DEFINING OPTIMAL IMMUNOTHERAPIES FOR TYPE 1 DIABETES
DEFINING OPTIMAL IMMUNOTHERAPIES FOR TYPE 1 DIABETES
The Novartis Foundation

The Novartis Foundation was an international scientific and educational charity (known until September 1997 as the Ciba Foundation), having been established in 1947 by the CIBA company of Basle, which merged with Sandoz in 1996 to form Novartis.

The Foundation promoted the study and general knowledge of science and encouraged international co-operation in scientific research. To this end, it organized internationally acclaimed meetings (typically eight symposia and allied open meetings and 15–20 discussion meetings each year) as well as publishing eight books per year featuring the presented papers and discussions from the symposia.

The Novartis Foundation’s headquarters at 41 Portland Place, London W1B 1BN provided library facilities open to graduates in science and allied disciplines, and accommodation and meeting facilities to visiting scientists and their societies.

Towards the end of 2006, the Novartis Company undertook a review of the Foundation as a consequence of which the Foundation’s Trustees were informed that Company support for the Foundation would cease with effect from the end of February 2008. The Foundation’s Trustees decided that when the Foundation was dissolved, it would be taken over by the Academy of Medical Sciences. Accordingly, the Novartis Foundation and all its publications are now incorporated within The Academy of Medical Sciences.

The Academy of Medical Sciences

The Academy of Medical Sciences promotes advances in medical science and campaigns to ensure these are converted into healthcare benefits for society. Our Fellows are the UK’s leading medical scientists from hospitals and general practice, academia, industry and the public service.

The Academy seeks to play a pivotal role in determining the future of medical science in the UK, and the benefits that society will enjoy in years to come. We champion the UK’s strengths in medical science, promote careers and capacity building, encourage the implementation of new ideas and solutions – often through novel partnerships – and help to remove barriers to progress. For further information visit http://www.acmedsci.ac.uk
DEFINING OPTIMAL IMMUNOTHERAPIES FOR TYPE 1 DIABETES
Contents

Editors: Gregory Bock (Organizer) and Jamie Goode

This symposium is based on a proposal made by Matthias von Herrath and Jeffrey Bluestone

Matthias von Herrath Chair’s introduction 1

Alan K. Foulis Pancreatic pathology in type 1 diabetes in human 2
Discussion 13

Daniel Pipeleers, Peter In ‘t Veld, Miriam Pipeleers-Marichal and Frans Gorus The β cell population in type 1 diabetes 19
Discussion 24

Peter Reifsnyder, William Schott, Darcy Pomerleau, Mark D. Lessard, Brian W. Soper and Edward H. Leiter Bone marrow expressing a diabetes resistance MHC class II allele: diabetes deviation by chronic immune stimulation 32
Discussion 46

Damien Bresson and Matthias von Herrath Resuscitating adaptive Tregs with combination therapies? 50
Discussion 60

Thomas W. H. Kay, Nadine L. Dudek, Kate Graham, Eugene Estella, Eveline Angstetra, Mark D. McKenzie, Jan Allison and Helen E. Thomas Cytotoxic T cell mechanisms of β cell destruction in non-obese diabetic mice 68
Discussion 78
Li Zhang, Roberto Gianani, Maki Nakayama, Edwin Liu, Masakazu Kobayashi, Erin Baschal, Liping Yu, Sunanda Babu, Abby Dawson, Kelly Johnson, Mohamed Jahromi, Theresa Aly, Pamela Fain, Jennifer Barker, Marian Rewers and George S. Eisenbarth
Type 1 diabetes: chronic progressive autoimmune disease 85
Discussion 94

Teodora Staeva Current and past prevention and intervention trials in type 1 diabetes 99
Discussion 109

Mark Peakman CD8 and cytotoxic T cells in type 1 diabetes 113
Discussion 119

General discussion I 122

General discussion II 126

Pere Santamaria Genetic and therapeutic control of diabetogenic CD8+ T cells 130
Discussion 136

General discussion III 141

Frank Waldron-Lynch, Matthias von Herrath and Kevan C. Herold Towards a curative therapy in type 1 diabetes: remission of autoimmunity, maintenance and augmentation of β cell mass 146
Discussion 155

Bart O. Roep Immune markers of disease and therapeutic intervention in type 1 diabetes 159
Discussion 171

Silvia Gregori, Manuela Battaglia and Maria-Grazia Roncarolo Re-establishing immune tolerance in type 1 diabetes via regulatory T cells 174
Discussion 183
Ezio Bonifacio, Anette Ziegler, Peter Achenbach, Jennifer Barker
and George S. Eisenbarth Translating mucosal antigen based prevention
of autoimmune diabetes to human 187
Discussion 199

Matthias von Herrath Closing remarks 202

Index of contributors 204

Subject index 206
Participants

Mark Atkinson Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, JHMHSC R2-228, 1600 SW Archer Rd, Gainesville, FL 32610-0275, USA

Ezio Bonifacio DFG Center for Regenerative Therapies Dresden, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany

Damien Bresson La Jolla Institute for Allergy and Immunology, Developmental Immunology-3, 9420 Athena Circle, La Jolla, CA 92037, USA

Peter Butler UCLA, MED/ENDO, Larry L. Hillblom Islet Research Center, 900A Weyburn Place #A, Los Angeles, CA 90024-2852, USA

George S. Eisenbarth Barbara Davis Center for Childhood Diabetes, Fitzsimons, Room 4102D, Health Sciences Center, 4200 E. Ninth Ave, Denver, CO 80262, USA

Richard Flavell Sterling Professor of Immunobiology, Yale University School of Medicine, HHMI, 300 Cedar Street, Suite S569, P.O. Box 208011, New Haven, CT 06520-8011, USA

Alan K. Foulis Department of Pathology, Royal Infirmary, Glasgow G4 0SF, UK

Silvia Gregori San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Via Olgettina 58, 20132 Milan, Italy

David A. Hafler Harvard Medical School, Brigham & Women’s Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA

Jason Hafler Magdalene College, University of Cambridge, Cambridge CB3 0AG, UK

Kevan C. Herold Yale School of Medicine, S-115B, 300 Cedar St, New Haven, CT 06520, USA
PARTICIPANTS

Richard A. Insel Juvenile Diabetes Research Foundation, 120 Wall Street, 19th Floor, New York, NY 10005-4001, USA

Thomas W. H. Kay St Vincent’s Institute, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia

Edward H. Leiter The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA

Andrew Lew The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3050, Australia

Mark Peakman Department of Immunobiology, King’s College London, School of Medicine at Guy’s, King’s College & St Thomas’ Hospitals, 2nd Floor, New Guy’s House, Guy’s Hospital, London SE1 9RT, UK

Daniel Pipeleers JDRF Center for Beta Cell Therapy in Diabetes, Brussels Free University-VUB, Laarbeeklaan 103, B-1090 Brussels, Belgium

Bart O. Roep E3-2, Immunohematologie en Bloedtransfusie, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands

Pere Santamaria Department of Microbiology and Infectious Diseases, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada

Teodora Staeva Juvenile Diabetes Research Foundation, 120 Wall Street, 19th Floor, New York, NY 10005-4001, USA

Tim Tree Department of Immunobiology, Programme of Infection and Immunity, King’s College School of Medicine, King’s College London, New Guy’s House, Guy’s Hospital, London SE1 9RT, UK

Matthias von Herrath (Chair) Department of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
Chair’s introduction

Matthias von Herrath

La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA

Diabetes is a disease where we still have many gaps in our knowledge. It is a special disease because we can’t access the organ very well, especially during the prediabetic phase in humans. Perhaps by linking animal studies with in vitro studies of human cells and then actual human studies we can close some of these gaps during this meeting. This pertains to both the basic pathogenesis of the disease as well as clinical translations.

There are many areas that are important to me in this field. I want to learn more about how the human disease actually comes together. I want to understand the kinetics. There are certain things that continue to puzzle me: I don’t understand how an immune-mediated disease is sustained for such a long time (in some cases the prediabetic phase can last more than seven years). How can it be that cells are continuously regenerated to attack islets in this chronic fashion? That a comparatively low-grade inflammatory immunological process can continue like this for several years puzzles me.

Understanding these types of kinetics will not only translate into understanding the pathogenesis, but also devising an optimal therapy: for example, we do not know for how long we would have to stop aggressive cells for in order to circumvent recurrence of disease. Does immunosuppressive or immune modulatory therapy have to be administered continuously, even if bystander regulation and other immunological control mechanisms that can be self-sustained by autoantigens are being invoked? Here we should discuss these issues, and others, for example with the question of the number of important autoantigens in type 1 diabetes: is there just one antigenic ‘driver’pathway? I would also like to see parallels made with other diseases, where applicable, and we have therefore invited speakers whose main expertise is in multiple sclerosis and other autoimmune disorders.

Retrospectively, this conference turned out to be a treat in many respects even for those who would consider themselves to be seasoned investigators in the pathogenesis of type 1 diabetes. We uncovered crucial ‘forgotten’ human data sets that should be revisited and expanded, we learned much more about the human aspects of type 1 diabetes pathogenesis which will be important to properly adjust current animal models, and we better comprehended crucial therapeutic and kinetic issues of the disease.
Pancreatic pathology in type 1 diabetes in human

Alan K. Foulis

Department of Pathology, Royal Infirmary, Glasgow G4 OSF, UK

Abstract. In type 1 autoimmune diabetes there is a selective destruction of insulin-secreting β cells. Around the time of clinical presentation, insulitis, a chronic inflammatory infiltrate of the islets affecting primarily insulin containing islets, is present in the majority of cases. The inflammatory infiltrate consists primarily of T lymphocytes; CD8 cells outnumber CD4 cells, there are fewer B lymphocytes and macrophages are relatively scarce. β cell death may involve the Fas apoptotic pathway since they have been shown to express Fas, infiltrating T lymphocytes express Fas-L and apoptotic β cells have been described. Hyperexpression of class I MHC by all the endocrine cells in many insulin-containing islets is a well recognized phenomenon, characteristic of the disease. It has been argued that this is an earlier event than insulitis within a given islet and appears to be due to secretion of interferon α by β cells within that islet. A recent study has found evidence of Coxsackie virus infection in β cells in three out of six pancreases of patients with recent-onset type 1 diabetes. Coxsackie viruses are known to induce interferon α secretion by β cells and this could initiate the sequence of events that culminates in their autoimmune destruction.

There are a number of different ways of obtaining pancreas specimens from patients with type 1 diabetes. Historically, the most common source was retrospective collections of autopsy pancreases from children who had died around the time of clinical diagnosis (Foulis et al 1986, Gepts 1965). The disadvantage of this approach was that there was usually a degree of autolysis in the tissues and the pancreas would almost certainly have been fixed in formalin and paraffin embedded. These factors and the lack of access to peripheral blood of the patient limited the range of possible studies on these pancreases.

A radical departure from this historical practice has been the approach of the group from Osaka. They performed laparoscopic pancreatic biopsies on patients who had been diagnosed with type 1 diabetes in the previous three months. A great range of tests has been done on this tissue and the results have been correlated with clinical findings. The disadvantage is that the biopsies were small
(20–30 mg) leading to a possible sampling problem. Thus the biopsies of three out of the first seven patients had no insulin-containing islets (Hanafusa et al 1990). While pancreatic biopsy has proven to be safe, no other research group has adopted this practice.

Finally, in the last 15 years a number of patients with recent-onset disease have died in intensive care units and permission has been given to remove organs for transplantation. The pancreas has thus been removed immediately after death, there has been no shortage of tissue and a full range of tests could be done (Dotta et al 2007).

Insulitis

If the pancreas of a patient who has had type 1 diabetes for more than five years is studied, the great majority of islets will be seen to be insulin deficient. They consist of a normal number of the other hormone-secreting cells found in the islets of the pancreas (pancreatic polypeptide-secreting PP cells, glucagon-secreting A cells and somatostatin secreting D cells) (Foulis & Stewart 1984). There has thus been selective loss of the β cells. If the pancreas is studied at or within a year or two of clinical diagnosis, three types of islet are found (Gepts 1965, Foulis & Stewart 1984). Firstly, approximately 70% of the islets are insulin deficient (identical to those found in patients with prolonged disease). Secondly, there are islets containing β cells that are affected by insulitis (a chronic inflammatory infiltrate within the islet, Fig. 1) and, thirdly, there are insulin-containing islets which appear essentially normal. The finding that 18%
of insulin containing islets but only 1% of insulin-deficient islets were affected by insulitis helped support the concept of there being an immunologically mediated destruction of β cells in the pathogenesis of type 1 diabetes (Foulis & Stewart 1984).

It can be seen therefore that within a given pancreas at clinical presentation there are islets where the β cells have been destroyed (insulin deficient), islets where the β cells are being destroyed (insulitis) and islets where the β cells are yet to be destroyed (normal). It has been argued that the pancreas in type 1 diabetes at clinical presentation is very similar qualitatively to the pancreas a few years after clinical presentation and also to the pancreas before clinical presentation. All three types of islet described above are present but the proportion of the islet types varies greatly with duration of the disease (Foulis 1989). Insulits affecting insulin containing islets has been observed six years after clinical presentation and in this pancreas 95% of islets were insulin deficient (Foulis et al 1986) By contrast in a pre-diabetic pancreas only 4% of islets were insulin deficient but insulitis was also observed (Foulis et al 1986). Thus it seems that the disease process in the pancreas is remarkably similar over a long period of time, with clinical presentation occurring when two thirds of the islets are insulin deficient (Foulis et al 1986). It follows that study of disease phenomena in the pancreas at clinical presentation should help to elucidate the pathogenesis of type 1 diabetes both at clinical presentation and in the pre-diabetic period.

Inflammatory cells in insulitis

Bottazzo et al (1985), in their case report, were the first to study the nature of the inflammatory infiltrate in insulitis. It consisted essentially of lymphocytes, with macrophages being inconspicuous. The majority of the lymphocytes were cytotoxic T cells. All studies on autopsy pancreases have repeated the observation that macrophages represent a minor population of the infiltrate. In a study of 87 affected islets from 12 autopsy pancreases the ratio of lymphocytes to macrophages was 10:1 and the average number of lymphocytes per inflamed islet was 85 (Foulis et al 1991). The first study of pancreatic biopsies reported no evidence of insulitis even in the four pancreases with residual β cells (Hanafusa et al 1990). Subsequent studies from the Osaka group however did report insulitis. Interestingly, their definition of insulitis in the later studies was an islet infiltrated by two or more inflammatory cells (Itoh et al 1993) Even in this minimal (significant?) form of inflammation the predominant inflammatory cell was the CD8+ T cell. These findings are consistent with destruction of β cells by cell-mediated cytotoxic T cell attack and do not support a major role for bystander damage by cytokines released by macrophages.
Fas and Fas ligand expression

Two groups have looked at Fas and Fas ligand (Fas-L) expression in insulitis. Fas-positive endocrine cells were detected in islets affected by insulitis but not in non-inflamed islets in diabetics or in normal control pancreatic islets (Stassi et al 1997, Moriwaki et al 1999). Interestingly, Moriwaki et al (1999) showed that while most B cells were Fas positive a significant minority of A cells also expressed this receptor. Infiltrating lymphocytes were Fas-L positive while islet endocrine cells were Fas-L negative. These observations have led to the hypothesis that cytokines such as interferon (IFN)γ, tumour necrosis factor (TNF)α or interleukin (IL)1, which induce Fas expression by islet endocrine cells in vitro, could be released in the insulitis process and cause the same effect in vivo. In this manner Fas-L-positive infiltrating cells in the inflamed islets could destroy Fas-positive β cells.

β cell apoptosis

A number of groups have looked for evidence of β cell apoptosis. No affected β cells were seen in pancreatic biopsies by the Osaka group (Moriwaki et al 1999), while others found evidence for plentiful apoptosis in β cells in autopsy pancreases using the TUNEL method (Meier et al 2005, Stassi et al 1997). In view of the lack of evidence of β cell regeneration one has to view an apoptosis prevalence of 6% of β cells (Meier et al 2005) as being extremely unlikely given the fleeting nature of apoptotic bodies and the very long time over which β cell destruction appears to take place clinically.

Aberrant expression of class II MHC by β cells

It was hypothesized that aberrant expression of class II MHC by insulin-secreting β cells (Fig. 2) could lead to their presenting self antigens, with resulting autoimmunity (Bottazzo et al 1983). β cells do not normally express class II MHC but they did show this phenomenon in pancreases of 21 out of 23 cases of recent-onset diabetes (Foulis et al 1987a). In these cases aberrant expression of class II MHC was found in 12% of insulin-containing islets, and double stains showed that it was confined to β cells being not present in A, D or PP cells. The phenomenon has also been described in pancreatic biopsies of two Osaka patients (Imagawa et al 1996). Half the islets in which β cells expressed class II MHC had no evidence of inflammation, raising the possibility that in a given islet this abnormality preceded insulitis (Foulis et al 1987a). β cells expressing class II MHC were not seen in 95 control pancreases from patients with a variety of diseases including type 2 diabetes, graft versus host disease, chronic pancreatitis, cystic fibrosis and enteroviral pancreatitis (Foulis et al 1987a).
An antigen-presenting cell must express co-stimulatory molecules such as CD80 and CD86 as well as class II MHC to successfully present antigen to CD4+ Th cells. Evidence against a pathogenetic role for aberrant expression of class II MHC on β cells has been the failure to demonstrate expression of either of these co-stimulatory molecules by β cells in pancreatic biopsies of patients with recent-onset type 1 diabetes (Imagawa et al 1996).

Hyperexpression of class I MHC by insulin-containing islets

Cytotoxic (CD8+) T cells, which are the dominant cell type in insulitis, recognize antigen when it is presented in association with class I MHC by a target cell. Hyperexpression of class I MHC by the target cell is likely to enhance this engagement. A phenomenon unique to type 1 diabetes is hyperexpression of class I MHC by all the endocrine cells in insulin-containing islets (Foulis et al 1987a). 92% of insulin-containing islets hyperexpressed class I MHC in contrast to only 1% of insulin-deficient islets (Fig. 3). The phenomenon was not seen in islets in any of the 95 control pancreases in that study. Class I MHC hyperexpression of islet endocrine cells was induced in vitro by IFNα, IFNβ or IFNγ (Pujol-Borrell et al 1986). Forty per cent of the lymphocytes in the insulitis infiltrate expressed IFNγ.
so it might be supposed that this hyperexpression of class I MHC would be a secondary event following insulitis. However, even when whole islets in multiple serial sections were studied it was clear that over half the insulin-containing islets which hyperexpressed class I MHC had no evidence of insulitis whatsoever. Thus it was argued that hyperexpression of class I MHC by insulin-containing islets was an earlier event in the disease process than insulitis. Comparison of class I hyperexpression and aberrant class II expression by β cells showed that all islets where the latter phenomenon was seen hyperexpressed class I MHC. By contrast 73% of islets which hyperexpressed class I MHC showed no evidence of aberrant expression of class II MHC on β cells. Thus hyperexpression of class I MHC also appeared to be an earlier event in the disease process within an islet than class II MHC expression by β cells. Finally it was noted that A and D cells hyperexpressed class I MHC when they lay adjacent to β cells in insulin-containing islets of type 1 diabetes patients, but not when they were physically divorced from β cells in insulin-deficient islets. This raised the possibility that the β cells were releasing a type 1 interferon that was causing the hyperexpression through a paracrine effect (Foulis et al 1987a).

β cells express IFNα in type 1 diabetes

An immunohistochemical analysis of IFNα expression in type 1 diabetes was therefore undertaken. β cells, but not A, D or PP cells expressed IFNα in all 28 pancreases from patients with recent onset type 1 diabetes. This expression was closely related to class I MHC hyperexpression. β cells expressing IFNα were found in 94% of islets which hyperexpressed class I MHC but only in 0.2% of islets which did not hyperexpress this complex. Among 80 control pancreases, β cells expressed significant IFNα in four cases of Coxsackie B viral pancreatitis but not in other pancreatic diseases (Foulis et al 1987b).

Possible sequence of immunological events in islets (Fig. 4)

The conclusion of the studies outlined above is that the first abnormality in an islet in type 1 diabetes is expression of IFNα by β cells. Secretion of this cytokine is likely to cause hyperexpression of class I MHC by all the endocrine cells within that islet. Aberrant expression of class II MHC is a later event, which probably occurs in a minority of islets, but it too appears to precede insulitis. The finding that β cells secreted IFNα in enteroviral pancreatitis as well as type 1 diabetes raises the possibility that a non cytopathic viral infection of β cells is the initiating event in the disease process leading to autoimmune destruction of β cells and type 1 diabetes (Foulis 1989).
Enteroviral infection and type 1 diabetes

There has long been speculation that enteroviruses, particularly Coxsackie B viruses, are involved in the pathogenesis of type 1 diabetes. Famously, a Coxsackie B4 virus was cultured from the pancreas of a child who died of recent-onset diabetes and this virus was capable of inducing diabetes in mice (Yoon et al 1979). In spite of many attempts no other reports of such a virus being cultured under these circumstances was published in the following 25 years (but vide infra).

In a survey conducted in three different countries 30% of patients at the time of clinical onset of the disease had increased levels of IgM antibodies to Coxsackie B viruses, suggesting recent or continuing infection (Banatvala et al 1985). Enteroviral mRNA with sequence homology to Coxsackie B3 and B4 was found by RT-PCR in serum of nine of 14 children with recent onset diabetes, all of whom were 6 years old or less (Clements et al 1995).

It is recognized that there may be a pre-clinical period lasting years during which there is evidence of islet cell autoimmunity but no evidence of clinical diabetes. Several groups have looked for evidence of viral infection in the period immediately before autoantibody seroconversion by surveying young siblings of diabetic patients (Hiltunen et al 1997) or studying genetically high-risk infants from birth (Salminen et al 2003). Both approaches showed significantly more enteroviral infections in the months preceding seroconversion in patients who became
autoantibody positive than among controls, although this observation was not repeated in a North American study (Graves et al 2003).

The search for enteroviruses in pancreases of type 1 diabetic patients

Initially an immunohistochemical study looking for enteroviral capsid protein Vp1 was performed on autopsy pancreases. Vp1-positive cells were found in pancreatic tissue of seven of 12 infants who had died of neonatal enteroviral myocarditis. The virus showed marked tropism for the islets rather than exocrine tissue and, while A cells were sometimes affected, β cells particularly frequently showed a cytopathic effect. Study of pancreases of 88 young patients who had died at clinical presentation of type 1 diabetes showed no evidence of infection using this technique (Foulis et al 1990). In retrospect it could be argued that the immunohistochemical technique used may have had poor sensitivity as it was done prior to the development of the technique of antigen retrieval from formalin fixed tissue. A similar study in which in situ hybridization for enteroviral RNA was performed also found no evidence of viral infection in the diabetic pancreases (Foulis et al 1997). This contrasts with a more recent in situ hybridization study of autopsy pancreases of 65 diabetic patients aged 18 to 52 years in whom evidence of enterovirus infection was found in islets in four pancreases (Ylipaasto et al 2004). In this study it is not clear whether the virus detected was in insulin-containing islets or not and the duration of diabetes in those affected was not known.

A recent study offers further evidence of enteroviral infection in the pancreas in type 1 diabetes (Dotta et al 2007). These authors studied six pancreases removed from patients with type 1 diabetes immediately after death, at the time of organ harvest for transplantation. Two patients had died as a result of accidents and they had had diabetes for 8 and 9 months, respectively. Three patients had died of complications of ketoacidosis at their first clinical presentation of diabetes. The pancreas of the remaining patient was an allograft that was removed from a patient with type 1 diabetes because of septic complications. Evidence of enteroviral infection was sought using a number of techniques. Firstly, immunohistochemistry, using antigen retrieval on formalin-fixed tissue, demonstrated enteroviral Vp1 capsid protein in β cells but not A cells in the majority of islets in three of the six patients. Secondly, electron microscopy showed viral inclusions in over 75% of β cells in Vp1-positive islets, but not in A or D cells. Thirdly, a virus was extracted from one pancreas and sequence analysis showed that it was a Coxsackie B4 virus.

There are a number of caveats to this study. Firstly, one of the pancreases in which Vp1 positivity was found was a transplanted organ from a patient who was being immunosuppressed up until organ extraction. Secondly, there was no
reported loss of β cells in the islets of the three patients in whom enterovirus was detected. The patient in whom enterovirus was isolated had had type 1 diabetes for 9 months and it is distinctly unusual to find normal numbers of β cells in type 1 diabetes of this duration. The three pancreases in which no virus was seen had more typical findings of type 1 diabetes, with reduced numbers of β cells.

Interestingly, the isolated virus was able to infect β cells in islets cultured from non-diabetic donors. Infected β cells showed little evidence of cell death but did show reduced insulin secretion on stimulation with a variety of secretagogues.

Conclusion

Dotta et al (2007) concluded that a non-cytopathic enteroviral infection of β cells could occur in type 1 diabetes causing functional impairment of glucose metabolism. Such an infection has been shown to cause secretion of IFNα by β cells \textit{in vitro} (Chehadeh et al 2000). Secretion of IFNα by β cells \textit{in vivo} probably causes hyperexpression of class I MHC and signifies activation of the innate immune system. Loss of tolerance to β cell antigens in genetically susceptible individuals may be provoked by a degree of damage to β cells as a result of the viral infection, with subsequent presentation of β cell antigens. Professional antigen presenting cells within islets may perform this role although conceivably β cells themselves, by virtue of class II MHC expression, may be involved (Fig. 5).

![Diagram of possible sequence of events in islets in type 1 diabetes.](image)

FIG. 5. Possible sequence of events in islets in type 1 diabetes.