and hence lxyl = x y  = I x / / y l .  If x 2 0 and y < 0, then by part 4 of 
Theorem 1.10 we infer xy 5 0. Hence, (xyl = -xy = x ( - y )  = JxJJyJ .  The case 
x < 0 and y 3 0 is similar and the reader will produce it in Exercise 1 - 1 1 a. Finally, 
if x < 0 and y < 0, then by part 4 of Theorem 1.10 we obtain x y  > 0. Hence, 

To prove the triangular inequality, first note that for all x E IR we have that x I /x 1 .  
This is clear for x 1. 0 and for x < 0 we simply note x < 0 < -x = 1x1. Moreover, 
(see Exercise 1- l lb)  for all x E R we have -x I 1x1. Now let x, y E R. If the 
inequality x + y 2 0 holds, then by part 2 of Theorem 1.10 at least one of x. 4’ is 
greater than or equal to 0. (Otherwise x < 0 and y < 0 would imply x + y < 0.) 
Hence,bypart2ofTheoreml.lOIx+yI = x + y l  I x l + y ~  I x I+Iy I . I f x+y  ( 0 ,  

/xyl  = xy = (-l)(-1)xy = ( - x ) ( - y )  = ixl ly l .  
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then at least one of x and y is less than 0. Hence, by part 2 of Theorem 1.10 we obtain 

Finally, for the reverse triangular inequality, let x, y E R. Without loss of generality 
(see Standard Proof Technique 1.14) assume that ( X I  3 IyI. (The proof for the case 
1x1 < lyl is left as Exercise 1-llc.) Then 1x1 = Ix - y + yl i Ix - yI + lyl, which 

w 

Ix + yl = -(x + y )  = --x + ( - y )  - < I - X I  + ( - Y )  i I - - X I  + I - Y I  = 1x1 + IYI .  

implies 11x1 - 1y11 = 1x1 - IYI  i Ix - Y I .  

Standard Proof Technique 1.14 If the proofs for the cases in a case distinction are 
very similar, it is customary to assume without loss of generality that one of these 
similar cases is true. This is not a loss of generality, because it is assumed that what is 
presented enables the reader to fill in the proof(s) for the other case(s). In this text, the 
omitted part is sometimes included as an explicit exercise for the reader. 0 

Exercises 
1- 10. Finishing the proof of Theorem 1.10 

(a) Prove part 1 of Theorem 1.10. 

(b) Prove part 2 of Theorem 1.10. 

1-1 1. Finishing the proof of Theorem 1.13. 

(a) L e t x , y ~ W . P r o v e t h a t i f x > O a n d y ~ O , t h e n I x y l = I x l l y l .  

(b) Prove that for all x E R we have --x 5 1x1. 

(c) Prove that if 1x1 < Iyl ,  then 11x1 - ( y /  1 5 Ix - y / .  

1-12. Let I ,  J G R be intervals. Prove that I n J = { x  E W : x E I and x E J ]  is again an interval 

1-13. Let a < b and le tx ,  y E [u ,  b].  Prove that In - yI 5 b - a  

1-14. Prove that none of the fields from Exercise 1-9c can satisfy Axiom 1.6 by showing that for these 
fields part 2 of Axiom 1.6 fails for n = 1. 
Note. This result shows that Axiom 1.6 distinguishes R from the finite fields of Exercise 1-9c. 

1.3 Lowest Upper and Greatest Lower Bounds 

A structure that has the properties outlined in Axioms 1.1 and 1.6 is also called a 
linearly ordered field. The rational numbers satisfy these properties just as well as the 
real numbers. Thus we are not done with our characterization of R. The final axiom 
for the real numbers addresses upper and lower bounds of sets. 

Definition 1.15 Let A be a subset ofR. 

1. The number u E R is called an upper bound of A iff u 2 a for  all a E A. If A 
has an upper bound, it is also called bounded above. 

2. The number I E R is called a lower bound of A i f f 1  5 a fo r  all a E A. If A has 
a lower bound, it is also called bounded below. 

A subset A R that is bounded above and bounded below is also called bounded. 
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Among all upper bounds of a set, the smallest one (if it exists) plays a special role. 
Similarly, the greatest lower bound plays a special role if it exists. 

Definition 1.16 Let A C R. 

1. The number s E R is called lowest upper bound of A or supremum of A, 
denoted sup(A), iffs is an upper bound of A and for  all upper bounds u of A we 
have that s 5 u. 

2.  The number i E R is called greatest lower bound of A or infimum of A, de- 
noted inf(A), iff i is a lower bound of A and for  all lower bounds 1 of A we have 
that 1 5 i .  

Formally, it is not guaranteed that suprema and infima are unique, but the next 
result shows that this is indeed the case. Note that the statement of Proposition 1.17 
follows the standard pattern for a uniqueness statement. 

Proposition 1.17 Suprema are unique. That is, i f the set A 
and s ,  t E R both are suprema of A, then s = t .  

R is bounded above 

Proof. Let A G Iw and s,  t E R be as indicated. Then s is an upper bound of A and, 
because t is a supremum of A, we infer s 2 t .  Similarly, t is an upper bound of A and, 

Standard Proof Technique 1.18 (Also compare with Standard Proof Technique 1.14.) 
When, as in the proof of Proposition 1.17, two parts of a proof are very similar, it is 
common to only prove one part and state that the other part is similar. Throughout the 
text, the reader will become familiar with this idea through exercises that require the 

because s is a supremum of A,  we infer t 2 s. This implies s = t .  

construction of proofs that are similar to proofs given in the narrative. 

The proof that infima are unique is similar (see Exercise 1-15). Because suprema 

The final axiom for the real numbers now states that suprema and infima exist under 
and infima are unique if they exist, we speak of the supremum and the infimum. 

mild hypotheses. 

Axiom 1.19 Completeness Axiom. Every nonempty subset S of R that has an upper 
bound has a lowest upper bound. 

Although the Completeness Axiom formally only guarantees that nonempty subsets 
of R that are bounded above have suprema, existence of infima is a consequence. 

Proposition 1.20 Let S 5 R be nonempty and bounded below. Then S has a greatest 
lower bound. 

Proof. Let L := {x E R : x is a lower bound of S}. Then L f 0. Let s E S. Then 
for all 1 E L we have that 1 I s. Because S f: 0 this means that L is bounded above. 
Because L f: 0, by the Completeness Axiom, L has a supremum sup(L). Every s E S 
is an upper bound of L,  which means that s 2 sup(L) and so sup(L) is a lower bound 
of S .  By definition of suprema, sup(L) is greater than or equal to all elements of L ,  
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that is, it is greater than or equal to all lower bounds of S. By definition of infima, this 
rn 

We will see that suprema and infima are valuable tools in analysis on the real line. 
The next result shows that in any set with a supremum we can find numbers that are 
arbitrarily close to the supremum. This fact is important, because analysis ultimately 
is about objects “getting close to each other.” 

Proposition 1.21 Let S c R be a nonempty subset of R that is bounded above and let 
s := sup(S). Then for  every E > 0 there is an element x E S so that s - x < E.  

Proof. Suppose for a contradiction that there is an E > 0 so that for all x E S we 
have that s - x 1 E .  Then for all x E S we would obtain s - E 1 x, that is, s - E would 
be an upper bound of S. But s - E < s contradicts the fact that s is the lowest upper 
bound of S. rn 

Although the supremum and infimum of a set need not be elements of the set, we 

means that sup(L) = inf(S). 

have different names for them in case they are in the set. 

Definition 1.22 Let A be a subset of R. 

1. If A is bounded above and sup(A) E A, then the supremum of A is also called 
the maximum of A, denoted max(A). 

minimum of A, denoted min(A). 
2.  If A is bounded below and inf(A) E A, then the injmum of A is also called the 

Although the distinctions between suprema and maxima and between infima and 
minima are small, the notions are distinct. For example, the open interval (0, 1) has a 
supremum (1) and an infimum (0), but it has neither a maximum, nor a minimum. 

Exercises 
1-15. Let A g W be bounded below and le ts ,  f E W both be infima of A. Prove that s = t .  

1-16. Approaching infima. State and prove a version of Proposition 1.21 that applies to infima. Is the proof 
significantly different from that of Proposition 1.21? 

1-17. Let S g W be bounded above. Prove that s E W is the supremum of S iff s is an upper bound of S 
and for all E > 0 there is an x E S so that Is - x /  < E .  

1-18. Suprema and infima vs. containment of sets. 

(a) Let A.  B C W be bounded above. Prove that A 5 B implies sup(A) 5 sup(B). 

(b) Let A ,  B g W be bounded below. Prove that A g B implies inf(A) ? inf(B). 

1-19. Let A g W be bounded above. Prove that inf(x E R : - x  E A] = - sup(A). 
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1.4 Natural Numbers, Integers, and Rational Numbers 

Although Axioms 1.1, 1.6 and 1.19 uniquely describe the real numbers, they do not 
mention familiar subsets, such as natural numbers, integers, and rational numbers. This 
is because these sets can be constructed from the axioms as subsets of the real numbers. 
We start with the natural numbers, which are the unique subset with properties as stated 
in Theorem 1.23. While their existence is easy to establish, the uniqueness of the 
natural numbers can only be proved in Theorem 1.28 after some more machinery has 
been developed. 

Theorem 1.23 There is a subset N G R, called the natural numbers, so that 

1. 1 E N .  

2.  For each n E N the number n + 1 is also in N. 

3. Principle of Induction. If S s N is such that 1 E S and for  each n E S we also 
have n + 1 E S, then S = N. 

Proof. Call a subset A G R a successor set iff 1 E A and for all a E A we also 
have a + 1 E A .  Successor sets exist, because, for example, R itself is a successor 
set. Let N be the set of all elements of R that are in all successor sets. Because 1 is 
an element of every successor set, we infer 1 E N. Moreover, if n E N, then n is in 
every successor set, which means n + 1 is in every successor set, and hence n + 1 E N. 
Finally, any subset S C N as given in the Principle of Induction is a successor set. 
Because the elements of N are contained in all successor sets, we conclude that N G S,  
and hence N = S. 1 

Of course, we will denote the natural numbers by their usual names 1, 2, 3, . . . 
As algebraic objects, natural numbers are suited for addition and multiplication (see 
Proposition 1.24), but they are not so well suited for subtraction (see Proposition 1.25). 
Although all results until Theorem 1.28 are stated for N, they hold “for every subset of 
R that satisfies the properties in Theorem 1.23.” The reader should keep this in mind 
and double check, because we will need it in the proof of Theorem 1.28. To avoid 
awkward formulations, the results up to Theorem 1.28 are formulated for N, however. 

Proposition 1.24 The natural numbers are closed under addition and multiplication. 
That is, i fm ,  n E N, then m + n and mn are in N also. 

Proof. The key to this result is the Principle of Induction. Let m E W be arbitrary 
and let S, := {n  E N : m+n E N}. Then m E N implies m+ 1 E N, and hence 1 E S,. 
Moreover, if n E S,, then m + n E N, and hence m + (n  + 1) = (m + n )  + 1 E N, 
which means that n + 1 E S,. By the Principle of Induction we conclude that S, = N. 
Because m E N was arbitrary, this means that for any m ,  n E N we have m + n E W. 

1 

Readers familiar with induction recognize the part “1 E S,” of the preceding proof 
as the base step of an induction and the part “n E S, j n + 1 E S,” as the induction 
step. In this section, we use the “induction on sets” as done in the preceding proof. 
The more commonly known Principle of Induction is introduced in Theorem 1.39. 

The proof for products is similar and left to the reader as Exercise 1-20. 
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Proposition 1.25 Let m ,  n E N be such that m > n. Then m - n E N. 

Proof. We first show that if m E N, then m - 1 E N or m - 1 = 0. To do this, 
let A := {m E N : m - 1 E N o r m  - 1 = 0) .  Then 1 E A a n d i f m  E A,  then 
(m  + 1) - 1 = m E A C N, which means m + 1 E A.  Hence, A = N by the Principle 
of Induction. 

Now let S:= { n  E N: (Vm E N : m > n implies m - n E N)}. If n = 1 and m E W 
satisfies m > 1, then m - 1 > 0 and so by the above m - 1 E N, which means 1 E S. 
Let n E S. If m > n + 1, then m - 1 > n ,  and hence m - (n  + 1) = (m - 1) - n E N, 
which means n + 1 E S. By the Principle of Induction we conclude that S = N, and 

Proposition 1.26 shows that the natural numbers are positive and the smallest dif- 

hence for all m ,  n E N we have proved that m > n implies m - n E N. 

ference between any two of them is 1. 

Proposition 1.26 For all n E N, the inequality n 2 1 holds and there is no m E N so 
that the inequalities n < m < n + 1 hold. 

Proof. The proof that all natural numbers are greater than or equal to 1 is left to 

Now suppose for a contradiction that there is an n E N and an rn E N so that 

The Well-ordering Theorem turns out to be equivalent to the Principle of Induction 

Exercise 1-21. 

n < m < n + 1. Thenm - n  E N a n d m  - n  < 1, acontradiction. 

(see Exercise 1-22). 

Theorem 1.27 Well-ordering Theorem. Every nonempty subset of N has a smallest 
element. 

Proof. Suppose for a contradiction that B 5 N is not empty and does not have a 
smallest element. Let S := { n  E N : (Vm E N : m I n implies m $ B ) } .  By Proposi- 
tion 1.26, 1 is less than or equal to all elements of N, so 1 # B, and hence 1 E S. Now 
let n E S. Then all m E N with m 5 n are not in B. But then n + 1 E B would by 
Proposition 1.26 imply that n + 1 is the smallest element of B.  Hence, n + 1 # B and 
we conclude n + 1 E S. By the Principle of Induction, S = N and consequently B = 0, 
a contradiction. 

Now we are finally ready to show that the natural numbers are unique. 

Theorem 1.28 The natural numbers N are the unique subset of R that satisfies the 
properties in Theorem 1.23. 

Proof. Examination of the proofs of all results since Theorem 1.23 reveals that any 
set S E Iw that satisfies the properties in Theorem 1.23 must also have the properties 
given in these results. 

It may feel tedious to go back and verify the above statement. Howevel; mathemati- 
cal presentations more often than not will ask a reader to use a modification of a known 
proof toprove a result (also see Standard Proof Technique 1.14). When this occurs, the 


