Modeling and Verification
of Real-Time Systems

Formalisms and Software Tools

Edited by
Stephan Merz
Nicolas Navet

%.

%WILEY

dcd-wg
C1.jpg

This page intentionally left blank

Modeling and Verification of Real-Time Systems

This page intentionally left blank

Modeling and Verification
of Real-Time Systems

Formalisms and Software Tools

Edited by
Stephan Merz
Nicolas Navet

%.

%WILEY

First published in Great Britain and the United States in 2008 by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA.
Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
6 Fitzroy Square 111 River Street
London WIT 5DX Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd, 2008

The rights of Stephan Merz and Nicolas Navet to be identified as the authors of this work have been
asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Modeling and verification of real-time systems : formalisms and software tools / edited by Nicolas Navet,
Stephan Merz.
p.cm.

Includes bibliographical references and index.

ISBN-13: 978-1-84821-013-4

1. Real-time data processing. 2. Computer software--Verification. 3.
Formal methods (Computer science) 1. Navet, Nicolas. II. Merz, Stephan.

QA76.54.M635 2008

004.01'51--dc22

2007045063

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN: 978-1-84821-013-4

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.
: ©
Mixed Sources
Product group from well-managed
forests and other controlled sources
Cert no. SGS-COC-2953

w 9
© 1996 Forest Stewardship Coundil

http://www.wiley.com

Contents

Preface
Stephan MERZ and Nicolas NAVET

Chapter 1. Time Petri Nets — Analysis Methods and Verification
with TINA . . .
Bernard BERTHOMIEU, Florent PERES and Frangois VERNADAT

I.1.Introduction L
1.2. Time Petrinets
1.2.1.Definition L
1.2.2. States and the state reachability relation
123 TMustration L
1.2.4. Some general theorems
1.3. State class graphs preserving markings and LT'L properties
1.3.1.Stateclasses
I32. Hlustrationo
1.3.3. Checking the boundedness property on-the-fly
1.34. Variations
1.3.4.1. Multiple enabledness
1.3.4.2. Preservation of markings (only)

1.4. State class graphs preserving states and LT L properties
l4.1.Clockdomain
1.4.2. Construction of the SSCG
L43. Variants
1.5. State class graphs preserving states and branching properties
1.6. Computing firing schedules
1.6.1. Schedule systems
1.6.2. Delays (relative dates) versus dates (absolute)
1.63. Hlustration
1.7. An implementation: the Tina environment

6 Modeling and Verification of Real-Time Systems

1.8. The verification of SE— LT L formulae in Tina
1.8.1. The temporal logic SE—LTL
1.8.2. Preservation of LT'L properties by tina constructions
1.8.3. selt: the SE—LTL checkerof Tina

1.8.3.1. Verification technique
1.83.2. The seltlogic

1.9. Some examples of useof selt

19.1.JohnandFred o

1.9.1.1. Statement of problem
1.9.1.2. Are the temporal constraints appearing in this scenario

consistent?

1.9.1.3. Is it possible that Fred took the bus and John the carpool? . .

1.9.1.4. At which time could Fred have left home?

1.9.2. The alternating bit protocol

1.10. Conclusion o e

1.11. Bibliography

Chapter 2. Validation of Reactive Systems by Means of Verification
and Conformance Testing
Camille CONSTANT, Thierry JERON, Hervé MARCHAND and Vlad RUSU

2.1 . Introduction
2.2. The IOSTSmodel
22.1.Syntax of IOSTS
2.2.2.Semantics of IOSTS L L.
2.3. Basic operations on IOSTS
231 Parallel product
2.3.2.8USpension
2.3.3. Deterministic IOSTS and determinization
2.4. Verification and conformance testing with IOSTS
2.4.1. Verification e
2.4.1.1. Verifying safety properties
2.4.1.2. Verifying possibility properties
2.4.1.3. Combining observers

2.4.2. Conformance testing
2.5.Testgenerationo
2.6. Testselection e
2.7.Conclusion and related work L.
2.8.Bibliography

Chapter 3. An Introduction to Model Checking
Stephan MERZ

3.1.Introduction
3.2. Example: control of anelevator

Contents 7

3.3. Transition systems and invariant checking 79
3.3.1. Transition systems and theirruns 81
3.3.2. Verification of invariants 82

34. Temporallogic 84
3.4.1. Linear-time temporal logic 84
3.4.2. Branching-time temporal logic 87
343 w-automata ..o L e 89
344 Automataand PTL o L. 92

3.5. Model checking algorithms 94
3.5.1. Local PTL model checking 95
3.5.2. Global CTL model checking 97
3.5.3. Symbolic model checking algorithms 99

3.6. Some research topics L. o 103

3.7.Bibliography 105

Chapter 4. Model Checking Timed Automata 111
Patricia BOUYER and Frangois LAROUSSINIE

4.1.Introduction L 111

42. Timedautomata 112
4.2.1.Somenotations 112
4.2.2. Timed automata, syntax and semantics 113
4.2.3. Parallel composition 114

4.3. Decision procedure for checking reachability 115

4.4. Other verification problems 118
4.4.1. Timed languages 118
4.4.2. Branching-time timed logics 118
4.4.3. Linear-time timed logics 120
4.44. Timed modal logics 121
4.45. Testing automata 121
4.4.6. Behavioral equivalences L L. 121

4.5. Some extensions of timed automata 121
4.5.1. Diagonal clock constraints 122
4.5.2. Additive clock constraints L L 123
453. Internal actions L Lo 124
454.Updatesofclocks 125
4.5.5. Linear hybrid automata 126

4.6. Subclasses of timed automata L L. 127
4.6.1. Event-recording automata 127
4.6.2. One-clock timed automata 128
4.6.3. Discrete-timemodels L L. 129

4.7. Algorithms for timed verification 130
4.7.1. A symbolic representation for timed automata: the zones 130

4.7.2. Backward analysis in timed automata 131

8 Modeling and Verification of Real-Time Systems

4.7.3. Forward analysis of timed automata 132
4.7.4. A data structure for timed systems: DBMs 133
4.8. The model-checking tool Uppaal 134
4.9.Bibliography 135

Chapter 5. Specification and Analysis of Asynchronous Systems
using CADP 141
Radu MATEESCU

S.1.Introduction 141
5.2.The CADPtoolbOX i 142
5.2.1. The LOTOS language 143
5.2.2. Labeled transition systems 143
5.2.3. Some verificationtools 144
5.3. Specification of adrillingunit 0oL, 147
5.3.1. Architecture L 150
5.3.2. Physical devices and local controllers 152
5.3.2.1. Turning table 152
5322.Clamp 153
5323.Drill ... 154
5324 Testero e 154
5.3.3. Main controller — sequential version 155
5.3.4. Main controller — parallel version 157
5.3.5.Environment 158
5.4. Analysis of the functioning of the drillingunit 159
5.4.1. Equivalence checking 159
54.2.Model checking 161
5.5.Conclusion and future work L L., 164
5.6. Bibliography 166
Chapter 6. Synchronous Program Verification with Lustre/Lesar 171
Pascal RAYMOND
6.1. Synchronous approach L L L L. 171
6.1.1. Reactive Ssystems 171
6.1.2. The synchronous approach 172
6.1.3. Synchronous languages 172
6.2. The Lustre language 173
6.2.1. Principles 173
6.2.2. Example: the beaconcounter 174
6.3. Program verification L o 174
6.3.1. Notion of temporal property 175
6.3.2. Safetyand liveness 175
6.3.3. Beacon counter properties 175

6.3.4.Statemachine e 175

Contents 9

6.3.5.Explicitautomata 176
6.3.6. Principles of model checking 176
6.3.7. Example of abstraction 177
6.3.8. Conservative abstraction and safety 178
6.4. EXpressing propertieso v i e e e e e 178
6.4.1. Model checking: general scheme 178
6.4.2. Model checking synchronous program 179
6.4.3.0bSCIVEIS o i 180
6.44. Examples 180
6.4.5.Hypothesis 180
6.4.6. Model checking of synchronous programs 181
6.5. Algorithms 182
6.5.1. Booleanautomaton L. 182
6.5.2. Explicitautomaton 182
6.5.3. The “pre ” and “post ” functions 183
6.5.4. Outstanding states 183
6.5.5. Principles of the exploration 184
6.6. Enumerative algorithm L L L. 184
6.7. Symbolic methods and binary decision diagrams 185
6.7.1.Notations 185
6.7.2. Handling predicates 186
6.7.3. Representation of the predicates 186
6.7.3.1. Shannon’s decomposition 186
6.7.3.2. Binary decision diagrams, 187

6.7.4. Typical interface of aBDD library 188
6.7.5. Implementationof BDDs, 188
6.7.6. Operationson BDDs 189
6.7.6.1. Negation i 189
6.7.6.2. Binary Operators 189
6.7.6.3. Cofactors and quantifiers 190
6.7.7.Notesoncomplexity, 191
6.7.8. Typed decision diagrams 192
6.7.8.1. Positive functions L L L L. 192
6.782.TDG e 192
6.7.8.3. TDG implementation 193
6.7.84. Interestin TDGs 193

6.7.9. Care set and generalized cofactor 194
6.7.9.1. “Knowing that” operators 194
6.7.9.2. Generalized cofactor 194
6.7.9.3. Restriction L 194
6.7.9.4. Algebraic properties of the generalized cofactor 195

6.8. Forward symbolic exploration. 195

6.8.1.General scheme 196

10 Modeling and Verification of Real-Time Systems

6.8.2. Detailed implementation.
6.8.3. Symbolic image computing
6.8.4. Optimized image computing
6.84.1.Principles
6.8.4.2. Universal image
6.8.4.3. Case of a single transition function.
6.8.4.4. Shannon’s decomposition of the image

6.9. Backward symbolic exploration
6.9.1.General scheme
6.9.2. Reverse image computing
6.9.3. Comparing forward and backward methods
6.10. Conclusion and related works
6.11. Demonstrations
6.12. Bibliography L L

Chapter 7. Synchronous Functional Programming with Lucid Synchrone
Paul CAsPI, Grégoire HAMON and Marc POUZET

Tl Introduction
7.1.1. Programming reactive systems
7.1.1.1. The synchronous languages
7.1.1.2. Model-based design
7.1.1.3. Convergingneeds
7.1.2.Lucid Synchrone
7.2.Lucid Synchrone
7.2.1. An ML dataflow language
7.2.1.1. Infinite streams as basic objects
7.2.1.2. Temporal operations: delay and initialization
7.2.2. Stream functions
7.2.3. Multi-sampled systems
7.2.3.1. The sampling operatorwhen
7.2.3.2. The combination operatormerge
7.233.0versampling L L L.
7.2.3.4. Clock constraints and synchrony
724 Staticvalues. L L
7.2.5. Higher-order features
7.2.6. Datatypes and pattern matching
7.2.7. A programming construct to share the memory
7.2.8. Signals and signal patterns
7.2.8.1. Signals as clock abstractions
7.2.8.2. Testing presence and pattern matching over signals
7.2.9. State machines and mixed designs
7.2.9.1. Weak and strong preemption
7.2.9.2. ABRO and modularreset

Contents 11

7.2.9.3. Local definitions toastate 231
7.2.9.4. Communication between states and shared memory 232
7.29.5.Resume orresetastate 233
7.2.10. Parametrized state machines 233
7.2.11. Combining state machines and signals 234
7.2.12. Recursion and non-real-time features 236
7.2.13. Two classical examples 236
7.2.13.1. The inverted pendulum 236
72132, Aheater 237
T3.DisCUSSION oL e e e 240
7.3.1. Functional reactive programming and circuit description languages 240
7.3.2. Lucid Synchrone as a prototyping language 241
74.Conclusion 242
7.5.Acknowledgment Lo 243
7.6.Bibliography L L 243
Chapter 8. Verification of Real-Time Probabilistic Systems 249

Marta KWIATKOWSKA, Gethin NORMAN, David PARKER
and Jeremy SPROSTON

8.1.Introduction 249
8.2. Probabilistic timed automata 250
8.2.1. Preliminaries 250
8.2.2. Syntax of probabilistic timed automata 252
8.2.3. Modeling with probabilistic timed automata 254
8.2.4. Semantics of probabilistic timed automata 254
8.2.5. Probabilistic reachability and invariance 255
8.3. Model checking for probabilistic timed automata 258
83.1.Theregiongraph 258
8.3.2. Forward symbolic approach 261
8.3.2.1. Symbolic state operations 261
8.3.2.2. Computing maximum reachability probabilities 263

8.3.3. Backward symbolic approach 266
8.3.3.1. Symbolic state operations 266
8.3.3.2. Probabilisticuntil 267
8.3.3.3. Computing maximum reachability probabilities 268
8.3.3.4. Computing minimum reachability probabilities 270

8.3.4. Digitalclocks L 273
8.3.4.1. Expected reachability 274
8.3.4.2. Integral semantics 276

8.4. Case study: the IEEE FireWire root contention protocol 277
84.1.0verview 277
8.4.2. Probabilistic timed automatamodel 278

8.4.3. Model checking statistics 281

12 Modeling and Verification of Real-Time Systems

8.4.4. Performance analysis 282
85.Conclusion 285
8.6. Bibliography 285

Chapter 9. Verification of Probabilistic Systems Methods and Tools 289
Serge HADDAD and Patrice MOREAUX

9.1.Introduction L 289

9.2. Performance evaluation of Markovianmodels 290

9.2.1. A stochastic model of discrete event systems 290

9.2.2. Discrete-time Markov chains 292

9.22.1.Presentation. 292

9.2.2.2. Transient and steady-state behaviors of DTMC 293

9.2.3. Continuous-time Markov chains 294

9.23.1.Presentation e 294

9.2.3.2. Transient and steady-state behaviors of CTMC 295

9.3. High level stochasticmodels 297

9.3.1. Stochastic Petri nets with general distributions 297

9.3.1.1.Choicepolicy 298

9.3.1.2. Service policy 298

9.3.13. Memorypolicy 298

9.3.2. GLSPN with exponential distributions 299

9.3.3. Performance indicesof SPN 300

9.3.4. Overview of models and methods in performance evaluation . . . 300

9.3.5.The GreatSPN tool 301

9.3.5.1. Supported models L L. 302
9.3.5.2. Qualitative analysis of Petrinets 302
9.3.5.3. Performance analysis of stochastic Petrinets 302
9.3.5.4. Software architecture 302
9.4. Probabilistic verification of Markov chains 303

9.4.1. Limits of standard performance indices 303

9.4.2. A temporal logic for Markov chains 303

9.4.3. Verification algorithms 305

9.4.4. Overview of probabilistic verification of Markov chains 306

945. The ETMCCtool 307

9.4.5.1. Language of systemmodels 307
9.4.5.2. Language of properties 307
9.4.53.Computedresults 308
9.4.5.4. Software architecture 308
9.5. Markov decision processes i it 308

9.5.1. Presentation of Markov decision processes 308

9.5.2. A temporal logic for Markov decision processes 309

9.5.3. Verification algorithms 309

9.5.4. Overview of verification of Markov decision processes 313

Contents 13

9.55.The PRISM tool 314
9.5.5.1. Language of systemmodels 314
9.5.5.2. Properties language 314
9.5.53. Computedresults L L L. 314
9.5.5.4. Software architecture 314
9.6. Bibliography 315
Chapter 10. Modeling and Verification of Real-Time Systems
using the IF Toolset 319
Marius BOZGA, Susanne GRAF, Laurent MOUNIER and Iulian OBER
10.1. Introduction 320
10.2. Architecture 322
103. TheIFnotation 324
10.3.1. Functional features 324
10.3.2. Non-functional features 326
10.3.3. Expressing properties with observers 328
104. TheIFtools s 329
10.4.1. Core componentso 329
10.4.2. Staticanalysis 332
10.4.3. Validation 333
10.4.4. Translating UML toIF 334
1044.1. UML modeling 334
10.4.4.2. The principles of the mapping from UMLtoIF 334
10.5. An overview on uses of IF in case studies 336
10.6. Case study: the Ariane 5 flight program 337
10.6.1. Overview of the Ariane 5 flight program 337
10.6.2. Verification of functional properties 339
10.6.3. Verification of non-functional properties 343
10.6.4. Modular verification and abstraction 344
10.7.Conclusion e 345
10.8. Bibliography 347
Chapter 11. Architecture Description Languages: An Introduction
tothe SAEAADL 353
Anne-Marie DEPLANCHE and Sébastien FAUCOU
11.1.Introduction 353
11.2. Main characteristics of the architecture description languages 356
11.3. ADLs and real-time systems 357
11.3.1. Requirement analysis 357
11.3.2. Architectural views Lo 359
11.4. Outline of related works 360
11.5. The AADL language 362

11.5.1. Anoverviewof the AADL 363

14 Modeling and Verification of Real-Time Systems

11.6.Casestudyo i 365
11.6.1.Requirementso, 365
11.6.2. Architecture design and analysis with AADL 366

11.6.2.1. High-level design 366

11.6.2.2. Thread and communication timing semantics 369

11.6.2.3. Technical overview of the flow latency analysis algorithm . 373

11.6.2.4. Modeling fault-tolerance mechanisms 374

11.6.3. Designing for reuse: package and refinement 377
11.7.Conclusion o e 380
11.8. Bibliography 381
Listof Authors 385

Preface

The study of real-time systems has been recognized over the past 30 years as a
discipline of its own whose research community is firmly established in academia as
well as in industry. This book aims at presenting some fundamental problems, meth-
ods, and techniques of this domain, as well as questions open for research.

The field is mainly concerned with the control and analysis of dynamically evolv-
ing systems for which requirements of timeliness are paramount. Typical examples
include systems for the production or transport of goods, materials, energy or informa-
tion. Frequently, controllers for these systems are “embedded” in the sense that they
are physically implemented within the environment with which they interact, such
as a computerized controller in a plane or a car. This characteristic imposes strong
constraints on space, cost, and energy consumption, which limits the computational
power and the available memory for these devices, in contrast with traditional appli-
cations of computer science where resources usually grow exponentially according to
Moore’s law. The design of real-time systems relies on techniques that originate in
several disciplines, including control theory, operations research, software engineer-
ing, stochastic process analysis and others.

Software supporting real-time systems needs not only to compute the correct value
of a given function, but it must also deliver these values at the right moment in order
to ensure the safety and the required performance level of the overall system. Usually,
this is implemented by imposing constraints (or deadlines) on the termination of cer-
tain activities. The verification techniques presented in this volume can help to ensure
that deadlines are respected.

Chapter written by Stephan MERZ and Nicolas NAVET.

15

16 Modeling and Verification of Real-Time Systems

The chapters of this book present basic concepts and established techniques for
modeling real-time systems and for verifying their properties. They concentrate on
functional and timing requirements; the analysis of non-functional properties such
as schedulability and Quality of Service guarantees would be a useful complement,
but would require a separate volume. Formal methods of system design are based on
mathematical principles and abstractions; they are a cornerstone for a “zero-default”
discipline. However, their use for the development of real-world systems requires the
use of efficient support tools. The chapters therefore emphasize the presentation of ver-
ification techniques and tools associated with the different specification methods, as
well as the presentation of case studies that illustrate the application of the formalisms
and the tools. The focus lies on model checking approaches, which attempt to provide
a “push-button” approach to verification and integrate well into standard development
processes. The main obstacle for the use of model checking in industrial-sized de-
velopments is the state-explosion problem, and several chapters describe techniques
based on abstraction, reduction or compression that stretch the limits of the size of
systems that can be handled.

Before verification can be applied, the system must be modeled in a formal de-
scription language such as (timed) Petri nets, timed automata or process algebra. The
properties expected of a system are typically expressed in temporal logic or using
automata as observers. Two main classes of properties are safety properties that, intu-
itively, express that nothing bad ever happens, and /iveness properties that assert that
something good eventually happens. The third step is the application of the verifica-
tion algorithm itself to decide whether the properties hold over the model of the system
or not; in the latter case, model checking generates a counter-example exhibiting a run
of the system that violates the property.

Beyond verification, which compares two formal objects, the model should also
be validated to ensure that it faithfully represents the system under development. One
approach to validation is to decide healthiness properties of the model (for example,
ensure that each component action can occur in a system run), and model checking
is again useful here. In general, it is helpful to narrow the gap between the system
description and its formal model, for example by writing a model in a high-level ex-
ecutable language or in a notation familiar to designers such as UML. The chapters
of this book, written by researchers active in the fields, present different possible ap-
proaches to the problems of modeling, verification and validation, as well as open
research questions.

Chapter 1, written by Bernard Berthomieu, Florent Peres and Francois Vernadat,
explains the analysis of real-time systems based on timed Petri nets. It illustrates the
high expressiveness of that formalism and the different, complementary verification
techniques that are implemented in the Tina tool.

Preface 17

In Chapter 2, Camille Constant, Thiery Jéron, Hervé Marchand and Vlad Rusu de-
scribe an approach that combines verification and conformance testing (on the actual
implementation platform) of input/output symbolic transition systems. Disciplined ap-
proaches to testing are indeed a very valuable complement to formal verification for
ensuring the correctness of an implementation. This is true in particular when the
complexity of the models makes exhaustive verification impossible.

Chapters 3 and 4 are devoted to the presentation of model checking techniques.
Starting with the canonical example of a lift controller, Stephan Merz presents the
basic concepts and techniques of model checking for discrete state transition systems:
temporal logics, the principles of model checking algorithms and their complexity,
and strategies for mastering the state explosion problem. Patricia Bouyer and Francois
Laroussinie focus on model checking for timed automata, the main semantic formal-
ism for modeling real-time systems. They describe the formalism itself, timed modal
and temporal logics, as well as some extensions and subclasses of timed automata.
Finally, algorithms and data structures for the representation and verification of timed
automata are introduced, and the modeling and verification environment Uppaal is
described in some detail.

Using a model of an industrial drilling station as a running example, Radu Ma-
teescu presents in Chapter 5 the functionalities of the CADP toolbox for modeling
and verification. CADP is designed to model arbitrary asynchronous systems whose
components run in parallel and communicate by message passing. The toolbox ac-
cepts models written in different formalisms, including networks of communicating
automata or higher-level models written in Lotos. It implements a set of model trans-
formations, simulation and verification algorithms, and offers the possibility to gener-
ate conformance tests for the implementation.

Chapter 6, written by Pascal Raymond, is devoted to the verification of programs
written in the synchronous language Lustre with the help of the model checker Lesar.
Synchronous languages enjoy ever more success for the development of reactive sys-
tems, of which real-time systems are a particular instance. Based on mathematical
models of concurrency and time, synchronous languages provide a high-level abstrac-
tion for the programmer and are well-suited to formal verification.

In Chapter 7, Paul Caspi, Grégoire Hamon and Marc Pouzet go on to describe the
language Lucid Synchrone that extends Lustre with constructs borrowed from func-
tional languages, further augmenting expressiveness. The authors start by asking why
synchronous languages are relevant for the design of critical systems. They give an
account of the development of the Lucid language, and present in detail its primitives
and the underlying theoretical concepts, illustrating them by several examples.

One of the most exciting developments over the past 15 years has been the emer-
gence of techniques for the verification of probabilistic systems, intimately coupled

18 Modeling and Verification of Real-Time Systems

with work on stochastic processes carried out in the realm of performance evaluation.
Probabilistic models are very useful because they add quantitative information above
the non-deterministic representation of the behavior of system components and the en-
vironment. They can also be used to determine system parameters such as queue sizes,
as a function of the desired failure guarantees. Marta Kwiatkowska, Gethin Norman,
David Parker and Jeremy Sproston lay the bases in Chapter 8 by defining probabilis-
tic timed automata and extending the model checking algorithms for ordinary timed
automata to handle probabilistic models. The case study of the IEEE FireWire Root
Contention Protocol illustrates the application of these techniques. In Chapter 9, Serge
Haddad and Patrice Moreaux give an overview of verification techniques for proba-
bilistic systems: discrete and continuous-time Markov chains, stochastic Petri nets,
Markov decision processes and associated temporal logics. They also cover some of
the main tools used in this domain, including GreatSPN, ETMCC and Prism.

Chapter 10, written by Marius Bozga, Susanne Graf, Laurent Mounier and Iulian
Ober, presents the IF toolset, a tool environment for modeling and verifying real-time
systems centered around a common internal description language based on commu-
nicating timed automata. User-level specifications written in languages such as SDL
or UML are translated into this internal representation and can be subject to analy-
sis using algorithms of static analysis, reduction and model checking. An extended
case study from the aerospace domain based on joint work with EADS concludes the
chapter.

Chapter 11, written by Anne-Marie Déplanche and Sébastien Faucou, is dedicated
to the architecture description language AADL, originally designed and standardized
for the avionic and aerospace domains, but which is an excellent candidate for ar-
bitrary real-time systems. Architectural descriptions can serve as a reference for all
actors involved in system design; they contain the information needed for simulation,
formal verification and testing. The authors examine the specific requirements for de-
scribing real-time systems and then present the AADL and its support tools. Their use
is illustrated with the help of a case study of a closed-loop control system.

We would like to express our gratitude to all of the authors for the time and energy
they have devoted to presenting their topic. We are also grateful to ISTE Ltd. for
having accepted to publish this volume and for their assistance during the editorial
phase.

We hope that you, the readers of this volume, will find it an interesting source of
inspiration for your own research or applications, and that it will serve as a reliable,
complete and well-documented source of information on real-time systems.

Stephan MERZ and Nicolas NAVET
INRIA Nancy Grand Est and LORIA
Nancy, France

Chapter 1

Time Petri Nets — Analysis Methods and
Verification with TINA

1.1. Introduction

Among the techniques proposed to specify and verify systems in which time ap-
pears as a parameter, two are prominent: Timed Automata (see Chapter 4) and Time
Petri nets, introduced in [MER 74].

Time Petri nets are obtained from Petri nets by associating two dates min(¢) and
max(t) with each transition ¢. Assuming ¢ became enabled for the last time at date 6, ¢
cannot fire (cannot be taken) before the date 6 +min(¢) and must fire no later than date
6+max(t), except if firing another transition disabled ¢ before then. Firing a transition
takes no time. Time Petri nets naturally express specifications “in delays”. By making
explicit the beginnings and ends of actions, they can also express specifications “in
durations”; their applicability is thus broad.

We propose in this chapter a panorama of the analysis methods available for Time
Petri nets and discuss their implementation. These methods, based on the technique of
state classes, were initiated in [BER 83, BER 91]. State class graphs provide finite ab-
stractions for the behavior of bounded Time Petri nets. Various abstractions have been
proposed in [BER 83, BER 01, BER 03b], preserving various classes of properties. In
this chapter, we will discuss in addition the practical problem of the verification of
formulae (model checking) of certain logics on the graphs of state classes available.
Using these techniques requires software tools, both for the construction of the state

Chapter written by Bernard BERTHOMIEU, Florent PERES and Francois VERNADAT.

19

20 Modeling and Verification of Real-Time Systems

space abstractions and for the actual verification of the properties. The examples dis-
cussed in this chapter are handled with the tools available in the Tina environment
[BER 04].

The basic concepts of Time Petri nets are reviewed in section 1.2. Sections 1.3 to
1.5 introduce various state class graph constructions, providing finite abstractions of
the infinite state spaces of Time Petri nets. Sections 1.3 and 1.4 present the construc-
tions preserving the properties of linear-time temporal logics such as LT'L; in addi-
tion to traces, the construction of section 1.3 preserves markings while that exposed
in section 1.4 also preserve states (markings and temporal information). Section 1.5
discusses preservation of the properties expressible in branching-time temporal log-
ics. Section 1.6 discusses the analysis of firing schedules and presents a method to
characterize exactly the possible firing dates of transitions along any finite sequence.
The toolbox Tina, implementing all state space abstractions reviewed and a model
checker, is presented in section 1.7. The following sections are devoted to the verifi-
cation of LT L formulae on the graphs of state classes. Section 1.8 presents the logic
selected, SE— LT L, an extension of the LT L logic, and the implementation of a ver-
ifier for that logic, the module selt of Tina. Section 1.9 discusses two application
examples and their verification.

1.2. Time Petri nets
1.2.1. Definition

Let I'™ be the set of non-empty real intervals with non-negative rational endpoints.
For i € I, | i denotes its left endpoint and 1 i its right endpoint (if 4 is bounded) or
oo (otherwise). For all # € R™, i = 6 denotes the interval {z — 60 | z € i Az > 6}.

DEFINITION 1.1.— A Time Petri net (T PN for short) is a tuple (P, T, Pre, Post,
mo, Ls), in which (P, T, Pre, Post, mg) is a Petrinet and I : T — 17T is a function
called the Static Interval function.

Application [associates a temporal interval I(¢) with each transition of the net.
The rationals E ft,(t) = | I;(t) and Lfts(t) = TI(t) are called the static earliest
firing time, and static latest firing time of transition ¢, respectively. A Time Petri net
is represented in Figure 1.1.

1.2.2. States and the state reachability relation
DEFINITION 1.2.— A state of a Time Petri net is a pair e = (m,I) in which m is a

marking and I : T — 1T a function that associates a temporal interval with each
transition enabled at m.

Time Petri Nets and TINA 21

R/R

[03]] t5 [491] v [0.2] [1.3]
[0.2]

Figure 1.1. A Time Petri net

The initial state is eg = (my, ig), where I is the restriction of I to the transitions
enabled at mg. Any transition enabled must fire in the time interval associated with it.

Firing ¢ at date 0 from e = (m, I) (or, equivalently, waiting € units of time then
firing ¢ instantly) is thus allowed if and only if:

m > Pre(t) A0 € I(t) A (Vk # t)(m > Pre(k) = 0 < 1 (I(k))).

The state ¢/ = (m’, I") reached from e by firing ¢ at 6 is determined by:
1) m" = m — Pre(t) 4+ Post(t) (as in Petri nets).

2) For each transition k enabled at m/’:
I'(k) =ifk # t and m — Pre(t) > Pre(k) then I(k) = 0 else I (k).

Let us note by % the timed reachability relation defined above, and let e L e

stand for (36)(e L). A firing schedule is a sequence of timed transitions
t1@0; - - -t,@Q80,,. It is firable from e if the transitions in sequence o = t; - - - t,, are
successively firable at the relative dates they are associated with in the schedule. o is
called the support of the schedule. A sequence of transitions is firable if and only if it
is the support of some firable schedule.

Let us note that, in Time Petri nets, and contrarily to Timed Automata, the elapsing
of time can only increase the set of firable transitions from a state, but can in no case

22 Modeling and Verification of Real-Time Systems

reduce it. Relation - characterizes exactly the “discrete” behavior of a TPN (bisim-
ilarity after abstraction of time) when interpreting time-elapsing as non-determinism.
Alternatively, time-elapsing could be interpreted as for Timed Automata. In that case,

we should add to the transitions of relation *=% those representing the elapsing of
time, of form (m, I) —— (m, I >r) where, for any k, r is not larger than 1 (I(k)).

Finally, let us note that the concept of state introduced in this section associates
exactly one temporal interval with each enabled transition, whether or not that tran-
sition is multi-enabled (¢ is multi-enabled at m if there is an integer k£ > 1 such that
m > k.Pre(t)). An alternative interpretation of multi-enabledness is discussed in
[BER 01], in which several temporal intervals may be associated with transitions; this
interpretation will be briefly discussed in section 1.3.4.1.

1.2.3. Illustration

The states can be represented by pairs (m,D), in which m is a marking and D is
a set of vectors of dates called a firing domain. The i*" projection of domain D is
the firing interval I(¢;) associated with the 7*" enabled transition. Firing domains can
be described by systems of linear inequalities with one variable per enabled transition
(noted like the transitions).

The initial state e = (mg, Dp) of the net represented in Figure 1.1 is written:

mo @ p1,P2 * 2
D014<t1<9

Firing ¢, from e at relative time 6, € [4, 9] leads to state e; = (my, D7) given by:

my . P3, P4, Ps
Dl .

o O = O
NN NN
~+ =+ =+
AW W
NN NN
W N W N

ot

Firing t5 from e; at relative time 6 € [0, 2] leads to eo = (maq, D), where:

msa : p2,P3,P5

D5 : max(0,1 —65) <t3 <3 —05
0<ty4<2—-0,
0<t; <3—-62

Since 03 may take any real value in [0, 2], state e; admits an infinity of successors.

Time Petri Nets and TINA 23

1.2.4. Some general theorems

A Petri net or Time Petri net is bounded if, for some integer b, the marking of each
place is smaller than b. Let us recall an undecidability result.

THEOREM 1.1.— The problems of marking reachability, of state reachability, of bound-
edness and of liveness are undecidable for Time Petri nets.

Proof. 1t is shown in [JON 77] that the marking reachability problem for TPN's is
reducible to that, undecidable, of the termination of a two-counter machine. Undecid-
ability of the other problems follows.

Representing the behavior of a Time Petri net by its state reachability graph (as the
behavior of a Petri net is represented by its marking reachability graph) is in general
impossible: the transitions being able to fire at any time in their firing interval, states
typically admit an infinity of successors. The purpose of the state classes defined there-
after are precisely to provide finite representation for this infinite state space, when the
network is bounded, by grouping certain sets of states. However, there are two remark-
able subclasses of Time Petri nets admitting finite state graphs if and only if they are
bounded. O

THEOREM 1.2.— Consider a TPN (P, T,Pre, Post, My, I,). If all transitions t €
T have static interval [0, 00|, then the state graph of the net is isomorphic with the
marking graph of the underlying Petri net.

Proof (by induction). If each transition carries interval [0, co[, then the firing condi-
tions for the transitions are reduced to that in Petri nets (without temporal constraints).
In addition, the firing rule preserves the shape of firing intervals. O

THEOREM 1.3.— Consider a TPN (P, T,Pre, Post, My, I,;). If I associates with
each transition a punctual interval (reduced to one point), then:

(i) the state graph of the net is finite if and only if the net is bounded;

(ii) if, in addition, all transitions bear equal static firing intervals, then its state graph
is isomorphic with the marking graph of the underlying Petri net.

Proof (by induction). (i) By the firing rule, if all static intervals are punctual, then a
state has at most as many successor states as the number of transitions enabled at it.
In addition, the firing rule preserves the punctual character of firing intervals. For (ii),
note that the firing condition reduces then to that in Petri nets. O

Theorems 1.2 and 1.3 make it possible to interpret Petri nets as particular Time
Petri nets, in various ways. The most frequent interpretation is to regard them as Time
Petri nets in which each transition carries static interval [0, co].

24 Modeling and Verification of Real-Time Systems

1.3. State class graphs preserving markings and L7 L properties
1.3.1. State classes

The set of states of a Time Petri net may be infinite for two reasons: on one hand
because a state may admit an infinity of successors and, on the other hand, because
a T PN can admit schedules of infinite length going through states whose markings
are all different. The second case will be discussed in section 1.3.3. To manage the
first case, we will gather certain sets of states into state classes. Several grouping
methods are possible; the construction reviewed in this section is that introduced in
[BER 83, BER 91].

For each firable sequence o, let us note by C,, the set of states reached from the
initial state by firing schedules of support o. For any such set C,, let us define its
marking as that of the states it contains (all these states have necessarily the same
marking) and its firing domain as the union of the firing domains of the states it con-
tains. Finally, let us note by = the relation satisfied by two sets C, and C,» when
they have equal markings and equal firing domains. If two sets of states are related by
2=, then any schedule firable from some state in one of these sets is firable from some
state in the other set.

The graph of state classes of states of [BER 83], or SC'G, is the set of sets of states
C,, for any firable sequence o, considered modulo relation 22, and equipped with the

transition relation: C,, % X if and only if C,; = X. The initial state class is the
equivalence class of the singleton set of states containing the initial state.

The SCG is built as follows. State classes are represented by pairs (m, D), where
m is a marking and D a firing domain described by a system of linear inequalities
W ¢ < w. The variables ¢ are bijectively associated with the transitions enabled at m.
The equivalence (m, D) = (m/, D') holds if and only if m = m’ and D = D’ (i.e.
the systems describing D and D’ have equal solution sets).

ALGORITHM 1.1.— Construction of the SCG, state classes
For any firable sequence o, let L be the class computed as explained below. Compute

the smallest set C' of classes including L. and, whenever L, € C and o.t is firable,
then (3X € C)(X = Ly 4):

—The initial class is Le = (mo, {Efts(t) < ¢, < Lfts(t) |t € T Amo = Pre(t)}).

—If o is firable and L, = (m, D), then o.t is firable if and only if:
(i) m > Pre(t) (t is enabled at m) and
(ii) the system D AN {¢, < ¢, | i € T Ni#tAm > Pre(i)} is consistent.

—If o - tis firable, then L, = (m', D') is computed as follows from L, = (m, D):

Time Petri Nets and TINA 25

m’ =m — Pre(t) + Post(t),
D' obtained as follows:
(a) the above firability constraints (ii), of t from L, are added to D;
(b) for each k enabled at m’, a new variable Q; is introduced, obeying:
Q; =@, — ¢, ifk #tand m — Pre(t) > Pre(k),

Efts(k) < Q; < Lfts(k), otherwise;
(c) variables ¢ are eliminated.

L, is the equivalence class by relation = of the set C, of states reached from
so by firing schedules of support o. Equivalence = is checked by putting the systems
representing firing domains into canonical forms. These systems are systems of differ-
ences. Computing canonical form for them reduces to a problem of “all-pairs shortest
path”, solved in polynomial time using, for example, Floyd/Warshall’s algorithm.

Remark: two sets C,, and C,+ can be equivalent by = while having different contents
in terms of states. The notation of the state classes by a pair (m, D) canonically rep-
resents an equivalence class of sets of states for relation =2, but we cannot tell from
such a class if it contains some given state.

1.3.2. Illustration

As an illustration, let us build some state classes of the T'P N represented in Figure
1.1. The initial class ¢ is described in the same way as the initial state e (see section
1.2.3). Firing t; from cq leads to a class c¢; described like state e; (since the target
state does not depends on the time at which ¢; fired). Firing ¢5 from c; leads to ¢ =
(ma, Ds), with mg = (p2, ps, ps) and Dy computed in three steps:

(a) Dy is augmented with the firability conditions for £, given by system:

ta < t3
ta <14
to < ts

(b) No transition is newly enabled, and ¢3, t4, t5 remain enabled while t5 fires. So
we simply add equations t; = t; — to, for i € {3,4,5}.

(c) The variables ¢; are eliminated, yielding system:

0<ty<3 t,—th<1
0<th<2 th—th <2
0<t5<3

The graph of state classes of the net in Figure 1.1 admits 12 classes and 29 transi-
tions, which can be found in [BER 01].

26 Modeling and Verification of Real-Time Systems

Figure 1.2 shows another Time Petri net, which will be used to compare the various
state class graph constructions, together with its SC'G graph.

[3,5]

[5.7]

p4 p5

class c0 cl c2
marking p0, p4 p0, p5 P2, pPd p3, P5 pl, pb
firing domain | 5 <# <7 |0<t0<0|2<t<3 0<t2<2

3<0L5|10<K<t1K0

3<t1 <5
class cd cb c7 8
marking p2, p4 p3, pd P2, pb pl, p4
firingdomain | 2 <t <3 |0<t' <2 |0<t<3]0<t' <4

0<t <4 0<t2<2

Figure 1.2. AT PN and its SCG. The variable Qt is written t

1.3.3. Checking the boundedness property on-the-fly

It remains to examine the conditions under which the set of state classes of a T PN
is finite. Let us recall that a Petri net or Time Petri net is bounded if the marking of any
place admits an upper bound; boundedness implies finiteness of the set of reachable
markings. It was proven in [BER 83] that the set of firing domains of a Time Petri
net is finite; its SCG is thus finite if and only if the net is bounded. This property
is undecidable for arbitrary T'PN (see Theorem 1.1), but sufficient conditions can
be applied. The simplest such sufficient condition is that the underlying Petri net is
bounded (which is decidable), but weaker conditions can be stated. The following
theorem reviews some of them.

Time Petri Nets and TINA 27

THEOREM 1.4.— [BER 83] A Time Petri net is bounded if its SCG does not contain a
pair of classes ¢ = (m, D) and ¢/ = (m/, D') such that:
i) ¢ is reachable from c,
i) m'x m,
iii) D' = D,
) (Vp)(m'(p) > m(p) = m'(p) > maxycr){Pre(p,t)}).

Properties (i) to (iv) are necessary for the boundedness property, but not sufficient.
This theorem, for example, ensures that the nets in Figures 1.1, 1.3 (left) and 1.3
(middle) are bounded, but it cannot be used to prove that the net represented in Figure
1.3 (right) is bounded, even though this net only admits 48 classes. If we omit (iv), then
boundedness of the net in Figure 1.3 (middle) cannot be proven anymore. Omitting
(iii), in addition, we cannot infer boundedness for the net in Figure 1.3 (left). The
condition obtained then ((i) and (ii)) is similar to the boundedness condition for the
underlying (untimed) Petri net [KAR 69].

A A A

[} v | o v | L [] v |

B B B 3 | (L1

2 | [0.0] 2 | [0.0] © | L1

Figure 1.3. Three bounded Time Petri nets

1.3.4. Variations

1.3.4.1. Multiple enabledness

A transition ¢ is multi-enabled at a marking m if there is some integer k£ > 1
such that m > k.Pre(t). In the classes of the graph introduced in section 1.3, each
enabled transition is associated with exactly one temporal variable, whether or not the
corresponding transition is multi-enabled; the various enabling dates for a transition
are systematically identified with the largest of these dates.

In some applications, this interpretation may be found to be too restrictive; we
may want to distinguish the different enabledness instances. The issue is investigated
in [BER 01], where several operational interpretations of multi-enabledness are dis-
cussed. We can naturally see the enabledness instances as independent, or as ordered

28 Modeling and Verification of Real-Time Systems

according to their creation dates. In any case, Algorithm 1.1 is easily adapted to pro-
duce state class graphs “with multi-enabledness” [BER 01].

1.3.4.2. Preservation of markings (only)

It is possible to compact further the state class graph SC'G by not storing a class
when it is included in an already built class. More precisely, let L, = (m, D) and
L, = (m/, D’) be two classes, and L, C L, if and only if m = m’ and D C D’'.
Then, rather than proceeding as in Algorithm 1.1, we build a set C' of classes such
that, when L, € C and o - ¢ is firable, then (3X € C)(L,.. C X).

Intuitively, if such a class X exists, any schedule firable from a state of L,.; is
also firable from a state in X. We will thus not find new markings by storing L.;. Of
course, this construction does not preserve the firing sequences, and therefore L7T'L
properties; it only preserves markings, but it typically produces smaller graphs. This
construction is convenient when correctness requirements can be reduced to marking
reachability properties or to absence of deadlocks.

1.4. State class graphs preserving states and L7 L properties

As already mentioned, the classes built using Algorithm 1.1 canonically represent
equivalence classes of sets of states by 22, but not the sets C, defined in section 1.3.1.
A consequence is that the SC'G cannot be used to prove or disprove reachability of a
particular state of a TPN.

The strong state classes (also called state zones by some authors) reviewed in this
section, introduced in [BER 03b], coincide exactly with these sets of states C,,. The
graph of strong state classes (SSCG for short) preserves LT L properties and states
in a way we will make clear.

1.4.1. Clock domain

To build the SSCG, it is necessary to represent the sets of states C,, in a canonical
way. An adequate representation is provided by clock domains.

With any firing schedule we can associate a clock function v as follows: with
any transition enabled after firing the schedule, function associates the time elapsed
since that transition was last enabled. Clock functions can also be seen as vectors ~,
indexed by the enabled transitions. B

The set of states described by a marking m and a clock system @ = {Gy < g} is
the set {(m, #(7)) | v € Sol(Q)}, where Sol(q) is the solution set of system (), and

the firing domain ¢() is the set of solutions in ¢ of system:

0< ¢, e<d+7y<! where ¢, = Eft,(k)andl, = Lfts(k).

