DESIGN AND CONTROL OF DISTILLATION SYSTEMS FOR SEPARATING AZEOTROPES

WILLIAM L. LUYBEN
Lehigh University

I-LUNG CHIEN
National Taiwan University of Science and Technology
DESIGN AND CONTROL OF DISTILLATION SYSTEMS FOR SEPARATING AZEOTROPES
DESIGN AND CONTROL OF DISTILLATION SYSTEMS FOR SEPARATING AZEOTROPES

WILLIAM L. LUYBEN
Lehigh University

I-LUNG CHIEN
National Taiwan University of Science and Technology

AIChE®

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
This book is dedicated to the fond memory of
Cheng-Ching “CC” Yu, colleague and friend who made
many significant contributions in the field of process control.
CONTENTS

PREFACE xv
ACKNOWLEDGEMENTS xvii

PART 1 FUNDAMENTALS AND TOOLS 1

1 INTRODUCTION 3
 1.1 History / 4
 1.2 Applications / 5
 1.3 Literature / 5
 1.4 Multiple Steady States / 6
 References / 8

2 PHASE EQUILIBRIUM 11
 2.1 Phase Equilibrium Relationships / 12
 2.1.1 Vapor–Liquid Equilibrium / 12
 2.1.2 Liquid–Liquid Equilibrium / 13
 2.2 Equations Describing Phase Equilibrium Relationships / 14
 2.2.1 Liquid Vapor Pressure / 14
 2.2.2 Liquid Activity Coefficients / 14
 2.3 Diagrams For Binary Systems / 17
 2.4 Ternary Diagrams / 19
 2.4.1 Residue Curves and Distillation Boundaries / 19
 2.4.2 Liquid–Liquid Equilibrium Envelope / 21
 2.4.3 Isovolatility Curve / 22
2.5 Data Regression / 25
 2.5.1 Sources of Experimental Data / 25
 2.5.2 Azeotrope Search / 26
 2.5.3 Steps for Regression / 26
2.6 Group Contribution Method / 38
2.7 Conclusion / 43
References / 43

3 STEADY-STATE DESIGN IN ASPEN PLUS / 45
3.1 Building a Steady-State Model / 45
 3.1.1 Defining the Flowsheet / 46
 3.1.2 Entering Components / 49
 3.1.3 Selecting Physical Property Method / 53
 3.1.4 Entering Feed Stream Data / 54
 3.1.5 Entering Unit Operation Block Data / 55
 3.1.6 Running the Simulation / 57
 3.1.7 Using Design Spec/Vary Function in RadFrac / 59
 3.1.8 Creating Reports, Saving Files, and Opening an Existing Simulation / 68
3.2 Unit Operation Blocks Used in this Book / 72
 3.2.1 RadFrac / 72
 3.2.2 Decanter / 80
 3.2.3 Column with External Decanter and Recycle / 82
 3.2.4 Heat Exchangers / 83
3.3 Add a Nondatabank Component / 87
3.4 Conclusion / 94
References / 95

4 DYNAMICS AND CONTROL IN ASPEN DYNAMICS / 97
4.1 Sizing of Process Vessels / 98
 4.1.1 Distillation Columns / 98
 4.1.2 Flash Tanks / 102
 4.1.3 Decanters / 104
4.2 Sizing of Pumps, Compressors, and Control Valves / 109
4.3 Controllers and Dynamic Elements / 113
 4.3.1 Equipment Sizing / 115
 4.3.2 Pressure Checking and Exporting / 116
 4.3.3 Default Control Structure and Simplified Heat Transfer Models / 116
 4.3.4 Installing Controllers / 117
 4.3.5 Controller Faceplates and Parameters / 121
4.3.6 Generating Dynamic Strip-Chart Plots / 124
4.3.7 Running the Simulation / 125
4.4 Controller Tuning / 129
 4.4.1 Level Controllers / 129
 4.4.2 Flow Controllers / 130
 4.4.3 Temperature and Composition Controllers / 130
4.5 Ratio and Cascade Control / 137
 4.5.1 Ratio Control / 137
 4.5.2 Cascade Control / 143
4.6 Conclusion / 145

PART 2 SEPARATIONS WITHOUT ADDING OTHER COMPONENTS 147

5 PRESSURE-SWING AZEOTROPIC DISTILLATION 149
 5.1 Tetrahydrofuran–Water System / 149
 5.2 Acetone–Methanol System / 151
 5.2.1 Steady-State Design / 152
 5.2.2 Control System Design / 155
 5.3 Pentane–Methanol System / 159
 5.3.1 Phase Equilibrium / 159
 5.3.2 Steady-State Design / 159
 5.3.3 Dynamics and Control / 162
 5.4 Conclusion / 164
References / 164

6 PRESSURE SWING WITH HEAT INTEGRATION 165
 6.1 THF–Water System Steady-State Design with Heat Integration / 166
 6.1.1 Partial Heat Integration / 166
 6.1.2 Complete Heat Integration / 167
 6.1.3 No Heat Integration / 172
 6.2 THF–Water System Dynamics and Control / 174
 6.2.1 Complete Heat Integration / 174
 6.2.2 No Heat Integration / 184
 6.2.3 Partial Heat Integration / 185
 6.2.4 Pressure-Compensated Temperature Control / 190
 6.2.5 Conclusion for a THF–Water System / 195
 6.3 Heat Integration in an Acetone–Methanol System / 197
 6.4 Conclusion / 197
References / 197
7 HETEROGENEOUS BINARY AZEOTROPES 199

7.1 \(n \)-Butanol–Water System / 200
7.2 Phase Equilibrium / 201
7.3 Steady-State Design / 202
7.4 Dynamics and Control / 208
7.4.1 Control Structure / 208
7.4.2 Results / 210
7.5 Conclusion / 215

References / 215

PART 3 SEPARATIONS USING A LIGHT ENTRAINER (HETEROGENEOUS AZEOTROPIC DISTILLATION) 217

8 ISOPROPA NOL–WATER (CYCLOHEXANE AS THE ENTRAINER) 219

8.1 Feasible Column Sequence for the Separation / 219
8.1.1 Propylene Glycol Monomethyl Ether–Water System / 219
8.1.2 Pyridine–Water System / 221
8.1.3 Isopropanol–Water System / 225
8.2 Steady-State Design of an Isopropanol–Water System / 227
8.2.1 Alternative Design 1 for a Two-Column System / 227
8.2.2 Proposed Design for a Two-Column System / 230
8.2.3 Optimal Design Flowsheet for a Three-Column System / 235
8.2.4 Comparison of Three Design Alternatives / 236
8.3 Overall Control Strategy Development / 238
8.3.1 Inventory Control Loops / 239
8.3.2 Tray Temperature Control Point(s) / 239
8.3.3 Simulation Results / 240
8.4 Conclusion / 243

References / 244

9 ACETIC ACID–WATER (ISOBUTYL ACETATE AS THE ENTRAINER) 245

9.1 Comparison of Three Candidate Entrainers / 246
9.1.1 Azeotropic Composition and Organic Phase Composition / 257
9.1.2 Azeotropic Temperature / 257
9.1.3 Aqueous Phase Composition and Entrainer Pricing / 257
9.2 Control Strategy Development / 259
9.2.1 Dual-Temperature Control Strategy / 260
9.2.2 Single-Temperature Control Strategy / 271
PART 4 SEPARATIONS USING HEAVY ENTRAINER (EXTRACTIVE DISTILLATION) 297

10 ISOPROPANOL–WATER (DIMETHYL SULFOXIDE AS THE ENTRAINER) 299

10.1 Comparing Entrainers: Dimethyl Sulfoxide Versus Ethylene Glycol / 300
 10.1.1 Isovolatility Curves / 300
 10.1.2 Equivolatility Curves / 302
 10.1.3 Binary VLE Diagrams / 304
10.2 Steady-State Design and Economical Analysis / 307
 10.2.1 Design Flowsheet via Extractive Distillation / 307
 10.2.2 Comparison to the Design Flowsheet Using Heterogeneous Azeotropic Distillation / 313
 10.2.3 Ideal Entrainer Using Heterogeneous Azeotropic Distillation / 316
10.3 Overall Control Strategy Development / 317
 10.3.1 Inventory Control Loops / 318
 10.3.2 Tray Temperature Control Point(s) / 318
 10.3.3 Simulation Results / 321
10.4 Conclusion / 324
References / 324

11 EXTRACTIVE DISTILLATION OF THE ACETONE–METHANOL SYSTEM 327

11.1 Acetone–Methanol–Water Phase Equilibrium / 327
11.2 Steady-State Design / 329
11.3 Dynamics and Control / 335

11.4 Heat-Integrated System / 339

11.4.1 Design / 339

11.4.2 Control / 340

11.5 Effect of Solvent on Controllability / 344

11.5.1 Systems Studied / 345

11.5.2 Water Solvent / 347

11.5.3 DMSO Solvent / 348

11.5.4 Chlorobenzene Solvent / 349

11.5.5 Control System Design / 352

11.5.6 Dynamic Performance / 366

11.5.7 Conclusions for Controllability / 366

11.6 Conclusion / 367

References / 367

12 MAXIMUM-BOILING AZEOTROPES

12.1 Acetone–Chloroform System Steady-State Design / 369

12.1.1 Pressure-Swing Distillation / 371

12.1.2 Extractive Distillation / 371

12.2 Dynamics and Control / 375

12.2.1 CS1 Structure (Single-Temperature Control in each Column) / 376

12.2.2 Analysis for Dual Temperature Control / 378

12.2.3 CS2 Control Structure / 381

12.3 Conclusion / 383

Reference / 383

PART 5 OTHER WAYS FOR SEPARATING AZEOTROPES

13 BATCH DISTILLATION OF AZEOTROPES

13.1 Batch Extractive Distillation (Acetone–Methanol with Water as the Entrainer) / 387

13.1.1 Batch Distillation Operating Procedure / 388

13.1.2 Simulation Results / 391

13.1.3 Comparison of Operating Procedure Given in Earlier Papers / 394

13.2 Batch Extractive Distillation (Isopropanol–Water with DMSO as the Entrainer) / 396

13.2.1 Simulation Results with Constant Reflux Ratio and Constant Entrainer Feed Rate / 397
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.2</td>
<td>Varying the Reflux Ratio and Entrainer Feed Rate During Step 2</td>
</tr>
<tr>
<td>13.3</td>
<td>Acetic Acid Dehydration Via Heteroazeotropic Batch Distillation</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Acetic Acid Dehydration via Continuous Process</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Operation and Control of Heteroazeotropic Batch Distillation Column</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Using Isobutyl Acetate as the Entrainer</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Using an Alternative Entrainer or no Entrainer</td>
</tr>
<tr>
<td>13.3.5</td>
<td>Robustness of the Proposed Batch Operation</td>
</tr>
<tr>
<td>13.3.6</td>
<td>Recycle of the Recovered Entrainer for the Next Batch</td>
</tr>
<tr>
<td>13.4</td>
<td>Multivessel Heteroazeotropic Batch Distillation</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

14 HYBRID DISTILLATION–PERVAPORATION SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>14.2</td>
<td>Pervaporation Model</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Diffusivities</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Dynamic Component and Energy Balances</td>
</tr>
<tr>
<td>14.3</td>
<td>Pervaporation–Column System</td>
</tr>
<tr>
<td>14.4</td>
<td>Dynamics and Control</td>
</tr>
<tr>
<td>14.5</td>
<td>Process Modification</td>
</tr>
<tr>
<td>14.6</td>
<td>Conclusion</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>451</td>
</tr>
</tbody>
</table>
Many mixtures of chemical components form azeotropes. An azeotropic mixture has vapor and liquid phases that have identical compositions. The occurrence of this phenomenon means that simple distillation cannot be used to achieve complete separation because distillation relies on differences in compositions between liquid and vapor phases. Azeotropes occur because of nonideal phase equilibrium resulting from the molecular interaction (either repulsion or attraction) of dissimilar chemical components.

The petroleum industry seldom encounters azeotropes because the hydrocarbon components have similar molecular structures. The chemical industry, on the other hand, frequently deals with components of different types, which often produce azeotropes. Common examples are the production of methyl acetate, tetrahydrofuran, tert-amyl methyl ether, isopropanol, vinyl acetate, and many others.

The emerging biofuel processes typically have fermentation products that form azeotropes with the water, which is present in large excess in the fermentor. The most important example is ethanol, which forms a minimum-boiling homogeneous binary azeotrope with water. Butanol is another biofuel example that forms an azeotrope with water. The nonideality in this system is so large that the azeotrope is heterogeneous, forming two liquid phases.

If the molecules exhibit repulsive forces, the azeotrope will be minimum boiling and can be either homogeneous or heterogeneous. If the molecules exhibit attractive forces, the azeotrope will be maximum boiling. Since there are many types of azeotropes with a variety of physical properties, there will be many ways to achieve separation. Homogeneous binary azeotropes can be separated using several methods.

1. **Pressure-swing distillation:** If the composition of the azeotrope changes significantly with pressure, two columns operating at two different pressures can achieve separation.

2. **Azeotropic distillation:** A third component called a light-entrainer is added, which carries one of the components overhead in a distillation column and forms two liquid phases in a decanter. A two-column system is used with one liquid phase from the decanter fed to one column and the other liquid phase fed to the second column. High-purity products are produced from the bottom of the two columns.
3. Extractive distillation: A third component called a solvent (or heavy entrainer) is added near the top of the first extractive distillation column. The solvent carries one of the components out the bottom of the extractive column. A second solvent-recovery column regenerates the solvent, which is recycled back to the extractive column. High-purity products are produced from the top of the extractive column and from the top of the solvent-recovery column.

Heterogeneous binary azeotropes can be separated by taking advantage of the liquid–liquid phase separation in a decanter. No third component is required. A two-column system is used with the one liquid phase from a decanter fed to one column and the other liquid phase fed to the second column. High-purity products are produced from the bottom of the two columns.

Azeotropic distillation and extractive distillation have been used for many decades. There is a rich literature of the subject with many hundreds of papers and several books published on the subject. The recent textbooks that contain discussions of azeotropic and extractive distillation are Doherty and Malone and Stichlmair and Fair. The authors provide an excellent treatment of conceptual design of azeotropic systems. Both of these books give examples of azeotropic separation phase equilibrium and flowsheets in both binary and ternary systems. The chapter by Doherty and Knapp “Azeotropes” in the Kirk–Othmer Encyclopaedia of Chemical Processes also provides an excellent discussion of vapor–liquid–liquid equilibrium (VLLE) fundamentals and conceptual design of a number of azeotropic systems.

Most of the treatments in the above books are qualitative and conceptual in nature, emphasizing VLLE issues and alternative configurations. Few of these books present in-depth rigorous designs that achieve optimum economic criteria. None of these books deal with the control and operation of azeotropic distillation systems. Detailed discussions of these two areas are the main contribution of this book. Rigorous steady-state and dynamic simulation tools (Aspen Plus and Aspen Dynamics) are used for design calculations and rigorous dynamic simulations.

This book studies a broad spectrum of real azeotropic distillation separation methods for a variety of industrially important chemical systems. Economically optimum rigorous steady-state designs are developed for many of these chemical systems. Then practical control structures are developed that provide effective load rejection in the face of typically large disturbances in throughput and feed composition. Trade-offs between steady-state energy savings and dynamic controllability (product quality variability) are demonstrated.

We hope this book will be useful for undergraduate and graduate students in their design, control, mass transfer, and bioprocessing courses as a supplemental reference. We hope it will also be used by young engineers just starting in their technical careers in industry or by older engineers facing an azeotropic separation problem for the first time.

The design and control of azeotropic systems is a challenging and fascinating subject, which requires application in many chemical engineering principles: thermodynamics of phase equilibrium, mass and energy balances, and dynamics and control. We have enjoyed working on these systems and hope the reader will find it equally intriguing and rewarding.

REFERENCES

ACKNOWLEDGEMENTS

I would like to thank my wife Pingching, the most important person in my life, and my two wonderful sons, Andrew and Jonathan, for their enduring support and encouragement. I would also like to express my thanks to Professor Hsiao-Ping Huang, for collaboration and work over many years, particularly on the results of acetic acid dehydration in this book. Thanks are also due to Professor David S. H. Wong for an initial collaborative study on IPA dehydration that inspired me to start a series of studies on various heterogeneous azeotropic systems. Thanks go to my former graduate students at National Taiwan University of Science and Technology and at National Taiwan University: Dr. Hao-Yeh Lee, Saiful Arifin, Y. C. Wu, K. Y. Hsu, L. Gunawan, K. L. Zeng, H. Y. Chao, K. H. Liu, T. K. Gau, C. H. Wang, J. Y. Yao, S. Y. Lin, and H. J. Huang. Without their hard work this book would not have been completed.

I-LUNG CHIEN
PART 1

FUNDAMENTALS AND TOOLS
An azeotrope is a mixture of chemical components that has identical compositions of the liquid and vapor phases in equilibrium with each other. This azeotropic phenomenon occurs because of molecular interactions between different chemical components. If the components contain similar elemental molecules and structure, the molecular interaction is very slight and azeotropes do not occur. Mixtures of hydrocarbons (propane, butane, pentane, etc.) are important examples. These mixtures have phase equilibrium behavior that is close to ideal and often have relative volatilities that are almost constant. However, if the components are dissimilar, the molecules can exhibit either repulsion or attraction. Repulsion increases the effective vapor pressures of the components at a given temperature and can produce minimum-boiling azeotropes. In terms of liquid-phase activity coefficients, discussed in detail in Chapter 2, repulsion produces activity coefficients greater than unity. If the repulsion is large enough, the repulsive forces can lead to the formation of heterogeneous minimum-boiling azeotropes (two liquid phases). The azeotrope boils at a temperature that is lower than the boiling point of the lighter component.

The methanol–water mixture is an example of a system that exhibits modest nonideality. The OH end of the methanol molecule is similar to the OH end of the water molecule, but the hydrocarbon CH₃ end of the methanol molecule is different from water. So the system exhibits a modest amount of nonideality, which can be represented by the change in relative volatility as liquid composition changes.

If we add another CH₂ group and move to the ethanol–water system, there is more repulsion because the CH₃–CH₂ end of the ethanol molecule is quite different from the OH end of the water molecule. The system exhibits more nonideality and a minimum-boiling azeotrope occurs. This azeotrope is homogeneous (only one liquid phase in equilibrium with a vapor phase). If we add two more CH₂ groups and move to the n-butanol–water system, the
repulsion is even more extreme. The result is the formation of a heterogeneous minimum-boiling azeotrope with two liquid phases in equilibrium with a vapor phase.

In other chemical systems, the molecules can attract instead of repulse. The results can be the formation of maximum-boiling azeotropes because the molecular attraction reduces the effective vapor pressures of the components. Examples include nitric acid–water, acetone–chloroform, formic acid–water, and \(n\text{-}n \)-dimethyl acetamide–acetic acid.

Chapter 2 is devoted to a detailed discussion of the vapor–liquid–liquid phase equilibrium of azeotropic systems. In this chapter we provide some historical perspective of the field, discuss several typical and important applications, and provide some journal references in the area of control of azeotropic distillation systems.

Also included is an example of one of the important complexities in trying to deal with azeotropic distillation systems. These systems are highly nonlinear and exhibit the phenomenon of multiple steady states.

1.1 HISTORY

The existence of azeotropes has been known for many years, probably as long as man has made ethanol. Designing chemical engineering processes to separate azeotropes has been dealt with in some of the earliest chemical engineering books. The first chemical engineering textbook used by the senior author was the 1937 *Principles of Chemical Engineering*,\(^1\) authored by three of the very early workers in the field of chemical engineering. On page 526 of that pioneering book, the \(xy \) curve for ethanol–water was presented. Subsequent pages showed curves for typical homogeneous minimum and maximum-boiling azeotropes.

The earliest book that concentrated on distillation as a unit operation *Elements of Fractional Distillation*,\(^2\) was first published in 1922 and was into its fourth edition by 1950. Chapter 10 of this work discussed extractive and azeotropic distillation. In an era before computers, the authors presented how plate-to-plate component and phase equilibrium equations can be solved manually (mechanical calculator or slide rule) to design several extractive distillation systems. One interesting example was the maximum-boiling nitric acid–water system using sulfuric acid as the heavy entrainer (solvent). They also presented a detailed design of azeotropic distillation of ethanol–water using benzene as the light entrainer. Ternary diagrams and composition profiles were presented. The labor-intensive calculations probably took a hard-working graduate student many days or weeks to complete. We are fortunate to now have the tools to perform these calculations in seconds.

The earliest book that concentrated exclusively on extractive and azeotropic distillation was published in 1964 by E. J. Hoffman.\(^3\) Ternary diagrams for many azeotropic systems were discussed, including the concepts of residue curves, and alternative flowsheet configurations were presented.

One of the pioneers in developing a method for separating azeotropic mixtures was Donald F. Othmer, who worked for Eastman Kodak before moving to Brooklyn Polytechnic University. Othmer’s many papers and patents in the 1930s and 1940s were major contributions to the field. His early paper,\(^4\) discussed the use of azeotropic distillation to facilitate the separation of acetic acid and water (which do not form an azeotrope but which exhibit a severe pinch in the high-water region) by the addition of a light entrainer (ethylene dichloride). Othmer developed these process designs without the aid of modern tools.
The advent of computer technology greatly enhanced our ability to explore azeotropic systems in a quantitative manner. Two of the early workers in developing and applying modern computational tools were Michael Doherty and Michael Malone at the University of Massachusetts. They demonstrated how ternary diagrams and the concepts of residue curves and distillation boundaries could be effectively used to aid in the conceptual design of azeotropic systems. They developed the Mayflower simulation software for performing azeotropic distillation calculations, which was later commercialized by Hyprotech into the DISTIL program and by AspenTech into the SPLIT program. Some of these tools are discussed and demonstrated in Chapter 2.

The early workers in the area of azeotropic separation concentrated on phase equilibrium issues and steady-state designs. There was much less work in the area of control of azeotropic systems. A pioneering paper by Prokopakis and Seider\(^5\) dealing with the dynamic simulation of azeotropic distillation columns was published in 1983. One of the earliest papers that dealt with both design and control was published in 1985.\(^6\) Several early papers by Morari and co-workers considered both design and control of azeotropic systems.\(^7\)–\(^9\)

A comprehensive review paper by Widagdo and Seider,\(^10\) summarized the literature as of that date concerning the design, simulation, and control aspects of azeotropic systems. More recent control papers are reviewed in Section 1.3.

1.2 APPLICATIONS

There are many important industrial applications of azeotropic separations, which employ a variety of methods. In this book we discuss several of these chemical systems and demonstrate the application of alternative methods of separation. The methods presented include pressure-swing distillation, azeotropic distillation with a light entrainer, extractive distillation with a heavy entrainer (solvent), and pervaporation. The chemical systems used in the numerical case studies included ethanol–water; tetrahydrofuran (THF)–water, isopropanol–water, acetone–methanol, isopentane–methanol, \(n\)-butanol–water, acetone–chloroform, and acetic acid–water. Economic and dynamic comparisons between alternative methods are presented for some of the chemical systems, for example azeotropic distillation versus extractive distillation for the isopropanol–water system.

The systems discussed in this book are typical of many azeotropic systems. So the techniques demonstrated in subsequent chapters should be applicable to a wide range of systems.

1.3 LITERATURE

The literature dealing with azeotropes is vast with hundreds of journal articles. There are several excellent textbooks that deal with the conceptual design of azeotropic systems. Most notable are the books by Doherty and Malone\(^11\) and Stichlmair and Fair.\(^12\) Both of these books give examples of azeotropic separation phase equilibrium and flowsheets in both binary and ternary systems. The chapter by Doherty and Knapp “Azeotropes,” in the Kirk–Othmer Encyclopeda of Chemical Processes provides an excellent discussion of VLLE fundamentals and conceptual design of a number of azeotropic systems.

The vast majority of the literature deals with phase equilibrium and steady-state design aspects of azeotropic separation. Papers dealing the control of azeotropic systems are far fewer in number. Some more recent journal articles are listed in the references 13–32.
1.4 MULTIPLE STEADY STATES

The nonlinear algebraic equations that describe a steady-state distillation column consist of component balances, energy balances, and vapor-liquid phase equilibrium relationships. These equations are nonlinear, particularly those describing the phase equilibrium of azeotropic systems. Unlike a linear set of algebraic equations that have one unique solution, a nonlinear set can give multiple solutions; therefore, the possibility of multiple steady states exists in azeotropic distillation.

With exactly the same input variables fixed (feed flow and composition, reflux flowrate, and distillate flowrate), there may be completely different values for the compositions and temperatures throughout the column. This is called “output multiplicity.” If this occurs it adds significant complexity to the design and control of these systems. Problems in converging the steady-state program in Aspen Plus frequently are encountered and can be challenging to overcome.

To provide an example of this phenomenon, let us consider the azeotropic distillation column shown in Figure 1.1. This is the first column in a two-column azeotropic distillation system to separate a binary mixture of ethanol and water. Benzene is used as the light entrainer that carries the water overhead and produces a bottoms product of high-purity ethanol. The column has an organic reflux (OR) stream fed to the top tray, which comes from a downstream decanter. A recycle stream from the second column is also fed to the azeotropic column. The overhead vapor is condensed and goes to a decanter. The organic phase is refluxed back to the first column. The aqueous phase is fed to a recovery column whose bottoms product is high-purity water and whose distillate is recycled back to the azeotropic column. Note that the azeotropic column is a stripper with no condenser. Once the

![Figure 1.1 Azeotropic column.](image-url)
number of stages, the feed locations, the pressure, and the feed conditions (composition, flowrate and temperature) have been fixed, the stripper has only one degree of freedom. This is selected as the bottoms flowrate.

To illustrate what happens when running Aspen Plus with this column, we fix the bottoms flowrate at 182.6 kmol/h and vary the reflux flowrate over a range of values, starting first at low values and then starting at high values. Figure 1.2 gives the results of these positive and negative scans.

If we start at a small value of reflux and gradually increase the flowrate, the resulting trajectories of the benzene and water compositions of the bottoms are shown in the solid lines. For small reflux flowrates, there is not enough benzene being fed, so there is a high concentration of water x_{W} in the bottoms as shown in the lower graph. Of course, there is also very little benzene in the bottoms.

As the reflux is gradually increased, a point is reached at about 315 kmol/h where the water concentration in the bottoms drops abruptly to very small values, while the concentration of benzene begins to gradually increase. Now there is enough benzene in the column to drive the water overhead; however, to have a high-purity ethanol product, there should be very small amounts of both benzene and water.

Once the point of this sharp change has been passed, we can reverse the sequence of cases and begin to reduce the reflux flowrate. These are the dashed lines in Figure 1.2. The benzene concentration gradually decreases; the water concentration remains very low until a reflux flowrate of about 280 kmol/h is reached, where another abrupt change occurs. The column “goes over the cliff” at 315 kmol/h when moving up in reflux, and it again “goes over the cliff” at 280 kmol/h when moving down in reflux. Operating with any reflux flowrate between these two values can yield two possible steady-state conditions.

![Figure 1.2](image-url) Steady-state convergence.
Figure 1.3 shows the resulting temperature and compositions profile for two steady-state solutions. Both have exactly the same reflux flowrate (300 kmol/h) and bottoms flowrate (182.6 kmol/h), but the profiles are very different. The solid lines correspond to the case when the reflux has been slowly increased to 300 kmol/h from a lower value. There is little benzene in the bottoms but lots of water. Temperatures are high throughout the column.

The dashed lines correspond to the case when the reflux has been slowly decreased to 300 kmol/h from a higher value. Now there is little water in the bottoms but increasing values of benzene. Temperatures are low throughout the column.

The desired steady-state design produces a high-purity ethanol bottoms product. Figure 1.1 shows that this is achieved with a reflux flowrate of 290 kmol/h, which is inside the multiple steady-state region (280 to 315 kmol/h). Under these conditions, the bottoms composition is 0.19 mol% benzene, 99.49 mol% ethanol, and 0.32 mol% water.

These results clearly illustrate some of the complexities of dealing with azeotropic distillation. We will encounter these problems and also other issues in dealing with azeotropic systems in subsequent chapters, which make design and control challenging.

REFERENCES

