NOVEL THERAPEUTIC TARGETS FOR ANTIARRHYTHMIC DRUGS

Edited by

George Edward Billman
Professor of Physiology and Cell Biology
The Ohio State University
NOVEL THERAPEUTIC TARGETS FOR ANTIARRHYTHMIC DRUGS
NOVEL THERAPEUTIC TARGETS FOR ANTIARRHYTHMIC DRUGS

Edited by

George Edward Billman
Professor of Physiology and Cell Biology
The Ohio State University
To Rosemary, friend, confidante, soul mate, and life partner—semper gaude.
CONTENTS

Acknowledgments xix
Contributors xxi

1. Introduction 1
 George E. Billman

 References 3

2. Myocardial K^+ Channels: Primary Determinants of Action Potential Repolarization 5
 Noriko Niwa and Jeanne Nerbonne

 2.1 Introduction 5

 2.2 Action Potential Waveforms and Repolarizing K^+ Currents 7

 2.3 Functional Diversity of Repolarizing Myocardial K^+ Channels 9

 2.4 Molecular Diversity of K^+ Channel Subunits 12

 2.5 Molecular Determinants of Functional Cardiac I_{to} Channels 16

 2.6 Molecular Determinants of Functional Cardiac I_K Channels 18

 2.7 Molecular Determinants of Functional Cardiac I_K Channels 23

 2.8 Other Potassium Currents Contributing to Action Potential Repolarization 27

 2.8.1 Myocardial K^+ Channel Functioning in Macromolecular Protein Complexes 28

 References 32

3. The “Funny” Pacemaker Current 59
 Andrea Barbuti, Annalisa Bucchi, Mirko Baruscotti, and Dario DiFrancesco

 3.1 Introduction: The Mechanism of Cardiac Pacemaking 59

 3.2 The “Funny” Current 60

 3.2.1 Historical Background 60

 3.2.2 Biophysical Properties of the I_f Current 61

 3.2.3 Autonomic Modulation 63

 3.2.4 Cardiac Distribution of I_f 63

 References
3.3 Molecular Determinants of the If Current 64
 3.3.1 HCN Clones and Pacemaker Channels 64
 3.3.2 Identification of Structural Elements Involved in Channel Gating 66
 3.3.3 Regulation of Pacemaker Channel Activity: “Context” Dependence and Protein-Protein Interactions 70
 3.3.4 HCN Gene Regulation 71

3.4 Blockers of Funny Channels 72
 3.4.1 Alinidine (ST567) 73
 3.4.2 Falipamil (AQ-A39), Zatebradine (UL-FS 49), and Cilobradine (DK-AH269) 73
 3.4.3 ZD7288 75
 3.4.4 Ivabradine (S16257) 75
 3.4.5 Effects of the Heart Rate Reducing Agents on HCN Isoforms 78

3.5 Genetics of HCN Channels 78
 3.5.1 HCN-KO Models 78
 3.5.2 Pathologies Associated with HCN Dysfunctions 79

3.6 HCN-Based Biological Pacemakers 81

References 84

4. Arrhythmia Mechanisms in Ischemia and Infarction 101
 Ruben Coronel, Wen Dun, Penelope A. Boyden, and Jacques M.T. de Bakker

 4.1 Introduction 101
 4.1.1 Modes of Ischemia, Phases of Arrhythmogenesis 102
 4.1.2 Trigger-Substrate-Modulating Factors 103

 4.2 Arrhythmogenesis in Acute Myocardial Ischemia 103
 4.2.1 Phase 1A 103
 4.2.2 Phase 1B 113
 4.2.3 Arrhythmogenic Mechanism: Trigger 114
 4.2.4 Catecholamines 115

 4.3 Arrhythmogenesis During the First Week Post MI 115
 4.3.1 Mechanisms 115
 4.3.2 The Subendocardial Purkinje Cell as a Trigger 116
 24–48 H Post Occlusion 116
 4.3.3 Five Days Post-Occlusion: Epicardial Border Zone 120

 4.4 Arrhythmia Mechanisms in Chronic Infarction 128
 4.4.1 Reentry and Focal Mechanisms 128
 4.4.2 Heterogeneity of Ion Channel Expression in the Healthy Heart 129
 4.4.3 Remodeling in Chronic Myocardial Infarction 131
 4.4.4 Structural Remodeling 133
 4.4.5 Role of the Purkinje System 135

References 136
5. Antiarrhythmic Drug Classification

Cynthia A. Carnes

5.1 Introduction 155
5.2 Sodium Channel Blockers 155
5.2.1 Mixed Sodium Channel Blockers (Vaughan Williams Class Ia) 156
5.3 Inhibitors of the Fast Sodium Current with Rapid Kinetics (Vaughan Williams Class Ib) 158
5.3.1 Lidocaine 158
5.3.2 Mexiletine 159
5.4 Inhibitors of the Fast Sodium Current with Slow Kinetics (Vaughan Williams Class Ic) 159
5.4.1 Flecainide 159
5.4.2 Propafenone 160
5.5 Inhibitors of Repolarizing K⁺ Currents (Vaughan Williams Class III) 160
5.5.1 Dofetilide 160
5.5.2 Sotalol 161
5.5.3 Amiodarone 161
5.5.4 Ibutilide 162
5.6 I_Kur Blockers 162
5.7 Inhibitors of Calcium Channels 162
5.7.1 Verapamil and Diltiazem 162
5.8 Inhibitors of Adrenergically-Modulated Electrophysiology 163
5.8.1 Funny Current (I_f) Inhibitors 163
5.8.2 Beta-Adrenergic Receptor Antagonists 164
5.9 Adenosine 164
5.10 Digoxin 165
5.11 Conclusions 165
References 165

6. Repolarization Reserve and Proarrhythmic Risk

András Varró

6.1 Definitions and Background 171
6.2 The Major Players Contributing to Repolarization Reserve 175
6.2.1 Inward Sodium Current (I_Na) 175
6.2.2 Inward L-Type Calcium Current (I_Ca,L) 176
6.2.3 Rapid Delayed Rectifier Outward Potassium Current (I_Kr) 177
6.2.4 Slow Delayed Rectifier Outward Potassium Current (I_Ks) 178
6.2.5 Inward Rectifier Potassium Current (I_K1) 179
6.2.6 Transient Outward Potassium Current (I_to) 180
6.2.7 Sodium—Potassium Pump Current (I_3Na/K) 180
6.2.8 Sodium–Calcium Exchanger Current (NCX) 180
6.3 Mechanism of Arrhythmia Caused By Decreased Repolarization Reserve 182
6.4 Clinical Significance of the Reduced Repolarization Reserve

6.4.1 Genetic Defects
6.4.2 Heart Failure
6.4.3 Diabetes Mellitus
6.4.4 Gender
6.4.5 Renal Failure
6.4.6 Hypokalemia
6.4.7 Hypothyroidism
6.4.8 Competitive Athletes

6.5 Repolarization Reserve as a Dynamically Changing Factor

6.6 How to Measure the Repolarization Reserve

6.7 Pharmacological Modulation of the Repolarization Reserve

6.8 Conclusion

References

7. Safety Challenges in the Development of Novel Antiarrhythmic Drugs

Gary Gintant and Zhi Su

7.1 Introduction

7.2 Review of Basic Functional Cardiac Electrophysiology

7.2.1 Normal Pacemaker Activity
7.2.2 Atrioventricular Conduction
7.2.3 Ventricular Repolarization: Effects on the QT Interval
7.2.4 Electrophysiologic Lessons Learned from Long QT Syndromes

7.3 Safety Pharmacology Perspectives on Developing Antiarrhythmic Drugs

7.3.1 Part A. On-Target (Primary Pharmacodynamic) versus Off-Target (Secondary Pharmacodynamic) Considerations

7.3.2 Part B. General Considerations

7.4 Proarrhythmic Effects of Ventricular Antiarrhythmic Drugs

7.4.1 Sodium Channel Block Reduces the Incidence of Ventricular Premature Depolarizations But Increases Mortality

7.4.2 Delayed Ventricular Repolarization with d-Sotalol Increases Mortality in Patients with Left Ventricular Dysfunction and Remote Myocardial Infarction: The SWORD and DIAMOND Trials

7.4.3 Ranolazine: An Antianginal Agent with a Novel Electrophysiologic Action and Potential Antiarrhythmic Properties

7.5 Avoiding Proarrhythmia with Atrial Antiarrhythmic Drugs

7.5.1 Introduction
7.5.2. Lessons Learned with Azimilide, a Class III Drug that Reduces the Delayed Rectifier Currents I_{Kr} and I_{Ks} 218

7.5.3 Atrial Repolarizing Delaying Agents. Experience with Vernakalant, a Drug that Blocks Multiple Cardiac Currents (Including the Atrial-Specific Repolarizing Current I_{Kr}) 220

References 222

8. Safety Pharmacology and Regulatory Issues in the Development of Antiarrhythmic Medications 233

Armando Lagrutta and Joseph J. Salata

8.1 Introduction 233

8.2 Basic Physiological Considerations 234

8.2.1 Ion Channels and Arrhythmogenesis 234

8.2.2 Antiarrhythmic Agents 236

8.3 Historical Considerations 237

8.3.1 CAST: Background, Clinical Findings, and Aftermath 237

8.3.2 Torsades de Pointes and hERG Channel Inhibition: Safety Pharmacology Concern with Critical Impact on Antiarrhythmic Development 239

8.3.3 Recent Clinical Trials 242

8.4 Opportunities for Antiarrhythmic Drug Development in the Present Regulatory Environment 244

8.4.1 ICH—S7A and S7B; E14 245

8.4.2 Additional Regulatory Guidance 248

8.4.3 Clinical Management Guidelines and Related Considerations About Patient Populations 250

8.4.4 Consortia Efforts to Address Safety Concerns Related to Antiarrhythmic Drug Development 253

8.4.5 The Unmet Medical Need: Challenges and Opportunities 254

References 256

9. Ion Channel Remodeling and Arrhythmias 271

Takeshi Aiba and Gordon F. Tomaselli

9.1 Introduction 271

9.2 Molecular and Cellular Basis for Cardiac Excitability 271

9.3 Heart Failure—Epidemiology and the Arrhythmia Connection 272

9.4 K^+ Channel Remodeling in Heart Failure 274

9.4.1 Transient Outward Current (I_o) 274

9.4.2 Inward Rectifier K^+ Current (I_{KI}) 276

9.4.3 Delayed Rectifier K Currents (I_{Kr} and I_{Ks}) 277
9.5 Ca$^{2+}$ Handling and Arrhythmia Risk 278
 9.5.1 L-type Ca$^{2+}$ Current I_{Ca-L} 278
 9.5.2 Sarcoplasmic Recticulum Function 278
9.6 Intracellular [Na$^{+}$] in HF 282
 9.6.1 Cardiac I_{Na} in HF 282
 9.6.2 Na$^{+}$/K$^{+}$ ATPase 283
9.7 Gap Junctions and Connexins 283
9.8 Autonomic Signaling 284
9.9 Calmodulin Kinase 285
9.10 Conclusions 286
References 286

10. Redox Modification of Ryanodine Receptors in Cardiac Arrhythmia and Failure: A Potential Therapeutic Target 299
 Andriy E. Belevych, Dmitry Terentyev, and Sandor Győrke
 10.1 Introduction 299
 10.2 Activation and Deactivation of Ryanodine Receptors During Normal Excitation-Contraction Coupling 300
 10.3 Defective Ryanodine Receptor Function is Linked to Proarrhythmic Delayed Afterdepolarizations and Calcium Alternans 301
 10.4 Genetic and Acquired Defects in Ryanodine Receptors 302
 10.5 Effects of Thiol-Modifying Agents on Ryanodine Receptors 303
 10.6 Reactive Oxygen Species Production and Oxidative Stress in Cardiac Disease 304
 10.7 Redox Modification of Ryanodine Receptors in Cardiac Arrhythmia and Heart Failure 305
 10.8 Therapeutic Potential of Normalizing Ryanodine Receptor Function 306
References 308

11. Targeting Na$^{+}$/Ca$^{2+}$ Exchange as an Antiarrhythmic Strategy 313
 Gudrun Antoons, Rik Willems, and Karin R. Sipido
 11.1 Introduction 313
 11.2 Why Target NCX in Arrhythmias? 314
 11.3 When Do We See Triggered Arrhythmias? 317
 11.4 What Drugs are Available? 318
 11.5 Experience with NCX Inhibitors 321
 11.6 Caveat—the Consequences on Ca$^{2+}$ Handling 328
 11.7 Need for More Development 331
References 332
12. Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII)—Modulation of Ion Currents and Potential Role for Arrhythmias 339
Dr. Lars S. Maier

12.1 Introduction 339
12.2 Evolving Role of Ca\(^{2+}\)/CaMKII in the Heart 340
12.3 Activation of CaMKII 340
12.4 Role of CaMKII in ECC
 12.4.1 Ca\(^{2+}\) Influx and I\(_{Ca}\) Facilitation 343
 12.4.2 SR Ca\(^{2+}\) Release and SR Ca Leak 344
 12.4.3 SR Ca\(^{2+}\) Uptake, FDAR, Acidosis 346
 12.4.4 Na\(^{+}\) Channels 348
 12.4.5 K\(^{+}\) Channels 353
12.5 Role of CaMKII for Arrhythmias 354
12.6 Summary 355
Acknowledgments 356
References 356

13. Selective Targeting of Ventricular Potassium Channels for Arrhythmia Suppression: Feasible or Risible? 367
Hugh Clements-Jewery and Michael Curtis

13.1 Introduction 367
13.2 Effects of K\(^{+}\) Channel Blockade on APD and Arrhythmogenesis
 13.2.1 I\(_{Kur}\) Blockade 371
 13.2.2 I\(_{Kr}\) Blockade 371
 13.2.3 I\(_{Ks}\) Blockade 372
 13.2.4 I\(_{K1}\) Blockade 372
 13.2.5 I\(_{to}\) Blockade 373
 13.2.6 I\(_{KATP}\) Blockade 374
13.3 Conclusions/Future Directions 375
References 375

14. Cardiac Sarcolemmal ATP-sensitive Potassium Channel Antagonists: A Class of Drugs that May Selectively Target the Ischemic Myocardium 381
George E. Billman

14.1 Introduction 381
14.2 Effects of Myocardial Ischemia on Extracellular Potassium 382
14.3 Effect of Extracellular Potassium on Ventricular Rhythm 386
14.4 Effect of ATP-sensitive Potassium Channel Antagonists on Ventricular Arrhythmias 387
 14.4.1 Nonselective ATP-sensitive Potassium Channel Antagonists 387
 14.4.2 Selective ATP-sensitive Potassium Channel Antagonist 390
 14.4.3 Proarrhythmic Effects of ATP-sensitive Potassium Channel Agonists 397

14.5 Summary 401
References 401

15. Mitochondrial Origin of Ischemia-Reperfusion Arrhythmias 413
 Brian O’Rourke, PhD

 15.1 Introduction 413
 15.2 Mechanisms of Arrhythmias 414
 15.2.1 Automacity 414
 15.2.2 Triggered Arrhythmias 415
 15.3 Ischemia-Reperfusion Arrhythmias 417
 15.4 Mitochondrial Criticality: The Root of Ischemia-Reperfusion Arrhythmias 418
 15.5 K_{ATP} Activation and Arrhythmias 420
 15.6 Metabolic Sinks and Reperfusion Arrhythmias 422
 15.7 Antioxidant Depletion 423
 15.8 Mitochondria as Therapeutic Targets 423
References 424

 Anja Hagen and Stefan Dhein

 16.1 Introduction 431
 16.2 The Development of Gap Junction Modulators and AAPs 433
 16.3 Molecular Mechanisms of Action of AAPs 436
 16.4 Antiarrhythmic Effects of AAPs 439
 16.4.1 Ventricular Fibrillation and Ventricular Tachycardia 444
 16.4.2 Atrial fibrillation 444
 16.4.3 Others 445
 16.5 Site- and Condition-Specific Effects of AAPs; Effects in Ischemia or Simulated Ischemia 446
 16.6 Chemistry of AAPs 447
 16.7 Short Overview About Cardiac Gap Junctions 447
 16.8 Gap Junction Modulation as a New Antiarrhythmic Principle 452
References 453
17. Novel Pharmacological Targets for the Management of Atrial Fibrillation 461
 Alexander Burashnikov and Charles Antzelevitch

17.1 Introduction 461
17.2 Novel Ion Channel Targets for Atrial Fibrillation Treatment 462
 17.2.1 The Ultrarapid Delayed Rectifier Potassium Current (I_{Kr}) 462
 17.2.2 The Acetylcholine-Regulated Inward Rectifying Potassium Current (I_{K-ACh}) and the Constitutively Active (CA) I_{K-ACh} 464
 17.2.3 The Early Sodium Current (I_{Na}) 464
 17.2.4 Block I_{Kr} and Its Relation to Atrial Selectivity of I_{Na} Blockade 467
 17.2.5 Other Potential Atrial-Selective Ion Channel Targets for the Treatment AF 467
 17.2.6 Influence of Atrial-Selective Agents on Ventricular Arrhythmias? 468

17.3 Upstream Therapy Targets for Atrial Fibrillation 468
17.4 Gap Junction as Targets for AF Therapy 469
17.5 Intracellular Calcium Handling and AF 470

References 471

18. I_{Kr}, Ultra-rapid Delayed Rectifier Potassium Current: A Therapeutic Target for Atrial Arrhythmias 479
 Arun Sridhar and Cynthia A. Carnes

18.1 Introduction 479
18.2 Molecular Biology of the $K_v1.5$ Channels: 480
 18.2.1 $K_v1.5$ Activation and Inactivation 480
 18.2.2 Where Does I_{Kr} Fit Into the Cardiac Action Potential? 482
 18.2.3 Adrenergic Modulation of I_{Kr} 485
18.3 I_{Kr} as a Therapeutic Target 485
18.4 Organic Blockers of I_{Kr} 486
 18.4.1 Mixed Channel Blockers 486
 18.4.2 Mixed Channel Blockers 487
 18.4.3 Selective $K_v1.5$ Blockers 488
18.5 Conclusions 490

References 490

19. Non-Pharmacologic Manipulation of the Autonomic Nervous System in Human for the Prevention of Life-Threatening Arrhythmias 495
 Peter J. Schwartz

19.1 Introduction 495
20. Effects of Endurance Exercise Training on Cardiac
Autonomic Regulation and Susceptibility to Sudden Cardiac
Death: A Nonpharmacological Approach for the Prevention
of Ventricular Fibrillation

George E. Billman

20.1 Introduction

20.2 Exercise and Susceptibility to Sudden Death

20.2.1 Clinical Studies

20.2.2 Experimental Studies

20.3 Cardiac Autonomic Neural Activity and Sudden Cardiac Death

20.4 β2-Adrenergic Receptor Activation and Susceptibility to VF

20.5 Effect of Exercise Conditioning on Cardiac Autonomic Regulation

20.6 Effect of Exercise Training on Myocyte Calcium Regulation

20.7 Summary and Conclusions

References

21. Dietary Omega-3 Fatty Acids as a Nonpharmacological
Antiarrhythmic Intervention

Barry London and J. Michael Frangiskakis

21.1 Introduction

21.2 Fatty Acid Metabolism

21.2.1 Nomenclature

21.2.2 Dietary Fatty Acids

21.2.3 Roles of Polyunsaturated Fatty Acids

21.3 Cellular Mechanisms

21.3.1 Ion Channel Blockade

21.3.2 Direct Membrane Effects

21.3.3 Phosphorylation

21.3.4 Inflammation

21.3.5 Summary

21.4 Animal Studies

21.4.1 Acute Intravenous Effects of n-3 PUFAs
As John Donne, the 17th century, British metaphysical poet and Anglican Priest so beautifully stated, “No man is an island, entire in itself. . .” (from Mediation XVII), this book results from the efforts of many. I wish to express my gratitude to many individuals who not only assisted in the preparation of this book but also guided me along my life’s journey. First, I wish to thank my parents who nurtured my curiosity as well as my wife and children for their love and support in both the good times and the bad. I also thank the faculty of the Department of Physiology and Biophysics at the University of Kentucky for their support while I earned my doctorate degree. In particular, I wish to acknowledge Dr. James Zolman, who taught me how to analyze research articles critically and interpret statistical results accurately. I am deeply indebted to my mentor, Dr. David C. Randall, who gave me the freedom to fail and the support to succeed. My career development was enhanced even more by my postdoctoral advisor Dr. H. Lowell Stone (deceased) at the University of Oklahoma, who taught me the art of “grantsmanship” and gave me the opportunity to pursue independent research interests that led to my first grant. I also appreciate the help and good humor of Dr. M. Jack Keyl (deceased), whose infectious enthusiasm kept research fun and exciting, even in those all too common times when experiments did not work as planned and funding fell short of expected. I would not be the scientist that I am today without the guidance and support of the individuals mentioned above. Finally, I wish to thank Mr. Jonathan Rose for inviting me to write this book and to the authors of the individual chapters; truly without their contributions, this book would not have been possible.
CONTRIBUTORS

Takeshi Aiba, M.D., Ph.D.
Johns Hopkins University

Gudrun Antoons, Ph.D.
Laboratory of Experimental Cardiology
Catholic University of Leuven (KUL)
Belgium

Charles Antzelevitch, Ph.D., F.A.C.C., F.A.H.A., F.H.R.S.
Executive Director and Director of Research
Gordon K. Moe Scholar
Masonic Medical Research Laboratory

Andrea Barbuti, Ph.D.
Departmento of Biomolecular Sciences and Biotechnology
Università degli Studi di Milano

Mirko Baruscotti, Ph.D.
Departmento of Biomolecular Sciences and Biotechnology
Università degli Studi di Milano, Italy

Andriy E. Belevych, Ph.D.
Davis Heart and Lung Research Institute
The Ohio State University Medical Center

George E. Billman, Ph.D, F.A.H.A.
Department of Physiology and Cell Biology
The Ohio State University

Penelope A. Boyden, Ph.D.
Department of Pharmacology
Center for Molecular Therapeutics
Columbia College of Physicians and Surgeons

Annalisa Bucchi, Ph.D.
Departmento of Biomolecular Sciences and Biotechnology
Università degli Studi di Milano, Italy
Alexander Burashnikov, Ph.D.
Masonic Medical Research Laboratory

Cynthia A. Carnes, Pharm.D., Ph.D., F.A.H.A., F.H.R.S.
College of Pharmacy
The Ohio State University

Hugh Clements-Jewery, Ph.D.
Division of Functional Biology
West Virginia School of Osteopathic Medicine

Ruben Coronel, M.D., Ph.D.
Department of Experimental Cardiology
Academic Medical Center, The Netherlands

Cardiovascular Division
Rayne Institute
St. Thomas’ Hospital
King’s College London
United Kingdom

Jacques M.T. de Bakker, Ph.D.
Department of Experimental Cardiology
Academic Medical Center, The Netherlands

Stefan Dhein, M.D., Ph.D.
Heart Centre Leipzig
University of Leipzig
Germany

Dario DiFrancesco, Ph.D.
Departmento of Biomolecular Sciences and Biotechnology
Università degli Studi di Milano, Italy

Wen Dun, Ph.D.
Department of Pharmacology
Center for Molecular Therapeutics
Columbia College of Physicians and Surgeons

J. Michael Frangiskakis, M.D., Ph.D
UPMC Cardiovascular Institute
University of Pittsburgh

Gary Gintant, Ph.D.
Department of Integrative Pharmacology
Abbot Laboratories

Sandor Györke, Ph.D.
Davis Heart and Lung Research Institute
The Ohio State University Medical Center
Anja Hagen, Ph.D.
University of Leipzig
University Hospital for Children and Adolescents
Germany

Armando Lagrutta, Ph.D.
Senior Investigator, Safety and Exploratory Pharmacology
Merck Research Laboratories

Barry London, M.D., Ph.D.
UPMC Cardiovascular Institute
University of Pittsburgh

Lars S. Maier, M.D.
Department of Cardiology and Pneumology / Heart Center
Georg-August-University Göttingen
Germany

Jeanne Nerbonne, Ph.D.
Department of Molecular Biology and Pharmacology
Washington University
School of Medicine

Noriko Niwa, Ph.D.
Department of Molecular Biology and Pharmacology
Washington University
School of Medicine

Brian O’Rourke, Ph.D.
Division of Cardiology
Department of Medicine
Johns Hopkins University

Peter J. Schwartz, M.D.
Professor and Chairman
Department of Cardiology
Fondazione IRCCS Policlinico S. Matteo
Italy

Joseph J. Salata, Ph.D.
Director, Safety and Exploratory Pharmacology
Safety Assessment
Merck Research Laboratories

Arun Sridhar, Ph.D.
Safety Pharmacology GlaxoSmithKline United Kingdom

Karin R. Sipido, M.D., Ph.D.
Laboratory of Experimental Cardiology
Catholic University of Leuven (KUL)
Belgium
Zhi Su, Ph.D.
Department of Integrative Pharmacology
Abbot Laboratories

Dmitry Terentyev, Ph.D.
Davis Heart and Lung Research Institute
The Ohio State University Medical Center

Gordon F. Tomaselli, M.D.
Michel Mirowski MD Professor of Cardiology
Chair of Cardiology
Johns Hopkins University

András Varró, M.D., Ph.D., Sc.D.
Department of Pharmacology and Pharmacotherapy
University of Szeged
Albert Szent-Györgyi Medical Center, Hungary

Rik Willems, M.D.
Department of Cardiology
University Hospital of Leuven
Belgium
“... ignorance more frequently begets confidence than does knowledge: it is those who know little, and not those who know much, who so positively assert that this or that problem will never be solved by science.” Charles Darwin [1]

“The greatest failure – not trying in the first place. The best angle to approach problems is the try-angle.” Jean Shirer Ingold [2]

The effective management of cardiac arrhythmias, either of atrial or ventricular origin, remains a major challenge for the cardiologist. Sudden cardiac death (defined as unexpected death from cardiac causes that occurs within 1 hour of the onset of symptoms [3]) remains the leading cause of death in industrially developed countries, and it accounts for between 300,000 and 500,000 deaths each year in the United States [4–6]. Holter monitoring studies reveal that these sudden deaths most frequently (up to 93%) resulted from ventricular tachyarrhythmias [7–9]. In a similar manner, atrial fibrillation is the most common rhythm disorder contributing to a substantial mortality, as well as a reduction in the quality of life, among these patients [10, 11]. Atrial fibrillation currently accounts for about 2.3 million cases in the United States and has been projected to increase by 2.5 fold over the next half century [12]. Indeed, the prevalence of this arrhythmia increases with each decade of life (0.5% patient population between the ages of 50 to 59 years climbing to almost 9% at age 80–89 years) and contributes to approximately one quarter of ischemic strokes in the elderly population [10, 11]. The economic impact associated with the morbidity and mortality resulting from cardiac arrhythmias is enormous (incremental cost per quality-adjusted life-year as much as U.S. $558,000 [13]).

Despite the enormity of this problem, the development of safe and effective antiarrhythmic agents remains elusive. In fact, several initially promising antiarrhythmic drugs have actually been shown to increase, rather than to decrease, the risk
for arrhythmic death in patients recovering from myocardial infarction. For example, the Cardiac Arrhythmia Suppression Trial (CAST study [14]) demonstrated that, although class I antiarrhythmic drugs (i.e., drugs that block sodium channels) effectively suppressed premature ventricular contractions, some of these compounds (flecainide and encainide) increased the risk for arrhythmic cardiac death. In a similar manner, many class III antiarrhythmic drugs (drugs that prolong refractory period, most likely via modulation of potassium channels) have been shown to prolong QT interval, to promote the life-threatening tachyarrhythmia torsades de pointes (i.e., polymorphic ventricular tachycardia in which the QRS waves seem to “twist” around the baseline), and to increase cardiac mortality in some patient populations [15, 16]. Unfortunately, only a few drugs have been clinically proven to reduce cardiac mortality in high-risk patients, such as patients recovering from myocardial infarction. To date, only β-adrenergic receptor antagonists and amiodarone, which is a class III antiarrhythmic drug that also blocks β-adrenergic receptors, have been shown to reduce sudden cardiac death [5, 17–21]. However, even optimal pharmacological therapy does not completely suppress malignant ventricular arrhythmias. For example, mortality after myocardial infarction remains high among patients with substantial ventricular dysfunction, even when placed on β-adrenergic receptor antagonist therapy [21]. The 1-year mortality is 10% or higher, with sudden death accounting for approximately one third of the deaths in these high-risk patients [21]. Furthermore, the long-term use of amiodarone is limited because of adverse side effects that include pulmonary fibrous, hepatotoxicity, and thyroid toxicity [22]. Given the adverse actions of many antiarrhythmic medications, as well as the partial protection afforded by even the best agents (e.g., β-adrenergic receptor antagonists), it is obvious that more effective antiarrhythmic therapies must be developed.

Old ideas never truly die, just the people who hold them. Eventually, newer ideas gain acceptance as the younger generation replaces the older generation. The major obstacle to progress often results from the inertia of conventional thinking [23]. This book attempts to overcome this inertia by describing some novel approaches for the management of arrhythmias. The primary focus of the book will be on ventricular arrhythmias, but a few chapters will also address aspects of atrial arrhythmias (see Chapters 3, 17, and 18). The book is divided into four sections. The first section opens with a comprehensive review of basic cardiac electrophysiology (Chapters 2 and 3) and mechanisms responsible for arrhythmias in the setting of ischemia (Chapter 4) and closes with a review of basic pharmacology, focusing on the classification of antiarrhythmic drugs (Chapter 5). Section two addresses safety pharmacology: the concept of “repolarization reserve” (Chapter 6), safety challenges (Chapter 7), and regulatory issues (Chapter 8) for the development of novel antiarrhythmic drugs. Section three describes several novel pharmacological targets for antiarrhythmic drugs (Chapters 9–18). Finally, section four describes a few promising nonpharmacological antiarrhythmic interventions, including selective cardiac neural disruption or nerve stimulation (Chapter 19), endurance exercise training (Chapter 20), and dietary supplements (omega-3 polyunsaturated fatty acids, Chapter 21). The reader is encouraged to approach each chapter with an open mind, for the prejudice of
conventional wisdom can blind. Sometimes to be a visionary, one simply has to open one’s eyes.

REFERENCES

