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Preface 

The objective of the book is to present a scientific methodology that can be used 
to analyze the physics of multiantenna systems. The multiantenna systems are 
becoming exceedingly popular because they promise a different dimension 
(spatial diversity) than what is currently available to the communication systems 
engineers. Simultaneously using multiple transmit and receive antennas provides 
a means to perform spatial diversity, at least from a theoretical standpoint. In this 
way, one can increase the capacities of existing systems that already exploit time 
and frequency diversity. The deployment of multiantenna systems is equivalent 
to using an overmoded waveguide, where information is simultaneously 
transmitted via not only the dominant mode but also through all the higher-order 
modes. We look into this interesting possibility and study why communication 
engineers advocate the use of such a system, whereas electromagnetic and 
microwave engineers have avoided such propagation mechanisms in their 
systems. Most importantly, we study the physical principles of multiantenna 
systems through Maxwell’s equations and utilize them to perform various 
numerical simulations to observe how a typical system will behave in practice. 
The first five chapters of this book are devoted to this topic. 

Specifically, Chapter 1 describes Maxwell’s equations in the frequency 
and time domains and shows how to solve practical problems in both domains. 

Chapter 2 presents the frequency domain properties of antennas, and 
specifically what is meant by near field and far field of antennas, which are 
relevant to our discussions as an antenna beam can only be defined in the far 
field. In particular, an antenna has no nulls in the near field, which is independent 
of distance, and is only a function of the azimuth and elevation angles. We also 
study how the presence of a ground plane, namely the earth, modifies our 
concepts and how it affects the electrical performance of a system. 

Chapter 3 describes the properties of antennas in the time domain and 
illustrates how a broadband antenna should behave. Using the terminology 
broadband implies a finite width time domain pulse that can be either transmitted 
or received by an antenna without severe distortion. From this perspective, a 
spread spectrum system will not be considered broadband, since the 
instantaneous spectrum of its signals is still small. In dealing with wideband 
signals, one observes that the impulse response of the antenna in the transmit 
mode is the time derivative of the impulse response of the antenna in the receive 
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mode. We also look at the impulse response of some of the conventionally used 
wideband antennas, including a century bandwidth antenna. 

Chapter 4 looks at the concept of channel capacity from a Maxwellian 
viewpoint. The concept of channel capacity is intimately connected with the 
concept of entropy - hence related to physics. We present two forms of the 
channel capacity, the usual Shannon capacity which is based on power; and the 
seldomly used definition of Hartley which uses values of the voltage. These two 
definitions of capacities are shown to yield numerically very similar values if one 
is dealing with conjugately matched antennas. However, from an engineering 
standpoint, the voltage-based form of the channel capacity is more useful as it is 
related to the sensitivity of the receiver to an incoming electromagnetic wave. 
Furthermore, we illustrate through numerical simulations how to apply the 
channel capacity formulas in an electromagnetically proper way. To perform the 
calculations correctly, first in the simulations, the input power fed to the antennas 
need to remain constant in a comparison. Second, the expression of power often 
used by most communication engineers in the channel capacity is related to the 
radiated power and not to the input power, which is not correct. In a fair 
comparison, one should deal with the gain of antenna systems and not their 
directivities, which is an alternate way of referring to the input power fed to the 
antennas rather than to the radiated power. The problem is, the radiated power 
essentially deals with the directivity of an antenna and theoretically one can get 
any value for the directivity of an aperture. Hence, the distinction needs to be 
made between gain and directivity in a proper way to compare systems. Finally, 
one needs to use the Poynting’s theorem to calculate the power in the near field 
and not using exclusively either the voltage or the current. This applies to the 
power form of the Shannon channel capacity theorem. For the voltage form of 
the capacity due to Hartley is applicable to both near and far fields. Use of 
realistic antenna models in place of representing antennas by point sources 
further illustrates the above points, as the point sources by definition generates 
only far field. 

Chapter 5 presents the concept of a multi-input-multi-output (MIMO) 
antenna system and illustrates the strengths and the weaknesses of this 
multiantenna deployments in both the transmitters and the receivers. Sample 
simulations show that only the classical phased array mode out of the various 
spatial modes that characterize spatial diversity is useful and the other spatial 
modes are not efficient radiators. Hence, it is more useful to use the concept of 
adaptive beam forming using a phased array mode. 

The next seven chapters address a new phased array methodology for 
accurate and efficient adaptive processing. In Chapter 6, three classes of 
optimum filters are presented to illustrate in what sense they are optimal. Of the 
three classes, one has the promise of performing estimation rather than the usual 
detection process carried out in conventional adaptive processing. We illustrate 
that it is possible to perform adaptive processing using a single snapshot of the 
data, which may be more useful for a highly dynamic environment or in the 
presence of blinking jammers. A single snapshot based adaptive procedure 
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generates a least squares solution and does not require any statistical description 
of the signals. In fact, it has been illustrated in the literature and summarized in 
this book that processing a single snapshot of the data has essentially the same 
number of degrees of freedom for coherent interferers as a classical multiple- 
snapshot processing that is based on conventional sample matrix inversion 
techniques. In addition, this new method is at least an order of magnitude faster 
in computational speed than the sample matrix inversion techniques when using 
the same number of degrees of freedom. This new methodology is then extended 
to space-time adaptive processing, where a single snapshot is applied to a range 
cell and requires neither secondary data nor a statistical description of clutter. 
Recently, this methodology was applied to real airborne data and demonstrated to 
provide a better solution than conventional statistical methods. 

In Chapter 7, we show that the minimum of the sum of the absolute 
value of the weights can be used for further or equivalently secondary processing 
for improving the estimation of the direction of arrival of the signal of interest in 
an adaptive processing methodology. In this way, one can further improve the 
estimates for both the direction of arrival and the Doppler frequency for the 
signal of interest in a space-time adaptive algorithm. In particular, the minimum 
value for the norm of the adaptive weights is obtained at the true value for the 
direction of arrival for adaptive processing or at the true value for direction of 
arrival and Doppler frequency in space-time adaptive processing (STAP). 

Chapter 8 illustrates that the direct-data-domain least-squares (D3LS) 
adaptive methodology is quite flexible and it can easily be modified to deal with 
real values of the adaptive weights for both adaptive and space-time adaptive 
processing. How this adaptive processing approach can be achieved and 
implemented for phase-only weights is illustrated in Chapter 9. In Chapter 10, 
the D3LS method is used for simultaneously forming more than one main beam, 
which makes it possible to track multiple targets in the same adaptive process. 

In Chapter 1 1, a performance comparison is made between four versions 
of the statistical-based STAP and D3LS STAP algorithms, when the number of 
training data is varied. The four statistical-based methods are: the full-rank 
statistical method; the relative importance of the eigenbeam (RIE) method; the 
principle component generalized sidelobe canceller (GSC) method; and the 
cross-spectral GSC method. In contrast to the D3LS approach utilizes only a 
single snapshot of data (space and time corresponding to one range cell only), 
one needs to know the rank of the interference covariance matrix for multiple- 
snapshots to make the statistically-based methods work. The D3LS performs 
better when the number of training data available for the statistical-based 
methods is less than the rank of the interference covariance matrix. The channel 
mismatch is also introduced to all methods to evaluate their performance. 

Chapter 12 shows the effects of mutual coupling among the antenna 
elements in the array and illustrates how a nonplanar array with nonunifonnly 
spaced elements can be used for adaptive processing. One method that can be 
used to compensate for the mutual coupling is using the embedded in-situ 
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element patterns. This simple widely used method, however, breaks down when 
the intensity of the interferer increases. In those situations, implementing a more 
accurate compensation technique through the transformation matrix approach is 
necessary. When the strengths of the interferers are comparable to the signal of 
interest, using dummy antenna elements at the edges of an array can minimize 
the effects of mutual coupling. 

Chapter 13 illustrates how reciprocity can be used in directing a signal 
to a preselected receiver when there is a two way communication between a 
transmitter and the receiver. This embarrassingly simple method is much simpler 
in computational complexity than a traditional MIMO and can even exploit the 
polarization properties for effectively decorrelating multiple receivers in a 
multi-input-single-output (MISO) system. 

The next three chapters treat the estimation of the direction of arrival 
(DOA). Chapter 14 describes the Matrix Pencil method for DOA estimation, as 
knowledge of the DOA for the signal of interest is often necessary in many 
problems. A unitary transform is applied to illustrate how this method can be 
implemented in a real system using real arithmetic. The Matrix Pencil method is 
a direct data domain approach as opposed to ESPRIT, which uses a correlation 
matrix of the data. For situations, where few available snapshots of the data are 
available, we show that the Matrix Pencil method provides a more accurate 
estimate of the DOA than the ESPRIT method. In Chapter 15, DOA estimation is 
carried out using electrically small antennas and presents the associated Cramer- 
Rao bound to illustrate the accuracy of this estimation procedure. It is shown that 
conjugately matched electrically small antennas can be as effective, if not more 
effective, than their resonant versions. Chapter 16 presents a nonconventional 
least squares methodology for DOA estimation using arbitrary shaped nonplanar 
conformal arrays. 

The next two chapters discuss broadband processing of signals 
operating at different frequencies or those having a finite bandwidth. Chapter 17 
presents a broadband DOA estimation algorithm that uses the Matrix Pencil 
method, with the main objective of finding not only the azimuth and the 
elevation angles of arrival for the signals of interest but also their operating 
frequencies. Simulations illustrate how one can use realistic antennas to perform 
broadband DOA estimation. In Chapter 18, D3LS STAP of Chapter 6 is applied 
to show how broadband adaptive processing can be performed. 

Finally, Chapter 19 analyzes how random position errors in the location 
of the antenna elements in an array can affect its STAP performance. 

To recapitulate, the primary goal of this book is to develop a basic 
understanding of the physics of multiantenna and the concept of channel capacity 
by using Maxwell’s theory. Since an antenna is a temporal filter as well as a 
spatial filter, any analysis dealing with antennas needs to merge both their spatial 
and temporal properties to obtain a physically meaningful solution. These two 
diverse properties are reflected in Maxwell’s equations and throughly 
understanding these four century old equations, first articulated by Heinrich 
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Hertz in the scalar form and then by Oliver Heaviside in the vector form that we 
use nowadays, can address most of the problems dealing with space-time 
properties of antennas. Because, the classical phased array mode is dominant in 
multiantenna systems, we show how to do adaptive processing in a least squares 
fashion in an accurate and efficient way without requiring any statistical 
information as an a priori description of the signals. Demonstrating that this type 
of methodology is also amenable to broad band processing is a secondary goal of 
this book. 

Every attempt has been made to guarantee the accuracy of the materials 
in the book. We would however appreciate readers bringing to our attention any 
errors that may have appeared in the final version. Errors and /or any comments 
may be emailed to any of the authors. 
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1 
WHAT IS AN ANTENNA AND HOW 
DOES IT WORK? 

1.0 SUMMARY 

An antenna is a structure that is made of material bodies that can be composed of 
either conducting or dielectric materials or may be a combination of both. Such a 
structure should be matched to the source of the electro-magnetic energy so that 
it can radiate or receive the electromagnetic fields in an efficient manner. The 
interesting phenomenon is that an antenna displays selectivity properties not only 
in frequency but also in space. In the frequency domain an antenna is capable of 
displaying a resonance phenomenon where at a particular frequency the current 
density induced on it can be sufficiently significant to cause radiation of 
electromagnetic fields from that structure. An antenna also possesses an impulse 
response that is a function of both the azimuth and elevation angles. Thus, an 
antenna displays spatial selectivity as it generates a radiation pattern that can 
selectively transmit or receive electromagnetic energy along certain spatial 
directions. As a receiver of electromagnetic fields, an antenna also acts as a 
spatial sampler of the electromagnetic fields propagating through space. The 
voltage induced in the antenna is related to the polarization and the strength of 
the incident electromagnetic fields. The objective of this chapter is to illustrate 
how the impulse response of an antenna can be determined. Another goal is to 
demonstrate that the impulse response of an antenna when it is transmitting is 
different from its response when the same structure operates in the receive mode. 
This is in direct contrast to antenna properties in the frequency domain as the 
transmit radiation pattern is the same as the receive antenna pattern. An antenna 
provides the matching necessary between the various electrical components 
associated with the transmitter and receiver and the free space where the 
electromagnetic wave is propagating. From a fimctional perspective an antenna is 
thus related to a loudspeaker, which matches the acoustic generationheceiving 
devices to the open space. However, in acoustics, loudspeakers and microphones 
are bandlimited devices and so their impulse responses are well behaved. On the 
other hand, an antenna is a high pass device and therefore the transmit and the 
receive impulse responses are not the same; in fact, the former is the time 

1 



2 WHAT IS AN ANTENNA AND HOW DOES IT WORK? 

derivative of the latter. An antenna is like our lips, whose instantaneous change 
of shapes provides the necessary match between the vocal cord and the outside 
environment as the frequency of the voice changes. By proper shaping of the 
antenna structure one can focus the radiated energy along certain specific 
directions in space. This spatial directivity occurs only at certain specific 
frequencies, providing selectivity in frequency. The interesting point is that it is 
difficult to separate these two spatial and temporal properties of the antenna, 
even though in the literature they are treated separately. The tools that deal with 
the dual-coupled space-time analysis are Maxwell’s equations. We first present 
the background of Maxwell’s equations and illustrate how to solve for them 
analytically. Then we utilize them in the subsequent sections and chapters to 
illustrate how to obtain the impulse responses of antennas both as transmitting 
and receiving elements and illustrate their relevance in the saga of smart 
antennas. 

1.1 HISTORICAL OVERVIEW OF MAXWELL’S EQUATIONS 

In the year 1864, James Clerk Maxwell (1831-1879) read his “Dynamical 
Theory of the Electromagnetic Field” [ l ]  at the Royal Society (London). He 
observed theoretically that electromagnetic disturbance travels in free space with 
the velocity of light [I-71. He then conjectured that light is a transverse 
electromagnetic wave by using dimensional analysis [7]. In his original theory 
Maxwell introduced 20 equations involving 20 variables. These equations 
together expressed mathematically virtually all that was known about electricity 
and magnetism. Through these equations Maxwell essentially summarized the 
work of Hans C. Oersted (1777-1851), Karl F. Gauss (1777-1855), Andre M. 
Ampere (1 775-1 836), Michael Faraday (1 79 1-1 867), and others, and added his 
own radical concept of displacement current to complete the theory. 

Maxwell assigned strong physical significance to the magnetic vector 
and electric scalar potentials A and ty, respectively (bold variables denote 
vectors; italic denotes that they are function of both time and space, whereas 
roman variables are a function of space only), both of which played dominant 
roles in his formulation. He did not put any emphasis on the sources of these 
electromagnetic potentials, namely the currents and the charges. He also assumed 
a hypothetical mechanical medium called ether to justify the existence of 
displacement currents in free space. This assumption produced a strong 
opposition to Maxwell’s theory from many scientists of his time. It is well known 
that Maxwell‘s equations, as we know them now, do not contain any potential 
variables; neither does his electromagnetic theory require any assumption of an 
artificial medium to sustain his displacement current in free space. The original 
interpretation given to the displacement current by Maxwell is no longer used; 
however, we retain the term in honor of Maxwell. Although modern Maxwell’s 
equations appear in modified form, the equations introduced by Maxwell in 1864 
formed the foundation of electromagnetic theory, which together is popularly 
referred to as Maxwell’s electromagnetic theory [ 1-71. 
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Maxwell’s original equations were modified and later expressed in the 
form we now know as Maxwell’s equations independently by Heinrich Hertz 
(1857-1894) and Oliver Heaviside (1 850-1925). Their work discarded the 
requirement of a medium for the existence of displacement current in free space, 
and they also eliminated the vector and scalar potentials from the fundamental 
equations. Their derivations were based on the impressed sources, namely the 
current and the charge. Thus, Hertz and Heaviside, independently, expressed 
Maxwell’s equations involving only the four field vectors E, H, B, and D: the 
electric field intensity, the magnetic field intensity, the magnetic flux density, 
and the electric flux density or displacement, respectively. Although priority is 
given to Heaviside for the vector form of Maxwell’s equations, it is important to 
note that Hertz’s 1884 paper [2] provided the Cartesian form of Maxwell’s 
equations, which also appeared in his later paper of 1890 [3]. Thus, the 
coordinate forms of the four equations that we use nowadays were first obtained 
by Hertz [2,7] in scalar form and then by Heaviside in 1888 in vector form [4,7]. 

It is appropriate to mention here that the importance of Hertz’s 
theoretical work [2] and its significance appear not to have been fully recognized 
[5]. In this 1884 paper [2] Hertz started from the older action-at-a-distance 
theories of electromagnetism and proceeded to obtain Maxwell’s equations in an 
alternative way that avoided the mechanical models that Maxwell used originally 
and formed the basis for all his future contributions to electromagnetism, both 
theoretical and experimental. In contrast to the 1884 paper, in his 1890 paper [3] 
Hertz postulated Maxwell’s equations rather than deriving them alternatively. 
The equations, written in component forms rather than in vector form as done by 
Heaviside [4], brought unparalleled clarity to Maxwell’s theory. The four 
equations in vector notation containing the four electromagnetic field vectors are 
now commonly known as Maxwell’s equations. However, Einstein referred to 
them as Maxwell-Heaviside-Hertz equations [6,7]. 

Although the idea of electromagnetic waves was hidden in the set of 20 
equations proposed by Maxwell, he had in fact said virtually nothing about 
electromagnetic waves other than light, nor did he propose any idea to generate 
such waves electromagnetically. It has been stated [6, Ch. 2, p. 241: “There is 
even some reason to think that he [Maxwell] regarded the electrical production 
of such waves as impossibility.” There is no indication left behind by him that he 
believed such was even possible. Maxwell did not live to see his prediction 
confirmed experimentally and his electromagnetic theory fully accepted. The 
former was confirmed by Hertz‘s brilliant experiments, his theory received 
universal acceptance, and his original equations in a modified form became the 
language of electromagnetic waves and electromagnetics, due mainly to the 
efforts of Hertz and Heaviside [7]. 

Hertz discovered electromagnetic waves around the year 1888 [8]; the 
results of his epoch-making experiments and his related theoretical work (based 
on the sources of the electromagnetic waves rather than on the potentials) 
confirmed Maxwell’s prediction and helped the general acceptance of Maxwell’s 
electromagnetic theory. However, it is not commonly appreciated that 


