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Preface

Carbon is a versatile and fascinating material that can be used in a number of
technological processes, including high-tech processes. This is due largely to
the ability of carbon atoms to bond with each other in various ways to form
linear, planar, and tetrahedral bonding arrangements, thus producing materials
with a large range of properties. Physicochemical characteristics such as electrical
conductivity, surface area and porosity, and surface chemistry may be tuned for
specific applications.

Carbon materials such as activated carbons, carbon blacks, graphite, and
graphitic materials have been used for decades in heterogeneous catalysis, as
either catalysts or catalyst supports. Activated carbon catalysts are used in the
synthesis of phosgene from carbon monoxide and chlorine, in the synthesis
of thionyl chloride from sulfur dioxide and chlorine, and in the oxidation of
N -phosphonomethyliminodiacetic acid to produce a biodegradable herbicide,
Glyphosate. Activated carbons impregnated with ZnO, CuO, or Fe,O3 are
designed specifically for the desulfurization of natural gas. The Merox process
developed by Universal Oil Products to remove mercaptan sulfur from petroleum
fractions involves a catalyst consisting of cobalt phthalocyaninedisulfonate
impregnated onto a suitable high-surface-area activated carbon. Furthermore,
because of their high thermal stability in reducing atmospheres and their ability
to facilitate the preparation of well-dispersed metal particles on surfaces that do
not exhibit acid—base properties, carbon materials are used to support precious
metals for hydrogenation reactions in the fine-chemicals industry. The recovery
and recycling of metals, particularly of noble metals, is simplified with carbons,
as these supports can be burned off. These materials offer unparalleled flexibility
in tailoring catalyst properties to specific needs.

Compared to the predominant applications of these carbon materials as adsor-
bents for drinking water, wastewater, and gas purification, as fillers in rubber
production, or as refractory materials, however, their use in the catalyst market
represents only a moderate share. The potential growth of the market for carbons
in catalysis depends on (1) better understanding of the chemistry of carbon sur-
faces and fine tuning of the microstructure of these materials, which could then be
exploited in the design of truly unique catalysts; and (2) improvements in quality
control and production methods, to supply constant-quality materials (synthetic
carbons). There are additional opportunities to increase the market value of car-
bon materials in the near future, due to the rapidly advancing development of
fuel cells, the use of novel carbon materials, the increasing need for catalytic
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materials in very selective reactions, and the identification of some high-volume
applications.

Patents appear continuously to meet industrial needs, and the growth of sci-
entific publications dealing with the use of carbon materials in catalysis is expo-
nential. However, the last major review of this field was published over a decade
ago (L.R. Radovic and F. Rodriguez-Reinoso, in P.A. Thrower, Ed., Chemistry
and Physics of Carbon, Vol. 25, Marcel Dekker, New York, 1997, p. 243). In
the meantime, new materials, such as carbon nanotubes, nanofibers, aerogels,
and xerogels, have become widely available, and our knowledge of the surface
chemistry of carbon materials has improved substantially. We are now able to
modify in a controlled manner the nature and concentration of functional groups
on the surface of carbon materials, which can serve as active sites in catalysis
or as anchoring centers for active phases or their precursors. High-performance
nanostructured catalysts can thus be prepared. Moreover, analytical tools have
been developed for the identification and quantification of surface groups, paving
the way for the proper interpretation of kinetic data and providing for useful cor-
relations of catalytic activity. There is clearly a need to establish the state of the
art in order to identify the required areas of research, to stimulate more systematic
approaches, and to promote further technological developments in the field—and
that is the purpose of this book.

The material is organized into 15 chapters written by recognized experts in
their fields. It has been decided to cover in depth new and hot topics as well as
those that have not yet been the subject of extensive reviews. In the first three
chapters the properties of carbon materials relevant to catalysis are discussed,
with a special emphasis given to the description of carbon surface features, in
particular to surface functional groups and their characterization methods, and to
the theoretical investigation of molecular interactions on carbon surfaces. This
provides a fundamental background for an understanding of the material covered
in subsequent chapters.

The next two chapters provide a comprehensive review of carbon-supported
metal catalysts and their preparation methods. The most important applications
are discussed, special attention being given to the most innovative.

Chapter 6 provides an extensive review of the uses of carbon as a cata-
lyst, with particular emphasis being placed on cases in which active sites have
been properly identified and activity correlations established. The special case of
nitrogen-doped carbons and their catalytic activity in oxidation reactions is dis-
cussed in Chapter 7, and Chapter 8 covers the heterogenization of homogeneous
catalysts by anchoring transition-metal complexes onto the surface of suitable
carbon materials.

Two important classes of new carbon materials, carbon nanotubes/nanofibers
and carbon aerogels/xerogels/cryogels are reviewed and discussed in the next two
chapters. These materials exhibit interesting properties that can be exploited in
many applications, particularly in catalysis.

Chapter 11 provides a short review of carbon-based monoliths, their prepara-
tion, and applications in various liquid-phase processes, including bioconversions.
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Chapters 12 and 13 cover two of the most important novel catalytic applica-
tions of carbon materials, electrocatalysis and photocatalysis. In the first case,
carbons are used mostly as supports for metal catalysts in fuel cells, while the
synergistic effects of carbon-based composite semiconductor materials, such as
C-TiO,, make them particularly effective in photocatalytic degradation reactions.

Chapter 14 addresses the special topic of sensors, in which advantage is taken
of the unique properties of nanostructured carbon materials such as nanotubes
and fullerenes. Finally, applications of carbon-supported precious metal catalysts
are reviewed from an industrial perspective in Chapter 15.

Since this is a multiauthored book, significant differences in style from chapter
to chapter are inevitable, but we have tried to avoid overlaps as much as possible.
We thank all the authors for their efforts to meet the deadlines and to follow the
format defined for the book. We would also like to acknowledge the assistance
of Anita Lekhwani at Wiley, whose advice has been most helpful at the various
stages of preparation of the manuscript. Finally, we hope that the book will be
useful to fellow scientists and practitioners and will stimulate further research
and discussion on the development of carbon materials for catalysis.

Toulouse PHILIPPE SERP
Porto JOSE LUiS FIGUEIREDO
February 2008






1 Physicochemical Properties
of Carbon Materials:
A Brief Overview

LJUBISA R. RADOVIC

1.1 INTRODUCTION

To justify the title and the contents of this brief introductory review, it is appro-
priate to recall the words of Nernst, written more than a century ago (1893) in
the Preface to the first edition of his Theoretical Chemistry from the Standpoint of
Avogadro’s Rule and Thermodynamics (http://books.google/com): “[T]he devel-
opment of physical chemistry as a special branch of natural science means—and
I would lay particular emphasis on this—not so much the shaping of a new
science, but rather the co-operation of two sciences which hitherto have been, on
the whole, quite independent of each other.”

Catalytic applications of carbon materials are as old as the discipline of phys-
ical chemistry, and probably even older. Over the past century or so, the level of
fundamental understanding of these technological applications and this discipline
has increased tremendously, of course. Yet, despite (or because?) of this progress,
there is a pervasive problem in carbon science and technology: It is an eminently
interdisciplinary field, and the danger that “the left hand doesn’t know what the
right hand is doing” is considerable. In principle and increasingly in practice, as
Nernst himself had anticipated, this problem has also plagued physical chemistry
but it has been overcome; it took almost a century for Dirac’s prophecy to be real-
ized, but it has been done. With the discovery of quantum mechanics, chemistry
has been essentially reduced to physics. Dirac proclaimed that “the underlying
physical laws necessary for the mathematical theory of a large part of physics and
the whole of chemistry are thus completely known” [1]. So in the second century
of existence of physical chemistry as a discipline, the key question is whether
carbon chemists really understand what the carbon physicists are arguing, and
vice versa. Here I explore some answers to this question, those that are considered

Carbon Materials for Catalysis, Edited by Philippe Serp and José Luis Figueiredo
Copyright © 2009 John Wiley & Sons, Inc.



2 PHYSICOCHEMICAL PROPERTIES OF CARBON MATERIALS: A BRIEF OVERVIEW

to be of greatest relevance to catalytic applications of carbon materials. Know-
ing that, despite the wonderful opportunities offered by electronic storage and
retrieval of information, researchers today continue to struggle to keep up with
the literature in their own (increasingly narrow?) field, it is anticipated that the
path outlined by Dirac continues to be a difficult one. Yet the obvious rewards to
those who succeed in integrating carbon physics and carbon chemistry should be
a powerful enough incentive. Much of the evidence of progress in this endeavor,
or lack thereof, has accumulated in the 30 volumes [2] of the book series Chem-
istry and Physics of Carbon inaugurated by Philip Walker almost half a century
ago, when carbon science was in its infancy. It is true that “the study of carbon
has grown to become a specialism” [3] but, as argued below, it is inappropriate
to obscure it unduly [3] as not only “a combination of physics and chemistry” but
also of “fluid dynamics and chemical engineering, with dashes of astrophysics
and geology” [3]. From a historical perspective, the development of carbon sci-
ence and technology provides several ironic and exemplary twists of fate for
chemists and physicists. The most fascinating one is related to the discovery of
Ceo, buckminsterfullerene. Its chemical identification [4] was brought about by
the pursuit of an astrophysical issue (the nature of interstellar dust), whereas
researchers in a physics department [5] were the first to achieve its chemical
separation.

Catalytic behavior of carbon materials depends on their surface properties,
but surface properties are to a large extent a consequence of bulk properties.
Therefore, after a brief overview of the ways that carbon materials are formed, I
discuss their bulk properties briefly before focusing on their physical and chemical
surface properties and their chemical (re)activity.

1.2  FORMATION OF CARBONS

All carbon materials, including those used for catalytic applications, are formed
in either the gas, liquid, or solid phase; and these conditions to a large extent
dictate the variabilities possible in their physicochemical properties. The range of
hydrocarbon feedstocks used as carbon precursors is also dictated by these con-
ditions; and seemingly subtle changes often produce profound structural effects.
These are discussed briefly below.

1.2.1 Gas Phase

Figure 1.1 summarizes the very wide range of carbon products that can be pro-
duced in gas-phase reactions under perhaps surprisingly similar conditions from
a very wide variety of carbon-containing gases (e.g., CO, CHy, C,H,, C3Hg,
C¢Hg, natural gas, volatile products of coal or biomass pyrolysis). The rela-
tively disordered (but not amorphous), nongraphitic and nongraphitizable carbon
black or soot particles result because nucleation of the carbon precursors occurs
during pyrolysis in the gas phase. The much more ordered (quasicrystalline)
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Figure 1.1 Summary of the processes of carbon formation in the gas phase and the
resulting carbon macrostructures. (Hydrocarbon polymerization or decomposition can lead
to interconversion of gaseous, liquid, or solid carbon precursors; see also Figures 1.2
and 1.3.)

nongraphitic but graphitizable pyrolytic carbon is obtained by virtue of chemical
vapor deposition (CVD) of carbon precursors on a relatively inert (e.g., ceramic)
substrate; the structure of crystalline graphite (in pyrolytic graphite) is achieved
upon simple heat treatment above about 2773 K. On a more reactive metal-
lic surface (most notably, Fe, Co, or Ni), the deposition of carbon precursors
typically results in carbon dissolution, intra- and/or suprametal diffusion, and
precipitation in the form of nanotubes or filaments (fibers). The novel aspect of
this process is the emergence of curvature of sp> bonds in the growing graphene
layers; its origin remains a debatable and arguably unresolved issue. Whether
it is analogous to the curvature induced by formation and entrapment of pen-
tagons and/or heptagons, phenomena responsible for the formation of fullerenes
upon condensation of gas(eous fragments), or to some other effect, including the
role of the crystallography or morphology of the metal substrate, remains to be
verified.

1.2.2 Liquid Phase

Figure 1.2 summarizes the variety of carbon products obtained in liquid-phase
reactions using thermoplastic polymers, either the natural (such as bituminous
coals) or synthetic ones [such as poly(vinyl chloride), —CH,Cl,—,]. At the most
commonly utilized carbonization conditions, typically above 2273 K in a largely
nonreactive medium, the degree of alignment and the mobility of emerging,
growing, and coalescing carbon crystallites is considerable, but the consequent
relative orientations of the resulting graphene layers are insufficient to achieve the
perfect crystalline structure of graphite, and these materials are the nongraphitic
but graphitizable cokes. However, their further exposure to higher temperature,
typically in excess of 2773 K, results readily in the formation of (synthetic)
graphite. If during the carbonization process the intermediate molten phase is
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Figure 1.2 Summary of the processes of carbon formation in the liquid phase and the
resulting carbon macrostructures.

subjected to extrusion and orientation, highly graphitizable carbon fibers (e.g.,
from mesophase pitch) can be obtained.

1.2.3 Solid Phase

Figure 1.3 summarizes the carbon formation processes taking place in the solid
phase, with thermosetting carbon precursors such as low-rank coals, preoxidized
bituminous coals, and wood, or thermosetting polymers such as poly(vinylidene
chloride) (PVDC), —CHCl3—,. (Note how very sensitive the carbonization pro-
cess is to structural details of the carbon precursor: The absence of one hydrogen
atom in the monomer precludes the formation of a molten phase during ther-
mal decomposition of PVDC.) Because there is no plastic phase during the
devolatilization process, there is extensive development of porosity in chars,

(1) ...Polymerization| Thermosetting
1 ’ polymers
Decomposition... (€--» coals, PVDC)

Thermal decomposition

Charring/ M
- ostly )
activation bottleneck Extt.rustl'on
Glassy carbon | Pores (activation)
Carbon Carbon
Activated molecular fibers
carbons (chars) Slees (activated)

Figure 1.3 Summary of the processes of carbon formation in the solid phase and the
resulting carbon macrostructures.
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and this can be tailored further by selective gasification to produce activated car-
bons or molecular sieves, from either carbonized granules or powders or fibers.
If the heat-treatment temperature is high, the product remains nongraphitic and
nongraphitizable, but it acquires a shiny appearance and its pores become very
narrow and essentially impervious to most gases and liquids: It is glassy or
glasslike (vitreous) [6] and possesses a low surface area, although its low den-
sity (e.g., 1.5 g/cm?) reveals the presence of considerable closed porosity (even
to helium at ambient temperature), which can be exposed and developed upon
activation (selective gasification) at higher temperatures.

1.3 STRUCTURE AND PROPERTIES OF CARBONS

Both the bulk and the surface properties of carbon materials are dependent on
their structure (i.e., on the spatial arrangement of carbon atoms). The structure
is in turn dependent on the precursor used and the conditions of formation,
as outlined in Section 1.2. Because of the prodigious variety of possible
carbon atom arrangements within the seemingly restrictive constraint of sp’
hybridization characteristic of graphitelike carbons, it is useful to distinguish
between the various levels of structure, and these are discussed in the following
sections. The increasingly popular and often abused term nanostructure should
be the easiest to define unambiguously, at a scale below 10 nm, although of
course it is the most difficult one to verify experimentally. Conversely, the
boundary between macrostructure and microstructure is much easier to ascertain
experimentally, but it is less straightforward to define it precisely. The latter term
is well recognized, especially for polycrystalline materials, although perhaps sur-
prisingly it does not have an International Union of Pure and Applied Chemistry
(IUPAC) definition (see www.iupac.org/publications/compendium/index.html):
for example, “the structure of a crystal on the scale on which deviations from
perfect order become evident” [7] or “the structural features ... (e.g., grain
and phase structure) that are subject to observation under a microscope” [8,9].
In practice, this sets the macro/micro boundary in a broad range of about
1 to 100 pm.

In Table 1.1 we summarize the prodigious variety of bulk and surface prop-
erties of carbon materials, especially those of greatest relevance for catalytic
behavior. Typical values or typical ranges are most often quoted rather than def-
inite values, because these depend on too many factors to discuss here. Specific
literature references are also not provided for this reason; not only handbooks
[10,11] and the Chemistry and Physics of Carbon series [2] were consulted, but
representative research or review papers as well as some commercial product
brochures were examined.

1.3.1 Macrostructure

The macrostructure level of carbon atom arrangement confers the most readily
recognizable features on carbon materials, and it should not allow room for
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