Phased Array Antennas

Second Edition

R. C. HANSEN
Consulting Engineer R. C. Hansen, Inc.
www.rchansen.com
Phased Array
Antennas
WILEY SERIES IN MICROWAVE AND OPTICAL ENGINEERING

KAI CHANG, Editor
Texas A&M University

A complete list of the titles in this series appears at the end of this volume.
Phased Array Antennas

Second Edition

R. C. HANSEN
Consulting Engineer R. C. Hansen, Inc.
www.rchansen.com
This book is dedicated to those who made Microwave Scanning Antennas possible:

Nicolas A. Begovich
Robert W. Bickmore
Jesse L. Butler
Lorne K. De Size
Robert S. Elliott
Richard C. Johnson
H. C. Ko
Wolfgang H. Kummer
Robert G. Malech
Donald L. Margerum
Arthur A. Oliner
Jack F. Ramsay
Joseph A. Vitale
Contents

Preface to the First Edition xv
Preface to the Second Edition xvii

1 Introduction 1
 1.1 Array Background 1
 1.2 Systems Factors 2
 1.3 Annotated Reference Sources 3
 1.3.1 Adaptive Antenna Reference Books 5
 References 5

2 Basic Array Characteristics 7
 2.1 Uniformly Excited Linear Arrays 7
 2.1.1 Patterns 7
 2.1.2 Beamwidth 9
 2.1.3 Sidelobes 11
 2.1.4 Grating Lobes 11
 2.1.5 Bandwidth 15
 2.2 Planar Arrays 17
 2.2.1 Array Coordinates 17
 2.2.2 Beamwidth 18
 2.2.3 Grating Lobes: Rectangular Lattice 21
 2.2.4 Grating Lobes: Hexagonal Lattice 23
 2.3 Beam Steering and Quantization Lobes 25
 2.3.1 Steering Increment 25
 2.3.2 Steering Bandwidth 26
 2.3.3 Time Delay Deployment 27
3 Linear Array Pattern Synthesis

3.1 Introduction

3.1.1 Pattern Formulations
3.1.2 Physics versus Mathematics
3.1.3 Taylor Narrow-Beam Design Principles

3.2 Dolph–Chebyshev Arrays

3.2.1 Half-Wave Spacing
3.2.2 Spacing Less Than Half-Wave

3.3 Taylor One-Parameter Distribution

3.3.1 One-Parameter Design
3.3.2 Bickmore–Spellmire

3.4 Taylor N-Bar Aperture Distribution

3.5 Low-Sidelobe Distributions

3.5.1 Comparison of Distributions
3.5.2 Average Sidelobe Level

3.6 Villeneuve N-Bar Array Distribution

3.7 Difference Patterns

3.7.1 Canonical Patterns
3.7.2 Bayliss Patterns
3.7.3 Sum and Difference Optimization
3.7.4 Discrete Zolotarev Distributions

3.8 Sidelobe Envelope Shaping

3.9 Shaped Beam Synthesis

3.9.1 Woodward–Lawson Synthesis
3.9.2 Elliott Synthesis

3.10 Thinned Arrays

3.10.1 Probabilistic Design
3.10.2 Space Tapering
3.10.3 Minimum Redundancy Arrays

References
4 Planar and Circular Array Pattern Synthesis

4.1 Circular Planar Arrays
 4.1.1 Flat Plane Slot Arrays
 4.1.2 Hansen One-Parameter Pattern
 4.1.3 Taylor Circular $n\bar{n}$ Pattern
 4.1.4 Circular Bayliss Difference Pattern
 4.1.5 Difference Pattern Optimization

4.2 Noncircular Apertures
 4.2.1 Two-Dimensional Optimization
 4.2.2 Ring Sidelobe Synthesis

Acknowledgment
References

5 Array Elements

5.1 Dipoles
 5.1.1 Thin Dipoles
 5.1.2 Bow-Tie and Open-Sleeve Dipoles

5.2 Waveguide Slots
 5.2.1 Broad Wall Longitudinal Slots
 5.2.2 Edge Slots
 5.2.3 Stripline Slots
 5.2.4 Open-End Waveguides
 5.2.5 Substrate Integrated Waveguide

5.3 TEM Horns
 5.3.1 Development of TEM Horns
 5.3.2 Analysis and Design of Horns
 5.3.3 TEM Horn Arrays
 5.3.4 Millimeter Wave Antennas

5.4 Microstrip Patches and Dipoles
 5.4.1 Transmission Line Model
 5.4.2 Cavity and Other Models
 5.4.3 Parasitic Patch Antennas
 5.4.4 Balanced-Fed Patches

Acknowledgments
References

6 Array Feeds

6.1 Series Feeds
 6.1.1 Resonant Arrays
 6.1.1.1 Impedance and Bandwidth
 6.1.1.2 Resonant Slot Array Design
 6.1.2 Resonant Arrays

References
6.1.2 Traveling Wave Arrays 178
 6.1.2.1 Frequency Squint and Single-Beam Condition 178
 6.1.2.2 Calculation of Element Conductance 181
 6.1.2.3 TW Slot Array Design 185
6.1.3 Frequency Scanning 188
6.1.4 Phaser Scanning 193
6.2 Shunt (Parallel) Feeds 194
 6.2.1 Corporate Feeds 194
 6.2.2 Distributed Arrays 196
6.3 Two-Dimensional Feeds 197
 6.3.1 Fixed-Beam Arrays 197
 6.3.2 Sequential Excitation Arrays 199
 6.3.3 Electronic Scan in One Plane 199
 6.3.4 Electronic Scan in Two Planes 201
6.4 Photonic Feed Systems 207
 6.4.1 Fiber Optic Delay Feeds 207
 6.4.1.1 Binary Delay Lines 207
 6.4.1.2 Acousto-Optical Switched Delay 209
 6.4.1.3 Modulators and Photodetectors 210
 6.4.2 Wavelength Division Fiber Delay 211
 6.4.2.1 Dispersive Fiber Delay 211
 6.4.2.2 Bragg Fiber Grating Delay 212
 6.4.2.3 Traveling Wave Fiber Delay 212
 6.4.3 Optical Delay 213
 6.4.4 Optical Fourier Transform 213
6.5 Systematic Errors 214
 6.5.1 Parallel Phasers 214
 6.5.2 Series Phasers 215
 6.5.3 Systematic Error Compensation 216
Acknowledgments 216
References 216

7 Mutual Coupling 221
 7.1 Introduction 221
 7.2 Fundamentals of Scanning Arrays 221
 7.2.1 Current Sheet Model 221
 7.2.2 Free and Forced Excitations 223
 7.2.3 Scan Impedance and Scan Element Pattern 225
 7.2.3.1 Transmit versus Receive SEP 228
 7.2.3.2 Measurement of Scan Impedance 233
 7.2.4 Minimum Scattering Antennas 233
7.3 Spatial Domain Approaches to Mutual Coupling 235

7.3.1 Canonical Couplings 235

7.3.1.1 Dipole and Slot Mutual Impedance 235
7.3.1.2 Microstrip Patch Mutual Impedance 239
7.3.1.3 Horn Mutual Impedance 241

7.3.2 Impedance Matrix Solution 242
7.3.3 The Grating Lobe Series 244

7.4 Spectral Domain Approaches 246

7.4.1 Dipoles and Slots 246
7.4.2 Microstrip Patches 258
7.4.3 Printed Dipoles 261
7.4.4 Printed TEM Horns 262
7.4.5 Unit Cell Simulators 266

7.5 Scan Compensation and Blind Angles 266

7.5.1 Blind Angles 266
7.5.2 Scan Compensation 269

7.5.2.1 Coupling Reduction 269
7.5.2.2 Compensating Feed Networks 269
7.5.2.3 Multimode Elements 272
7.5.2.4 External Wave Filter 276

Acknowledgment 276
References 277

8 Finite Arrays 285

8.1 Methods of Analysis 285

8.1.1 Overview 285
8.1.2 Finite-by-Infinite Arrays 289

8.2 Scan Performance of Small Arrays 293

8.3 Finite-by-Infinite Array Gibbsian Model 300

8.3.1 Salient Scan Impedance Characteristics 300
8.3.2 A Gibbsian Model for Finite Arrays 310

References 313

9 Superdirective Arrays 317

9.1 Historical Notes 317

9.2 Maximum Array Directivity 318

9.2.1 Broadside Directivity for Fixed Spacing 318
9.2.2 Directivity as Spacing Approaches Zero 320
9.2.3 Endfire Directivity 321
9.2.4 Bandwidth, Efficiency, and Tolerances 322
9.3 Constrained Optimization 330
 9.3.1 Dolph–Chebyshev Superdirectivity 330
 9.3.2 Constraint on Q or Tolerances 336
9.4 Matching of Superdirective Arrays 338
 9.4.1 Network Loss Magnification 338
 9.4.2 HTS Arrays 340
References 340

10 Multiple-Beam Antennas 343
 10.1 Introduction 343
 10.2 Beamformers 343
 10.2.1 Networks 344
 10.2.1.1 Power Divider BFN 344
 10.2.1.2 Butler Matrix 344
 10.2.1.3 Blass and Nolen Matrices 348
 10.2.1.4 The 2D BFN 350
 10.2.1.5 McFarland 2D Matrix 350
 10.2.2 Lenses 351
 10.2.2.1 Rotman Lens BFN 351
 10.2.2.2 Bootlace Lenses 368
 10.2.2.3 Dome Lenses 372
 10.2.2.4 Other Lenses 374
 10.2.3 Digital Beamforming 377
 10.3 Low Sidelobes and Beam Interpolation 378
 10.3.1 Low-Sidelobe Techniques 378
 10.3.1.1 Interlaced Beams 378
 10.3.1.2 Resistive Tapering 379
 10.3.1.3 Lower Sidelobes via Lossy Networks 379
 10.3.1.4 Beam Superposition 381
 10.3.2 Beam Interpolation Circuits 383
 10.4 Beam Orthogonality 385
 10.4.1 Orthogonal Beams 385
 10.4.1.1 Meaning of Orthogonality 385
 10.4.1.2 Orthogonality of Distributions 386
 10.4.1.3 Orthogonality of Arrays 388
 10.4.2 Effects of Nonorthogonality 389
 10.4.2.1 Efficiency Loss 389
 10.4.2.2 Sidelobe Changes 390
Acknowledgments 393
References 393
11 Conformal Arrays 399
 11.1 Scope 399
 11.2 Ring Arrays 400
 11.2.1 Continuous Ring Antenna 400
 11.2.2 Discrete Ring Array 403
 11.2.3 Beam Cophasal Excitation 407
 11.3 Arrays on Cylinders 411
 11.3.1 Slot Patterns 411
 11.3.2 Array Pattern 412
 11.3.2.1 Grating Lobes 416
 11.3.2.2 Principal Sidelobes 419
 11.3.2.3 Cylindrical Depolarization 421
 11.3.3 Slot Mutual Admittance 422
 11.3.3.1 Modal Series 426
 11.3.3.2 Admittance Data 430
 11.3.4 Scan Element Pattern 430
 11.4 Sector Arrays on Cylinders 434
 11.4.1 Patterns and Directivity 434
 11.4.2 Comparison of Planar and Sector Arrays 437
 11.4.3 Ring and Cylindrical Array Hardware 441
 11.5 Arrays on Cones and Spheres 442
 11.5.1 Conical Arrays 443
 11.5.1.1 Lattices on a Cone 444
 11.5.1.2 Conical Depolarization and Coordinate Systems 447
 11.5.1.3 Projective Synthesis 455
 11.5.1.4 Patterns and Mutual Coupling 455
 11.5.1.5 Conical Array Experiments 456
 11.5.2 Spherical Arrays 457
 Acknowledgments 458
References 458

12 Connected Arrays 465
 12.1 History of Connected Arrays 465
 12.2 Connected Array Principles 466
 12.3 Connected Dipole Currents 467
 12.3.1 Simulation Results: Current Phases 467
 12.3.2 Simulation Results: Current Amplitudes 468
 12.3.3 Simulation Results: SEP 474
 12.4 Connection by Reactance 474
Preface to the First Edition

Although array antennas have many decades of history, the last two decades have experienced a maturation, both in the understanding and design of arrays, and in the use of large sophisticated arrays. Radars utilizing electronic scanning arrays are in common use, from airport surveillance to missile detection and tracking; names of U.S. military systems, such as Aegis, Patriot, and Pave Paws, are well known. This book is a comprehensive treatment of all aspects of phased arrays; much has changed since the only other such work, *Microwave Scanning Antennas*, appeared in 1966. Most noteworthy has been the parallel development of inexpensive computer power and the theoretical understanding of nearly all aspects of phased array design. Design algorithms suitable for computers are emphasized here, with numerical tips and short algorithms sprinkled throughout the chapters. The work is prepared from the dual viewpoint of a design engineer and an antenna array analyst.

Chapter 2, on basic array characteristics, which covers grating lobes, quantization lobes, bandwidth, and directivity follows an introductory chapter. Highly efficient linear aperture and array synthesis techniques, including sum and difference patterns, are covered in Chapter 3. Chapter 4 treats synthesis of planar arrays. Array elements are covered in Chapter 5 and include not only the classic dipoles and slots, but TEM horns and patches. In Chapter 6, feeds for linear and planar arrays, both fixed beam and scanning, are examined; photonic time delay and feeders are included. Array performance is strongly affected by mutual impedance. Chapter 7 investigates ways of calculating this for various arrays elements, including an extensive treatment of ways of calculating array performance with mutual effects included. Among these are unit cell, spectral moment method, finite impedance matrix, and scattering techniques. Finite arrays are examined in Chapter 8, including the recently developed Gibbsian models. Next, Chapter 9 is an extensive view of superdirective arrays; the implications of high-temperature superconductors for antennas is an important feature. Multiple-beam arrays, as opposed to multiple-beam reflector feeds, are treated in Chapter 10.
Included are one- and two-dimensional Butler and Rotman lenses, and the practical meaning of beam orthogonality. Conformal arrays, ranging from ring arrays to arrays on cones, are covered next; much previously unpublished material is included in this chapter. Finally, Chapter 12 discusses array diagnostics, waveguide simulators in depth, and array tolerances. Extensive references to the archival literature are used in each chapter to offer additional sources of data.

ROBERT C. HANSEN

Tarzana, CA
Several specialized types of phased arrays have attracted attention since the first edition. Connected dipole arrays offer wide bandwidth compared to a conventional array; these are discussed in detail in Chapter 12. (The old Chapter 12 is now Chapter 15). Reflectarrays provide reduced fabrication costs compared to a phased array. And retrodirective arrays offer interesting capabilities for data links. Both of these technologies are the subject of Chapter 13. The combination of reflectors and arrays is addressed in Chapter 14, both for focal plane arrays, including coma correction, and near-field Cassegrainian and Gregorian antennas.

Updates and additions have been made to existing sections: time delay deployment options for corporate fed arrays; fundamental limitations on Artificial Magnetic Conductors; Substrate Integrated Waveguide to replace rectangular waveguide; antennas for 60 GHz and beyond; impedances matching capabilities and limitations including Bode criterion limitations; elaboration of Scan Impedance and Scan Element Pattern calculations and measurements; and finally comments on completely overlapped sub-arrays.
CHAPTER ONE

Introduction

1.1 ARRAY BACKGROUND

Discovery of the first works on array antennas is a task best left to historians, but the two decades before 1940 contained much activity on array theory and experimentation. Some of the researchers were G. H. Brown, E. Bruce, P. S. Carter, C. W. Hansell, A. W. Ladner, N. E. Lindenblad, A. A. Pistolkors, S. A. Schelkunoff, G. C. Southworth, E. J. Sterba, and T. Walmsley. Primary journals were Proc. IRE, Proc. IEE, BSTJ, RCA Review, and Marconi Review. During World War II, much array work was performed in the United States and Britain. Interest in arrays returned in the early 1960s, with research projects at Lincoln Laboratories, General Electric, RCA, Hughes and others. Some of the array conferences are mentioned in the annotated reference list in Section 1.3.

A salient event was the publication by Academic Press of the three-volume book Microwave Scanning Antennas (MSA), with volume 1 appearing in 1964, and volumes 2 and 3 in 1966. This work was the first extensive coverage of phased arrays, with emphasis on mutual coupling theory, which is the basis of all array characteristics. After 30 years, MSA is still in print, through Peninsula Publishing.

It is the purpose of this book to present a thorough and extensive treatment of phased arrays, adding to and updating the array portions of MSA. The scope of the book is all types of arrays except adaptive, for which several excellent books exist; see references at the end of the chapter. Multiple-beam arrays are included. Because most arrays operate at frequencies that allow spacing above ground to be sufficiently large to preclude the ground affecting the array internal parameters, all arrays are presumed to be in free space. Active arrays, that is, those containing active devices, are not treated, nor are array-related circuit components, except for phasers, which are discussed briefly. It is also assumed that all array elements are identical, although the impedance matching may vary with the element position. A semantic difficulty...
arises with the phrase “phased array”. For some people, this implies beam steering or scanning. But for others all arrays are phased; fixed beam broadside arrays are also phased. There are more important questions of terminology; these are addressed next.

1.2 SYSTEMS FACTORS

Important array factors for the systems designer are broadside pattern, gain versus angles, element input impedance, and efficiency. For all regular arrays, the pattern is given by the product of the element pattern and the pattern of the isotropic array, where the array elements are replaced by isotropes. However, the element excitations must be those of the real array; as discussed later, these are found by solving equations associated with a self-impedance and mutual-impedance or admittance matrix. In general, each element of an array will have a different input impedance. For a fixed beam array these are called “embedded impedances”; the obsolete and misleading term “active impedance” is deprecated. A scanning array not only has different element impedances, but each of them varies with scan angle. These element input impedances are called scan impedances.

The pattern of array gain versus angles is called scan element pattern; this term replaces active element pattern. The scan element pattern (SEP) is an extremely useful design factor. The element pattern and mutual coupling effects are subsumed into the scan element pattern; the overall radiated pattern is the product of the scan element pattern and the pattern of an isotropic array of elements scanned to the proper angle. The isotropic array factor incorporates the effects of array size and lattice, while the scan element pattern, as mentioned, incorporates element pattern, backscreen if used, and mutual coupling. Since the scan element pattern is an envelope of array gain versus scan angles, it tells the communications system or radar designer exactly how the array performs with scan, whether blind angles exist, and whether matching at a particular scan angle is advantageous. Scan element pattern is used for antenna gain in the conventional range equations. For an infinite array, the SEP is the same for all elements, but for a finite array each element sees a different environment, so that the SEP is an overall array factor. Use of infinite array scan element patterns allows array performance to be separated into this SEP and edge effects. Formulas for both finite array and infinite array scan element pattern are derived later; edge effects are also discussed later.

A similar parameter, appropriate for backscattering from antenna arrays, is the scattering scan element pattern (SSEP). This parameter gives the backscattered field intensity from an array element, when the array is excited by an incident plane wave. This then is different from the SEP, which relates radiated field intensity to total radiated power. The radar cross section (RCS) relates reradiated field intensity to incident field intensity, with a $4 \pi R^2$ factor. The SSEP is this ratio of reradiated to incident intensity; a convenient normalization is to the broadside value. Just as in the case of a radiating array, the scattering array finite size and edge effects have been separated, so that the SSEP relates the effects of element design and array lattice. It can then be used to make design trades for type of element and lattice; the features
due to the array size are included simply by multiplying by the isotropic array factor. Of course, SSEP is related to the RCS pattern. It can be considered as the RCS pattern of one unit cell of the array.

System factors also arise in arrays used for wideband baseband (no carrier) applications. The one-way (communications) range equation, written without explicit wavelength dependence, is

\[
P_r = \frac{P_t G A_e}{4\pi R^2}
\]

where as usual \(P_r \) and \(P_t \) are received and transmitted powers, \(R \) is the range, and \(G \) and \(A_e \) are the gain of one antenna and the effective area of the other. Both gain and effective area include an impedance mismatch factor: \((1 - |\Gamma|^2) \). It is assumed that \(P_t \) is fixed, independent of frequency. If the \(G A_e \) product is relatively constant over the frequency band of interest, then the signal is transferred without significant dispersion, providing that the antenna and matching unit phase are well behaved also (Hansen and Libelo, 1995). Otherwise significant dispersion can occur.

From a casual look at array antennas, one might assume a planar array to be a constant effective area antenna. However, for a regularly spaced array of low-gain elements, as the frequency increases from nominal half-wave spacing, the gain increases until the first grating lobe appears, with the gain then dropping back to the original level. Further increases in frequency produce additional rises in gain followed by drops as grating lobes appear. The net result is that over a wide bandwidth the gain of an array is at best roughly constant and equal to the half-wave spaced value (Hansen, 1972). This does not include effects of embedded element impedance mismatch with frequency, a phenomenon that further greatly reduces gain. Thus the regularly spaced array is not a candidate for compensation of dispersion. An array with pseudorandom spacing does not experience the appearance of regular grating lobes as frequency is increased. The fraction of power in the sidelobes is roughly constant in a well-designed nonuniformly spaced array, and thus the gain is roughly constant with frequency. Of more importance, however, is the fact that very large numbers of elements are needed to achieve even moderately low sidelobe levels. Thus these types of arrays are not suitable for dispersion compensation either. Arrays of higher gain elements experience, in addition, the dispersion introduced by the elements themselves and are even less suitable.

1.3 ANNOTATED REFERENCE SOURCES

Many textbooks discuss arrays, but the books and digests listed here provide in-depth resources on phased arrays.

\footnote{Note that “effective length”, which is defined as open circuit voltage divided by incident electric field, does not include impedance mismatch, and is therefore useless by itself.}

This, the first extensive work on phased arrays, is still quite useful. Volume 1 has a chapter on aperture distributions. Volume 2 includes array theory, and infinite and finite array analysis; probably the first development of the spectral domain analysis technique for arrays. Feeds, frequency scanning, and multiple beams are covered in vol. 3; multiple beams by Butler of matrix fame.

Contained here are early papers on phase quantization errors, ferrite and semiconductor phasers, and beam forming matrices.

The Theory and Design of Circular Antenna Arrays, James D. Tillman, University of Tennessee Engineering Experiment Station, 1966, 235 pp.

This treatise on ring arrays and concentric ring arrays applies sequence theory of azimuthal modes, called symmetrical components in electric power work, to the analysis of impedance and pattern. Array scanning is also discussed.

Both ring arrays and cylindrical arrays are treated in papers, both theoretically and for applications.

This book is a record of the 1970 Phased Array Antenna Symposium held at Polytechnic Institute of Brooklyn. Included are many papers on impedance calculations, blind angles, and so on, and also on practical aspects, such as scan compensation and feeding and phasing.

Arrays of waveguide radiators are the subject here. The spectral domain method is used extensively. Small finite arrays are solved via equations over the modes and elements. This work is one of the first using multimode spectral analysis.

Many papers cover array techniques and components; adaptive arrays, and conformal arrays.

Transform analysis and synthesis of fixed beam arrays is covered, along with many general array examples. The effect of ground on arrays represents a significant part of this book.

This report summarizes a decade of Navair-supported work on cylindrical and conical slot arrays, including mutual impedance algorithms.

This text is an excellent source for waveguide slot array analysis and synthesis. Sidelobe envelope shaping is treated in detail.

This handbook contains chapters on linear arrays, planar arrays, conformal arrays, ring arrays, and array signal processing. Extensive data are included on array analysis and synthesis, including mutual coupling effects.

This symposium record contains papers on microstrip arrays, adaptive arrays, and scan impedance, among others. A second volume has restricted distribution.

This handbook contains chapters on array theory, slot arrays, periodic and aperiodic arrays, practical aspects, and multiple-beam arrays.

This updated edition of an old classic contains chapters on array theory, slot arrays, frequency scan and phased arrays, and conformal arrays.

This specialized handbook covers most array topics, with emphasis on analysis and synthesis. A chapter covers limited scan arrays and time delayed arrays.

This book emphasizes systems aspects of arrays.

1.3.1 Adaptive Antenna Reference Books

REFERENCES

Basic Array Characteristics

This chapter is concerned with basic characteristics of linear and planar arrays, primarily with uniform excitation. The theory of, and procedures for, the design of array distributions to produce narrow-beam, low-sidelobe patterns, or shaped beams, are covered in detail in Chapter 3. Impedance effects due to mutual coupling are treated in Chapter 7. Covered here are such parameters as pattern, beamwidth, bandwidth, sidelobes, grating lobes, quantization lobes, and directivity.

2.1 UNIFORMLY EXCITED LINEAR ARRAYS

2.1.1 Patterns

In general, the excitation of an array consists of an amplitude and a phase at each element. This discrete distribution is often called an aperture distribution, where the discrete array is the aperture. The far-field radiation pattern is just the discrete Fourier transform of the array excitation. The array pattern is the product of the isolated element pattern and the isotropic array factor; this is the “forced excitation” problem. To achieve this, the element drives are individually adjusted so that the excitation of each element is exactly as desired. More common is the “free excitation” situation, where the element drives are all fixed, and the element excitations are those allowed by the scan impedance. The latter is discussed in detail in Chapter 7. Here the concern will be only with the forced excitation array, where the excitations are constant in amplitude, but may have a scan phase.

A common notation in the antenna literature is used here, where λ is wavelength, d is element spacing, k = 2π/λ, and the angular variable is u. The latter is u = (sin θ − sin θ₀) where θ₀ is the scan angle. Uniform (equal spacing) is assumed in this chapter; unequally spaced arrays are discussed in Chapter 3. Although it is simpler
to have a coordinate system axis in the center of a linear array, complications ensue for even and odd numbers of elements. A more general case starts the coordinate system at one end of the array, as shown in Figure 2.1. The pattern, sometimes called a space factor, is

\[F(u) = \sum A_n \exp[jkd(n - 1)u] \] (2.1)

\(A_n \) is the complex excitation, which for much of this section will be assumed constant.

FIGURE 2.1 Linear array geometry.

FIGURE 2.2 Two-element array patterns.
For uniform excitation, the array pattern becomes a simple result, where the exponential in Eq. (2.2) can be discarded, leaving a real pattern times an exponential:

\[
F(u) = \exp[j\pi(N - 1)u] \frac{\sin \frac{1}{2}Nk du}{N \sin \frac{1}{2}k du}
\]

(2.2)

This interelement phase shift is \(kd \sin \theta_0\). By varying this phase shift, the beam position can be scanned. Figure 2.2 shows patterns produced by the various spacings and phases (Southworth, 1930).

Many linear arrays are designed to produce a narrow beam. Figure 2.3 depicts how the beam changes with scan. With no scan the narrow beam is omnidirectional around the array axis. As the beam is scanned, this “disk” beam forms into a conical beam as shown in the center sketch. When the 3-dB point gets to 90°, a singular situation occurs. Beyond this scan angle the beam has two peaks, and the “beamwidth” will double as the outside 3-dB points are used. Finally, at endfire a pencil beam results; thus a linear array at broadside yields directivity in one dimension while at endfire it yields directivity in two dimensions. It might be expected as a result that the endfire beamwidth is broader; this will be shown next.

2.1.2 Beamwidth

The half-power points on a uniform array pattern are found by putting \(\sin \frac{1}{2}Nk du_3/ (N \sin \frac{1}{2}k du_3) = \sqrt{0.5}\). Figure 2.4 gives the solution of this as a function of the number of elements in the array. For \(N \geq 7\), the variation in normalized beamwidth \(Nu_3\) is <1%, and the error is only 5% for \(N = 3\). Thus for large arrays, the half-power points are given simply by \(\frac{1}{2}Nk du_3 = \pm 0.4429\). For a beam scanned at angle \(\theta_0\), this gives the 3-dB-beamwidth \(\theta_3\) as

\[
\theta_3 = \arcsin \left(\sin \theta_0 + 0.4429 \frac{\lambda}{Nd} \right)
\]

\[
- \arcsin \left(\sin \theta_0 - 0.4429 \frac{\lambda}{Nd} \right)
\]

(2.3)
For large \(N \), this reduces to

\[
\theta_3 \approx \frac{0.8858\lambda}{Nd \cos \theta_0}
\] \hspace{1cm} (2.4)

The beam collapse near endfire, where the 3-dB point is at \(90^\circ \), occurs for a scan angle of

\[
\theta_0 = \arcsin \left(1 - 0.4429 \frac{\lambda}{Nd} \right)
\] \hspace{1cm} (2.5)

The beamwidth broadening near endfire is shown in Figure 2.5 for several arrays. For large \(N \), the endfire beamwidth is

\[
\theta_3 \approx 2 \sqrt{\frac{0.8858\lambda}{Nd}}
\] \hspace{1cm} (2.6)

The accuracy of this is better than 1% for \(Nd/\lambda > 4 \). The endfire beamwidth is larger than the broadside value by \(2.14\sqrt{Nd/\lambda} \). Thus the endfire pencil beam is broader than the broadside pancake beam.