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PREFACE

The ability to peer into the human body is an essential diagnostic tool in medicine and
is one of the key issues in health care. Our population is aging globally; for example,
over 20% of the population in Japan is already over 65 years old. Older people require
many more imaging investigations than do younger ones. Cancer and heart disease are
the number-one Kkillers, approaching 40% of all deaths. Improved image quality
becomes essential for effective diagnostics in these cases. Shorter examination
times, shift to outpatient testing, and noninvasive imaging are rapidly needed. The
challenges to contain health-care costs are enormous, and technology solutions are
needed to address them.

This book addresses the state-of-the-art in hardware design in the context of medi-
cal imaging of the human body. There are new exciting opportunities in ultrasound,
magnetic resonance imaging (MRI), X-ray, computed tomography (CT), and nuclear
medicine (PET/SPECT). Emerging detector technologies, circuit design techniques,
new materials, and innovative system approaches are explored. This book is a must for
anyone serious about electronics in a health-care sector.

There are four major imaging modalities described in this book. Their effective
signal positions on the electromagnetic spectrum vary from kilohertz (kHz) for ultra-
sound, through gigahertz (GHz) for magnetic resonance imaging (MRI), to 10'® Hz
for X-ray /computed tomography (CT) and nuclear medicine, over 15 orders of mag-
nitude variation! Despite their vastly different frequencies and principles of operation,
there are numerous commonalities in signal processing of signals received by these
imaging detectors, such as signal amplification, filtering, multiplexing, and analog-
to-digital conversion. These hardware commonalities among imaging techniques
merit putting all related knowledge and know-how into one publication. I sincerely
hope that this book will help improve the understanding of medical imaging elec-
tronics and stimulate further interest in the development and use of this equipment
to benefit us all.

Krzyszror (Kris) INIEWSKI
Vancouver 2008
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PART I
X-Ray Imaging and Computed
Tomography






1 X-Ray and Computed Tomography
Imaging Principles

KRZYSZTOF INIEWSKI

1.1. INTRODUCTION TO X-RAY IMAGING

X-ray imaging is a well-known imaging modality that has been used for over 100 years
since Rontgen discovered X-rays based on his observations of fluorescence. His initial
results were published in 1885, and reports of diagnoses of identified fractures shortly
followed. A year later, equipment manufacturers started selling X-ray equipment.
Today, X-ray and its three-dimensional (3D) extension, computed tomography (CT),
are used commonly in medical diagnosis.

X-rays are high-energy photons. Their generation creates incoherent beams that
experience insignificant scatter when passing through various media. As a result,
X-ray imaging is based on through transmission and analysis of the resulting X-ray
absorption data. Typically, X-rays are detected through a combination of a phosphor
screen and a light-sensitive film, as shown in Fig. 1.1. The current system, which has
been used for mammography and radiography for many years, provides a good-quality
analog image that is not compatible with digital storage and transmission requirements
of the modern digital era. A slight variation of this common technique is used in
fluoroscopy where image intensifier is used as transition stage to supply signals to
CMOS cameras producing an analog image directly on a TV screen. Multiple conver-
sions steps in this case from X-rays to electrons to light to camera display lead to poor
image quality.

An alternative to the conventional detection technique, also shown in Fig. 1.1, uses
adigital detector that converts X-ray photons directly into an electrical signal of digital
nature. Chapter 2 in this book discusses an example of this direct detection technology
using a large-area active matrix flat panel based on the amorphous silicon (a-Si).
Having a digital image leads to lower storage cost and ease of electronic transmission
in a future e-Healthcare era.

Medical Imaging: Principles, Detectors, and Electronics, edited by Krzysztof Iniewski
Copyright © 2009 John Wiley & Sons, Inc.
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Mammography & Radiography

Phosphor Film
X-ray X-ray Light
[aVaVaVaWala Ul (\WalaWaWs & Analog
image

Fluoroscopy

Image intensifier

X-ray X-ray Light Analog
[AVAVAVAUA WA\ .
image

TV pickup
Electron tube
Digital Detector-Future
Detector
Xeray X-ray Digital
aVaVaVaVaVaV aVaVaVaVal o\

image

Fig. 1.1. Typical X-ray detection methods used today that provide an analog image (top and
middle) and that in the future will use a digital detector (bottom). (From http://www.ecse.
rpi.edu/censsis/.)

There are some important differences in characterization of film-based imaging and
digital imaging. In this chapter and the rest of the book we will focus on digital ima-
ging because it is a more modern technique which with time is expected to completely
replace film-based imaging the same way that digital cameras have displaced analog
films in consumer cameras. In digital imaging we use terms such as brightness, dynamic
range, linearity, or signal-to-noise ratio instead of density, latitude, film speed, or image
sharpness, the terms associated with film-based technology.

Digital X-ray detectors can operate in two regimes: photon counting and inte-
gration. In the photon counting mode, each individual photon is detected; and if its
energy is higher than the set threshold, the photon is counted with its corresponding
energy registered if desired. In the integrating mode the charge generated by the
incoming photon is integrated in a selected time interval. Due to this principle of oper-
ation, a count rate in the photon counting mode is limited, typically to 10° counts per
second (c/s), while it is virtually unlimited for the integrating mode. The photon
counting mode can detect smaller signals, down to an individual photon, and offers
a higher dynamic range (typically 10°) compared to the integrating mode (10%.
Advantages of the photon counting mode include higher detector quantum efficiency
(DQE), lower electronic noise, no need for signal digitization, and possibility of
energy discrimination. The integrating mode, in turn, can operate with high count
rates, and it is simple and inexpensive to implement. Chapter 3 in this book discusses
differences in both photon counting and integration modes of operation in more detail.

While operation of modern X-ray based scanners can be quite complex, a basic
principle behind X-ray imaging is quite simple. The technique relies on analyzing
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attenuation data of the object (patient) that undergoes X-ray exposure. Because differ-
ent materials (internal organs) experience different levels of X-ray intensity attenu-
ation, an image corresponding to these properties can be readily created. The
attenuation characteristics are governed by the so-called Beer—Lambert law, which
is expressed as follows:

I(z) = Iy * exp(—uz) (1.1)

where 1(z) is the X-ray intensity at the detector, I, is the X-ray intensity at the source,
z is the distance between the source and the detector planes, and w is the attenuation
coefficient that has a different value for different materials. By measuring I(z) for a set
of detectors, one can establish the corresponding value of the attenuation coefficients
that give a representation of the image. X-ray imaging is particularly good for provid-
ing a contrast between soft and hard tissues, because the attenuation coefficient has a
quite different value in both media; hence one of the first applications was to identify
fractured bones.

To operate as a diagnostic technique, X-ray imaging needs a radiation source, a
means of interactions between the X-ray beam and the object to be imaged, ways of
registration of the radiation carrying information about the object, and finally the abil-
ity to convert that information into an electrical signal. Although widely used and
inexpensive, standard X-ray technique have quite severe limitations. First, 3D struc-
tures are collapsed into 2D images, leading to highly reduced image contrast.
Second, it is difficult to image soft tissues due to small differences in attenuation coef-
ficients. Finally, standard film-based technology does not provide quantitative data
and requires specialized training for accurate image assessment.

Fortunately, a 3D extension of 2D X-ray technology, called computed tomography
(CT), was invented in 1972 and is in widespread use today. A basic principle behind
CT is to take a large number of X-ray images at multiple angles and, based on that
information, calculate the 3D image of the imaged object. CT hardware used for
this application is typically called a CT scanner and is similar to an ordinary X-ray
machine, albeit with much more computational power. With today’s multiple-row
detector helical CT scanners, 3D images can be obtained with spatial resolution
approaching that of conventional radiographic images in all three dimensions.

This chapter is organized as follows. The radiation source, a well-known X-ray
tube, is discussed briefly in Section 1.2. Details of interaction between photons and
the object, which include absorption, reflection, scattering, and diffraction, are
considered in Section 1.3. Detectors used to register the radiation events are discussed
in Section 1.4, while conversion of electrical signals is mentioned in Section 1.5.
Principles of computed tomography (CT) are introduced in Section 1.6, while CT
scanner design is described in Section 1.7. Extension of X-ray imaging that takes
into account photon energy, referred to as “color” X-ray imaging, is discussed
in Section 1.8 followed by summary of future trends in Section 1.9. For more
details on X-ray imaging modalities, the reader is referred to numerous books on
this subject [1-7].
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1.2. X-RAY GENERATION

A typical X-ray tube is shown in Fig. 1.2. Generation of X-rays depends on thermionic
emission and acceleration of electrons from a heater filament. During that process,
electrons emitted from cathode are accelerated by anode voltage. Kinetic energy
loss at an anode is converted to X-rays. The relative position of an electron with respect
to the nucleus determines the frequency and energy of the emitted X-ray.

X-rays produced in an X-ray tube contain two types of radiation: Bremsstrahlung
and characteristic radiation. The word Bremsstrahlung is retained from the German
language to describe the radiation that is emitted when electrons are decelerated. It
is characterized by a continuous distribution of X-ray intensity and shifts toward
higher frequencies when the energy of the bombarding electrons is increased.
Characteristic X-rays, on the other hand, produce peaks of intensity at particular
photon energies as shown in Fig. 1.3. In practice, emitted radiation is filtered, inten-
tionally or not, producing high-pass filter response as low-energy radiation is comple-
tely attenuated. As a result, the final X-ray spectrum has band-pass type characteristics
with several local peaks superimposed on it (Fig. 1.4).

The filtering effect shown in Fig. 1.4 is intentional, used to cut off X-ray energies
below 20 keV in the shown example. A similar effect can be achieved unintentionally
if the gap between the source and the detector is large. Figure 1.5 shows transmission
characteristics through air. While 40-keV radiation is not affected by the air gap,
10-keV rays are severely attenuated, and the degree of their attenuation is dependent
on the distance.

X-ray generation is a fairly inefficient process because most of the electrical power
ends up as heat at the anode. Therefore, an X-ray tube is also a heater, and heat

High-voltage anode Cathode
Glass wall Tungsten filament

o =7 —
L d——

Tungsten target \ Focusing tube Wire lead
Be window
Takeoff angle Center of Takeoff Filament
generated X-ray angle

Fig. 1.2. X-ray tube. From http://www.siint.com/en/technology /xrf_descriptions1_e.html.
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X-ray _
intensity Unfiltered
Bremsstrahlung
X-rays

Characteristic

—
N

X-ray photon energy

Filtered

Bremsstrahlung \
X-rays ] \
\

J

Fig. 1.3. Schematic representation of X-ray intensity frequency characteristics.

extraction problems are primary problems in the equipment design and manufacturing.
In addition, only a few percent of the generated X-rays end up being absorbed at
the detector because the X-ray beam is not collimated and photons are radiated in
all possible directions. X-ray photon energy is related to acceleration voltage; so if the
acceleration voltage is 20 kV, it will produce 20-keV photons. Clearly, X-ray-based
equipment is clearly not suitable for home use! The total number of photons generated
is proportional to the cathode current, which typically is several milliamperes. A typical
X-ray system uses step-up transformers to produce high-voltage (HV) as schematically
shown in Fig. 1.6.
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Fig. 1.4. Simulated X-ray intensity characteristics for a 90-keV tube with a 1.5-mm Be and
2.7-mm Al filter. (From Roessl and Proksa [8], with permission.)
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Fig. 1.5. X-rays transmission characteristics for the air path as a function of X-ray energy.
(From Miyajima and Imagawa [9], with permission.)

X-ray tubes used in computed tomography (CT) are subjected to higher thermal
loads in than in any other diagnostic X-ray application. In early CT scanners, station-
ary anode X-ray tubes were used, since the long scan times meant that the instan-
taneous power level was low. Long scan times also allowed significant heat
dissipation. Shorter scan times in later versions of CT scanners required high-power

High-voltage cable

Transformer
110V to 50 kV

[i—1
Cassette

Control unit

]
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110V >

Fig. 1.6. Schematic representation of a standard X-ray system.
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X-ray tubes and use of liquid-cooled rotating anodes for efficient thermal dissipation.
The recent introduction of helical CT with continuous scanner rotation placed even
more demands on X-ray tubes; this is clearly a challenging engineering problem
because the dissipated power is in the kilowatt range.

X-rays represent ionizing radiation that at significant dose will cause tissue damage.
The traditional unit of absorbed dose is the rad. 1 rad is defined as the amount of X-ray
radiation that imparts 100 ergs of energy per gram of tissue or, as re-stated in SI units,
causes 0.01 joule of energy to be absorbed per kilogram of matter. As a frame of refer-
ence, a typical chest X-ray exposure is about 50 mrads, while exposure of 50 rads
causes radiation sickness. In the SI system, rad is now superseded by gray, with the
following simple relationship between the two: 1 gray equals 0.01 rad.

1.3. X-RAY INTERACTION WITH MATTER

X-rays interact with matter in several ways that can be divided into absorption and scat-
tering effects. Primary effects at energies of interest in medical applications are photo-
electric effect, Compton scatter, and coherent scatter. In the photoelectric effect, the
energy of an X-ray photon is absorbed by an orbital electron, which in turn is ejected
from an atom. During this process, X-rays are converted into electric charges, a
process very useful for radiation detection. Scattering effects can be of Compton
nature, where some energy loss is involved, and coherent, without any energy loss.
In Compton scatter, some of the X-ray energy is transferred to an electron, and the
X-ray photon travels on with an altered direction and less energy. The Compton pro-
cess might sometime be utilized in medical imaging in so-called Compton cameras,
but frequently it is an undesired effect. As opposed to the Compton effect in coherent
scatter, all X-ray energy interacts with the atom, but is later re-radiated with same
energy in an arbitrary direction. As a result, the photon changes direction but still
carriers the same energy, a process quite detrimental to medical imaging because
the original path of photon from a source to a detector is altered.

The relative probability of above processes is dependent on the photon energy and
characteristics of the matter with which it interacts. In order to focus our discussion
here, we will discuss some details of photon interaction with a semiconductor material
called CZT. CZT stands for cadium zinc telluride and is currently considered as the
most promising detector material for X-ray and vy-ray direct detection in medical
imaging for reasons that are explained later in this chapter. The relative probability
of absorption/effect is plotted in Fig. 1.7. The photoelectric effect is a dominant
one in the considered energy range of 20—300 keV; although at higher energies,
Compton scattering becomes equally probable. At the energy of 122 keV, which
represents a characteristic cobalt radiation line, the photoelectric effect has 82%
probability of happening, Rayleigh scattering 7%, and Compton scattering 11%.

Note that the photoelectric line shows an interesting behavior in the 20- to 40-keV
range due atomic structure. The corresponding attenuation length, shown in Fig. 1.8,
varies from 0.05 to 0.17 mm. This indicates that even a thin CZT detector will effec-
tively absorb all radiation in that energy range.
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Fig. 1.7. Effective photon cross sections for the photoelectric effect, Rayleigh scattering, and
Compton scattering in CZT. The dashed vertical line indicates the 122-keV cobalt line.

The photoelectric effect is one of the energy loss processes where the photon effec-
tively disappears after the interaction. A complete absorption of the photon energy is
the desired effect for X-ray detection. The name photoelectron comes from a process
of ejecting an electron from one of the atomic shells of the media. After the ejection of
the photoelectron, the atom is ionized. The vacancy in the bound shell is refilled with
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Fig. 1.8. Attenuation length in CZT for X-ray energies from 5 to 40 keV.



