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Preface 

The purpose of this book is to present up-to-date theory and techniques 
of statistical inference in a logically integrated and practical form. Essentially, 
it incorporates the important developments in the subject that have taken 
place in the last three decades. It is written for readers with a background 
knowledge of mathematics and statistics at the undergraduate level. 

Quantitative inference, if it were to retain its scientific character, could 
not be divested of its logical, mathematical, and probabilistic aspects. The 
main approach to statistical inference is inductive reasoning, by which we 
arrive at “ statements of uncertainty.” The rigorous expression that degrees 
of uncertainty require are furnished by the mathematical methods and prob- 
ability concepts which form the foundations of modern statistical theory. It 
was my awareness that advanced mathematical methods and probability 
theory are indispensable accompaniments in a self-contained treatment of 
statistical inference that prompted me to devote the first chapter of this book 
to a detailed discussion of vector spaces and matrix methods and the second 
chapter to a measure-theoretic exposition of probability and development of 
probability tools and techniques. 

Statistical inference techniques, if not applied to the real world, will lose 
their import and appear to be deductive exercises. Furthermore, it is my belief 
that in a statistical course emphasis should be given to both mathematical 
theory of statistics and to the application of the theory to practical problems. 
A detailed discussion on the application of a statistical technique facilitates 
better understanding of the theory behind the technique. To this end, in this 
book, live examples have been interwoven with mathematical results. In 
addition, a large number of problems are given at the end of each chapter. 
Some are intended to complement main results derived in the body of the 
chapter, whereas others are meant to serve as exercises for the reader to test 
his understanding of theory. 

The selection and presentation of material to cover the wide field of 

vii 
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statistical inference have not been easy. I have been guided by my own 
experience in teaching undergraduate and graduate students, and in conduct- 
ing and guiding research in statistics during the last twenty years. I have 
selected and presented the essential tools of statistics and discussed in detail 
their theoretical bases to enable the readers to equip themselves for consulta- 
tion work or for pursuing specialized studies and research in statistics. 

Why Chapter 1 provides a rather lengthy treatment of the algebra of 
vectors and matrices needs some explanation. First, the mathematical treat- 
ment of statistical techniques in subsequent chapters depends heavily on vector 
spaces and matrix methods; and second, vector and matrix algebra constitute 
a branch of mathematics widely used in modern treatises on natural, biological, 
and social sciences. The subject matter of the chapter is given a logical and 
rigorous treatment and is developed gradually to an advanced level. All the 
important theorems and derived results are presented in a form readily adapt- 
able for use by research workers in different branches of science. 

Chapter 2 contains a systematic development of the probability tools 
and techniques needed for dealing with statistical inference. Starting with the 
axioms of probability, the chapter proceeds to formulate the concepts of a 
random variable, distribution function, and conditional expectation and 
distributions. These are followed by a study of characteristic functi0ns;proba- 
bility distributions in infinite dimensional product spaces, and all the important 
limit theorems. Chapter 2 also provides numerous propositions, which find 
frequent use in some of the other chapters and also serve as good equipment 
for those who want to specialize in advanced probability theory. 

Chapter 3 deals with continuous probability models and the sampling 
distributions needed for statistical inference. Some of the important distribu- 
tions frequently used in practice, such as the normal, Gamma, Cauchy, and 
other distributions, are introduced through appropriate probability models 
on physical mechanisms generating the observations. A special feature of this 
chapter is a discussion of problems in statistical mechanics relating to the 
equilibrium distribution of particles. 

Chapter 4 is devoted to inference through the technique of analysis of 
variance. The Gauss-Markoff linear model and the associated problems of 
estimation and testing are treated in their wide generality. The problem of 
variance-components is considered as a special case of the more general 
problem of estimating intraclass correl?tion coefficients. A unified treatment 
is provided of multiclassified data under different sampling schemes for classes 
within categories. 

The different theories and methods of estimation form the subject 
matter of Chapter 5 .  Some of the controversies on the topic of estimation are 
examined ; and to remove some of the existing inconsist,encies, certain modi- 
fications are introduced in the criteria of estimation\ in large samples. 

Problems of specification, and associated tests of homogeneity of parallel 
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samples and estimates, are dealt with in Chapter 6. The choice of a mathe- 
matical model from which the observations could be deemed to have arisen 
is of fundamental importance because subsequent statistical computations 
will be made on the framework of the chosen model. Appropriate tests have 
been developed to check the adequacy of proposed models on the basis of 
available facts. 

Chapter 7 provides the theoretical background for the different aspects 
of statistical inference, such as testing of hypotheses, interval estimation, 
experimentation, the problem of identification, nonparametric inference, and 
so on. 

Chapter 8, the last chapter, is concerned with inference from multi- 
variate data. A special feature of this chapter is a study of the multivariate 
normal distribution through a simple characterization, instead of through 
the density function. The characterization simplifies the multivariate theory 
and enables suitable generalizations to be made from the univariate theory 
without further analysis. I t  also provides the necessary background for study- 
ing multivariate normal distributions in more general situations, such as 
distributions on Hilbert space. 

Certain notations have been used throughout the book to indicate 
sections and other references. The following examples will help in their inter- 
pretation. A subsection such as 4f.3 means subsection 3 in section f of Chapter 
4. Equation (4f.3.6) is the equation numbered 6 in subsection 4f.3 and Table 
4f.3p is the table numbered second in subsection 4f-3. The main propositions 
(or theorems) in each subsection are numbered: (i), (ii), etc. A back reference 
such as [(iii). 5d.21 indicates proposition (iii) in subsection 5d.2. 

A substantial part of the book was written while I was a visiting professor 
at the Johns Hopkins University, Baltimore, in 1963-1964, under a Senior 
Scientist Fellowship scheme of the National Science Foundation, U.S.A. At 
the Johns Hopkins University, 1 had the constant advice of G. S. Watson, 
Professor of Statistics, who read the manuscript at the various stages of its 
preparation. Comments by Herman Chernoff on Chapters 7 and 8, by Rupert 
Miller and S. W. Dharmadhikari on Chapter 2, and by Ralph Bradley on 
Chapters 1 and 3, have been extremely helpful in  the preparation of the final 
manuscript. I wish to express my thanks to all of them. The preparation and 
revision of the manuscript would not have been an easy task without the help 
of G. M. Das, who undertook the heavy burden of typing and organizing the 
manuscript for the press with great care and diligence. 

Finally, I wish to express my gratitude to the late Sir Ronald A. Fisher 
and to Professor P. C. Mahalanobis under whose influence 1 have come to 
appreciate statistics as the new technology of the present century. 

Calcutta, India 
June, 1965 

C. R. Rao 
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Preface to the 
Second Edition 

As in the first edition, the aim has been to provide in a single volume a 
full discussion of the wide range of statistical methods useful for consulting 
statisticians and, at same time, to present in a rigorous manner the mathematic- 
al and logical tools employed in deriving statistical procedures, with which a 
research worker should be familiar. 

A good deal of new material is added, and the book is brought up to date 
in several respects, both in theory and applications. 

Some of the important additions are different types of generalized 
inverses, concepts of statistics and subfields, MINQUE theory of variance 
components, the law of iterated logarithms and sequential tests with power 
one, analysis of dispersion with structural parameters, discrimination between 
composite hypotheses, growth models, theorems on characteristic functions, 
etc. 

Special mention may be made of the new material on estimation of 
parameters in a linear model when the observations have a possibly singular 
cooariance matrix. The existing theories and methods due to Gauss (1809) 
and Aitken (1935) are applicable only when the covariance matrix is known 
to be nonsingular. The new unijied approaches discussed in the book 
(Section 4i) are valid for all situations whether the covariance matrix is 
singular or not. 

A large number of new exercises and complements have been added. 
1 wish to thank Dr. M. S. Avadhani, Dr. J. K. Ghosh, Dr. A. Maitra, 

Dr. P. E. Niiesch, Dr. Y. R. Sarma, Dr. H. Toutenberg, and Dr. E. J. Wil- 
liams for their suggestions while preparing the second edition. 

New Delhi C .  R. Rao 
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Chapter 1 

ALGEBRA OF VECTORS 
AND MATRICES 

Introduction. The use of matrix theory is now widespread in both pure 
mathematics and the physical and the social sciences. The theory of vector 
spaces and transformations (of which matrices are a special case) have not, 
however, found a prominent place, although they are more fundamental and 
offer a better understanding of problems. The vector space concepts are 
essential in the discussion of topics such as the theory of games, economic 
behavior, prediction in time series, and the modern treatment of univariate 
and multivariate statistical methods. 

The aim of the first chapter is to introduce the reader to the concepts of 
vector spaces and the basic results. All important theorems are discussed in 
great detail to enable the beginner to work through the chapter. Numerous 
illustrations and problems for solution are given as an aid to further under- 
standing of the subject. To introduce wide generality (this is important and 
should not cause any difficulty in  understanding the theory) the elements used 
in the operations with vectors are considered as belonging to any Field in 
which addition and multiplication are defined in a consistent way (as in the 
ordinary number system). Thus, the elements e , ,  e2 ,  . . . (finite or infinite in  
number) are said to belong to a field F, if they are closed under the operations 
of addition (e i  + e j )  and multiplication (e ,e j ) ,  that is, sums and products of 
elements of F also belong to F, and satisfy the following conditions: 

( A , )  ei + ej  = e j  + ei (commutative law) 

( A 2 )  e, + (e j  + ek) = ( e ,  + e j )  + f?k 

( A 3 )  For any two elements e , ,  e j ,  there exists an element e, such that 
ei + ek = e j  . 

(associative law) 

The condition ( A 3 )  implies that there exists an element e,  such that e, + e, = e, 
for all i. The element c,, is like 0 (zero) of the number system. 

1 
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2 ALGEBRA OF VECTORS AND MATRICES 

(M,) e , e j  = e j e i  (commutative law) 
(M2)  ei(ej e k )  = ( e i  ellet (associative law) 

(M,) e,(ej + ek) = e i  e j  + e,  ek (distributive law) 
(M4) For any two elements ei and e j  such that e ,  # e,  , the zero element, 

there exists an element f?k such that e ,  ek = ej  . 
(M4) implies that there is an element e, such that e ie l  = e,  for all i. The 

element e, is like 1 (unity) of the number system. 
The study of vector spaces is followed by a discussion of the modern matrix 

theory and quadratic forms. Besides the basic propositions, a number of 
results used in mathematical physics, economics, biology and statistics, and 
numerical computations are brought together and presented in a unified way. 
This would be useful for those interested in applications of the matrix theory 
in the physical and the social sciences. 

l a  VECTOR SPACES 

1a.l Definition of Vector Spaces and Subspaces 

Concepts such as force, size of an organism, an individual’s health or mental 
abilities, and price level of commodities cannot be fully represented by a 
single number. They have to be understood by their manifestations in different 
directions, each of which may be expressed by a single number. The mental 
abilities of an individual may be judged by his scores ( x l ,  x 2 ,  . . . , x k )  in k 
specified tests. Such an ordered set of measurements may be simply represen- 
ted by x, called a row vector. If y = ( y , ,  yz  , . . . , Yk) is the vector of scores for 
another individual, the total scores for the two individuals in the various tests 
may be represented by x + y with the definition 

x+Y=(xl +Yl,xZ + Y 2 , * . . , x k + Y k ) *  (la.l.1) 

This rule of combining or adding two vectors is the same as that for obtaining 
the resultant of two forces in two or three dimensions, known as the parallelo- 
gram law of forces. Algebraically this law is equivalent to finding a force 
whose components are the sum of the corresponding components of the 
individual forces. 

Given a force f = (f,, . f 2 ,  f3), i t  is natural to define 

cf = (Cfli, cf2 9 cf3) ( I a. I .2) 

as a force c times the first, which introduces a new operation of multiplying 
a vector by a scalar number such as c .  Further, given a force f, we can counter- 
balance it by adding a force g = (-f,, -f2, -f3) = (-  I)f, or by applying f 
in the opposite direction, we have the resulting force f + g = (0, 0,O). Thus 
we have the concepts of a negative vector such as ‘-f and a null vector 
0 = (0, 0, 0), the latter having the property x + 0 -L x for all x. 
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It is seen that we are able to work with the new quantities, to the extent 
permitted by the operations defined, in the same way as we do with numbers. 
As a matter of fact, we need not restrict our algebra to the particular type of 
new quantities, viz., ordered sets of scalars, but consider a collection of 
elements x, y, z, . . . , finite or infinite, which we choose to call vectors and 
cI ,  c2 ,  , . . , scalars constituting a field (like the ordinary numbers with the 
operations of addition, subtraction, multiplication, and division suitably 
defined) and lay down certain rules of combining them. 

VectorAddition. The operation of addition indicated by + is defined for 
any two vectors leading to a vector in the set and is subject to the following 
rules : 

(9  x + y = y + x  (commutative law) 

(ii) x + (y + z) = (x + y) + z (associative law) 

Null Element. There exists an element in the set denoted by 0 such that 

(iii) x + 0 = x, for all x. 

Inverse (Negative) Element. For any given element x, there exists a corre- 
sponding element < such that 

(iv) x + { = O .  

Scalar Multiplication. The multiplication of a vector x by a scalar c leads to 
a vector in the set, represented by cx, and is subject to the following rules. 

(v) 
(vi) 
(vii) c,(c2 x) = (clc2)x (associative law) 
(viii) ex = x 

c(x + y) = cx + cy 

(cl + c2)x = clx + c2 x 

(distributive law for vectors) 
(distributive law for scalars) 

(where e is the unit element in  the field of 
scalars). 

A collection of elements (with the associated field of scalars F )  satisfying the 
axioms (i) to (viii) is called a linear vector space V or more explicitly V ( F )  
or V,  . Note that the conditions (iii) and (iv) can be combined into the single 
condition that for any two elements x and y there is a unique element z such 
that x + z = y. 

The reader may satisfy himself that, for a given k, the collection of all 
ordered sets (xl, . . . , xk)  of real numbers with the addition and the scalar 
multiplication as defined in (la.l.1) and (la.l.2) form a vector space. The 
same is true of all polynomials of degree not greater than k, with coefficients 
belonging to any field and addition and multiplication by a constant being 
defined in the usual way. Although we will be mainly concerned with vectors 
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which are ordered sets of real numbers in the treatment of statistical methods 
covered in this book, the axiomatic set up will give the reader proper insight 
into the new algebra and also prepare the ground for a study of more com- 
plicated vector spaces, like Hilbert space (see Halmos, 1951), which are being 
increasingly used in the study of advanced statistical methods. 

A linear subspace, subspace, or linear manijold in a vector space Y is any 
subset of vectors A closed under addition and fcalar multiplication, that is, 
if x and y E A, then (cx + dy) E 4 for any pair of scalars c and d. Any such 
subset A is itselfa vector space with respect to the same definition of addition 
and scalar multiplication as in Y .  The subset containing the null vector alone, 
as well as that consisting of all the elements in “Ir, are extreme examples of 
subspaces. They are called improper subspaces whereas others are proper 
subspaces. 

As an example, all linear combinations of a given fixed set S of vectors 
a], . . . , ak is a subspace called the linear manifold 4 ( S )  spanned by S. This 
is the smallest subspace containing S. 

ALGEBRA OF VECTORS AND MATRICES 

Consider k linear equations in n variables x , ,  , . . , x , ,  

ail  x1 + - + ainxn = 0, i = 1, . , . , k,  

where a,] belongs to any field F. The reader may verify that the totality of 
solutions (xI, . . . , x,) considered as vectors constitutes a subspace with 
the addition and scalar multiplication as defined in ( 1  a. I .  1) and ( 1  a. 1.2). 

la.2 Basis of a Vector Space 

A set of vectors ul, . . . , uk is said to be linearly dependent if there exist scalars 
c,, . . . , ck, not all simultaneously zero, such that clul + + ckuk = 0, 
otherwise it is independent. With such a definition the following are true: 

1 .  The null vector by itself is a dependent set. 

2. Any set of vectors containing the null vector is a dependent set. 

3. A set of non-zero vectors u, ,  . . . uk is dependent when and only when a 
member in the set is a linear combination of its predecessors. 

A linearly independent subset of vectors in a vector space Y ,  generating or 
spanning Y is called a basis (Hamel basis) of Y .  

(i) Every vector space Y has a basis. 

To demonstrate this, let us choose sequentially non-null vectors a], a2 , . . . , 
in Y such t l r . i l  no ai is dependent on its predecessors. In this process it  may 
so happen that after the kth stage no independent vector is left in V ,  in which 
case al ,  . . . , ak constitute a basis and V is said to be a finite ( k )  dimensional 
vector space. On the other hand, there may be no limit to the process of 
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choosing a i ,  in which case Y is said to have infinite dimensions. Further 
argument is needed to show the actual existence of an infinite set of inde- 
pendent vectors which generate all the vectors. This is omitted as our field of 
study will be limited to finite dimensional vector spaces. The following results 
concerning finite dimensional spaces are important. 

(ii) I f a , ,  . . . , ak and P I ,  . . . , p, are two alternative choices for a basis, then 

Let, if possible, s > k .  Consider the dependent set pl, a , ,  . . ., a k .  If ai 
depends on the predecessors, then Y can also be generated by P I ,  a , ,  . . . , ui -  
a i + l ,  . . . , a k ,  in which case the set p 2 ,  P I ,  a , ,  . . . , a i - , ,  . . , ak is depend- 
ent. One more a can now be omitted. The process of adding a p and omitting 
an a can be continued (observe that no p can be eliminated at any stage) till 
the set p,,  . . . , p k  is left, which itself spans Y and hence (s - k )  of the p vectors 
are redundant. The cardinal number k common to all bases represents the 
minimal number of vectors needed to span the space or the maximum 
number of independent vectors in the space. We call this number as the dimen- 
sion or rank of V and denote it by d [ Y ] .  

s = k .  

(iii) Every vector in *Y has a unique representation in terms of a given basis. 

If (ai  - bi)ai = 0, 
which is not possible unless ai - bi = 0 for all i, since ai  are independent. 

The Euclidean space &(F) of all ordered sets of k elements ( x l ,  . . . , xk) ,  
x i  E F ( a  field of elements) is of special interest. The vectors may be considered 
as points of k dimensional Euclidean space. The vectors e ,  = (1,0, . . . , 0), 
e, = (0, 1, 0, . . . , O), . . . , ek = (0, 0,  . . . , 1) are in Ek and are independent, and 
any vector x = ( x , ,  . . . , xk) = x l e l  + + & e k .  Therefore d[Ek] = k,  and 
the vectors e l ,  . . . , ek constitute a basis and thus any other independent set of 
k vectors. Any vector in Ek can, therefore, be represented as a unique linear 
combination of k independent vectors, and, naturally, as a combination (not 
necessarily unique) of any set of vectors containing k independent vectors. 

When F is the field of real numbers the vector space Ek(F) is denoted simply 
by Rk. In the study of design of experiments we use Galoisjelds (GF)  with a 
finite number of elements, and consequently the vector space has only a 
finite number of vectors. The notation Ek(GF) may be used for such spaces. 
The vector space Ek(F) when F is the field of complex numbers is represented 
by Uk and is called a k dimensional unitary space. The treatment of Section 
la.3 is valid for any F. Later we shall confine our attention to Rk only. We 
prove an important result in (iv) which shows that study of finite dimensional 
vector spaces is equivalent to that of Ek . 

a , a ,  and 1 b i a ,  represent the same vector, then 

(iv) Any vector space “v, for which d [ Y ]  = k is isomorphic to Ek . 



6 ALGEBRA OF VECTORS AND MATRICES 

I f  a l ,  , , , , ak is a basis of VF, then an element u E “u;; has the representation 
u = alul + + akak where a,  E F, i = 1, . . . , k. The correspondence 

u --* u* = (a ] ,  . . * 3 ak), u* E Ek(F) 

establishes the isomorphism. For if u + u*, v + v*, then u + v -+ u* + v* and 
cu + cu*. This result also shows that any two vector spaces with the same di- 
mensions are isomorphic. 

la.3 Linear Equations 

Let a I ,  . . . , a,  be mjixed vectors in an arbitrary vector space 9; and consider 
the linear equation in the scalars x l ,  . . . , x ,  E F (associated Field) 

xla l  + + x,a, = 0. (la.3.1) 

(i) A necessary and suflcient condition that (la.3.1) has a nontrivial 
solution, that is, not all xi  simultaneously zero, is that a I ,  . . , , a,n should be 
dependent. 

(ii) The solutions considered as (row) vectors x = ( x l ,  . . . , x,) in E,(F) 
constitute a vector space. 

This is true for if x and y are solutions then ax + by is also a solution. Note 
that a , ,  themselves may belong to any vector space VF. 

(iii) Let 9’ be the linear manifold or the subspace of solutions and 4, that 
of the vectors a l l  . . . , a,. Then d [ Y ]  = m - d [ A ]  where the symbol d denotes 
the dimensions of the space. 

Without loss of generality let a I ,  . . . , ak be independent, that is, d [ 4 ]  = k, 
in which case, 

a j  = ajlal + 
We observe that the vectors 

+ a jkak ,  j = k + I ,  . . . , m. 

P I  = (ak+l, 1, . . . 9 ak+I, k 9  - 1, 0, . . . , 0) 
. . .  (1 a.3.2) 

are independent and satisfy the equation (la.3.1). The set (la.3.2) will be 
a basis of the solution space Y if it spans all the solutions. Let y = (yl, , . . , y,) 
be any solution and consider the vector 

Y + yk + 1 P I  + ’ * + y m  P m  - k 3 ( 1 a.3.3) 

which is also a solution. But this is of the form (zl, . . . , zk, 0, . . . , 0) which 
means zlal + . + Zkak = 0. This is possible only when z1 = - - * = zk = 0. 

. . .  . . .  
Pm - k = (am, 1 9 . . . $  k 1 o,o, . . . )  - 1) 


