NOVEL AND
RE-EMERGING
RESPIRATORY VIRAL
DISEASES
NOVEL AND RE-EMERGING RESPIRATORY VIRAL DISEASES
The Novartis Foundation is an international scientific and educational charity (UK Registered Charity No. 313574). Known until September 1997 as the Ciba Foundation, it was established in 1947 by the CIBA company of Basle, which merged with Sandoz in 1996, to form Novartis. The Foundation operates independently in London under English trust law. It was formally opened on 22 June 1949.

The Foundation promotes the study and general knowledge of science and in particular encourages international co-operation in scientific research. To this end, it organizes internationally acclaimed meetings (typically eight symposia and allied open meetings and 15–20 discussion meetings each year) and publishes eight books per year featuring the presented papers and discussions from the symposia. Although primarily an operational rather than a grant-making foundation, it awards bursaries to young scientists to attend the symposia and afterwards work with one of the other participants.

The Foundation's headquarters at 41 Portland Place, London W1B 1BN, provide library facilities, open to graduates in science and allied disciplines.

Towards the end of 2006, the Novartis Company undertook a review of the Foundation as a consequence of which the Foundation's Trustees were informed that Company support for the Foundation would cease with effect from the end of February 2008.

The Foundation's Trustees have considered various options for the future, the favoured of which is a merger with another, cognate, organization whereupon the Foundation will then formally be dissolved. Any future activities at 41 Portland Place will then be determined by the new organization.

Information on all Foundation activities can be found at http://www.novartisfound.org.uk

The Institute of Molecular and Cell Biology (IMCB) is a member of the Agency for Science, Technology and Research (A*STAR). Established in 1987, the research institute's mission is to foster a vibrant research culture for biomedical sciences and high quality manpower training to facilitate development of the biotechnology and pharmaceutical industries in Singapore.

Funded primarily by Biomedical Research Council (BMRC) of A*STAR, IMCB has about 35 core research labs and 8 core facility units consisting of over 400 research scientists. IMCB's research activities focus on five major fields: Cell Biology, Developmental Biology, Structural Biology, Infectious Diseases and Cancer Biology. IMCB continues to publish in renowned international journals, with more than a 1000 publications since 1987.

IMCB is currently based at The Biopolis @ One North. It is envisioned to be the biggest Biomedical Sciences R&D hub in Asia. IMCB continues to strive for excellence in biomedical R&D and the vision of Singapore as a world class hub for the Biomedical Sciences in Asia and beyond.
NOVEL AND RE-EMERGING RESPIRATORY VIRAL DISEASES
Contents

Symposium on Novel and re-emerging respiratory viral diseases, held at the Institute of Molecular and Cell Biology, Singapore, 23–25 April 2007

Editors: Gregory Bock (Organizer) and Jamie Goode

This meeting was based on a proposal made by Yee-Joo Tan and Wanjin Hong

Robert G. Webster Chair’s introduction 1

Larry J. Anderson and Suxiang Tong Identification and characterization of novel viruses 4
Discussion 12

Edward C. Holmes The evolution of viral emergence 17
Discussion 26

Derek J. Smith, Jan C. de Jong, Alan S. Lapedes, Terry C. Jones, Colin A. Russell, Theo M. Bestebroer, Guus F. Rimmelzwaan, Albert D. M. E. Osterhaus and Ron A. M. Fouchier Antigenic cartography of human and swine influenza A (H3N2) viruses 32
Discussion 37

Gabriele Neumann and Yoshihiro Kawaoka Influenza pandemics and control 45
Discussion 53

J. J. Skehel, S. Wharton, L. Calder and D. Stevens On the activation of membrane fusion by influenza haemagglutinin 56
Discussion 62

Yee Sin Leo Singapore SARS experience and preparation for future outbreak 69
Discussion 74
Yee-Joo Tan SARS lessons for a young virology laboratory in Singapore 79
Discussion 85

Ih-Jen Su How the SARS experience has helped preparations for future outbreaks: the Taiwan experience, with emphasis on the successful control of institutional outbreak of influenza in 2003/2004 using a stockpile of antivirals 89
Discussion 95

General discussion I 99

Yuelong Shu, Yu Lan, Leying Wen, Ye Zhang, Jie Dong, Xinsheng Zhao, Dayan Wang, Lihong Yao, Xiyan Li, Wei Wang, Xiuping Wang, Qi Wang, Shumin Duan, Jingjing Huang, Lei Yang, Hongjie Yu, Yuanji Guo, Weizhong Yang, Xiyun Xu, Nancy J. Cox, Xiaoping Dong, Yu Wang and Dexin Li Genetic and antigenic characterization of avian influenza A (H5N1) viruses isolated from humans in Mainland China 103
Discussion 108

J. S. M. Peiris and Y. Guan Emerging infectious diseases and the animal–human interface 113
Discussion 122

Erich Hoffmann, Hui-Ling Yen, Rachelle Salomon, Neziha Yilmaz and Robert G. Webster Transmission and pathogenicity of H5N1 influenza viruses 128
Discussion 137

John M. Wood Development of vaccine for a future influenza pandemic 141
Discussion 146

Final discussion 152

Index of contributors 157

Subject index 159
Participants

Larry J. Anderson Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA

Neal Greig Copeland Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Martin Crusat The Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, Quan 5, Ho Chi Minh City, Vietnam

Erich Hoffmann Department of Infectious Diseases, St. Jude Children’s Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA

Edward C. Holmes Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA

Wanjin Hong Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Nancy Jenkins Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Jeffrey S. Kahn Division of Infectious Diseases, Department of Pediatrics, Yale University School of Medicine, PO Box 208064, New Haven, CT 06520, USA

Yoshihiro Kawaoka Department of Pathobiological Sciences, 2015 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA and International Research Center for Infectious Diseases and Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Michael M. Lai Office of the Vice President, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
Sunil K. Lal Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg New Delhi 110067, India

David Lane Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Yee Sin Leo Communicable Disease Centre, Tan Tock Seng Hospital, Moulmein Road, Singapore 308433

Ai Ee Ling Virology Laboratory, Department of Pathology, Singapore General Hospital, Outram Road, Singapore 168608

Ding Xiang Liu Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Albert Osterhaus Department of Virology, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, 3000 DR Rotterdam, The Netherlands

J. S. Malik Peiris Department of Microbiology, The University of Hong Kong, Room 423, University Pathology Building, Queen Mary Hospital, Pokfulam, Hong Kong SAR

Shuo Shen Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

John J. Skehel MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK

Derek J. Smith Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

Ih-Jen Su Division of Clinical Research, National Health Research Institutes, 138, Shen-Li Rd, Tainan, Taiwan

Paul Ananth Tambyah Division of Infectious Diseases, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074

Yee-Joo Tan Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Tran Tan Thanh The Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, Quan 5, Ho Chi Minh City, Vietnam
Jean-Paul Thiery Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673

Subhash Vasudevan Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos #05-01, Singapore 138670

Robert G. Webster (Chair) Department of Infectious Diseases, Division of Virology, St. Jude Children’s Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA

John M. Wood National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK

Li Xin Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
Chair’s introduction

Robert G. Webster

Emerging and re-emerging infectious diseases are part of the natural history of humankind, for there has always been a struggle between microbes and humans. A considerable part of the human genome is concerned directly or indirectly with strategies to combat infectious diseases. Humans have continued their global dominance and in the past century have used scientific knowledge to reduce the impact of novel disease agents. The ever-increasing human population expansion and factors such as land use, water use and energy use needed to support the burgeoning human population, has resulted in production of animals on megafarms in close proximity to wild animals and birds. The export of intensive farming practices to the developing world, for example chicken and pig raising, has not always been accompanied by the best practices for ensuring bio-security and disease prevention in those operations. Thus intensive poultry and pig raising, without adequate separation from free-flying birds and water treatment, is a recipe for disaster. The increasing number of outbreaks of lethal H5 and H7 influenza, in domestic poultry, globally attests to these assertions.

The emergence of novel infectious diseases is a continuing process with multiple novel agents emerging in the past decade. While many of these agents caused transitory disease outbreaks—Nepah virus from bats to pigs and people in Malaysia, and Hendra virus from bats to horses and people in Australia—that were rapidly identified and stamped out, others became endemic in humans and in domestic animal species. Notable examples are human immunodeficiency virus (HIV) (African primates to humans) and West Nile virus (introduction to the Americas from Europe and spread through mosquitoes to wild birds, domestic mammals and humans).

Two recent examples of emerging infectious disease agents are severe acute respiratory syndrome (SARS) and highly pathogenic H5N1 avian influenza (‘bird flu’). These two disease agents are the main topics for this meeting. Both of these diseases are caused by RNA viruses of zoonotic origin; SARS by a novel coronavirus from bats via civet cats in live animal markets (‘wet markets’) to humans, and H5N1 bird flu by a type A orthomyxovirus from wild aquatic birds via
domestic poultry to humans. Both of these emerging infectious diseases were ‘man
made’ in the sense that increased affluence of humans in the region increased the
demand for protein in the diet. Intensified animal raising and the demand for
exotic wild animal meat permitted these viruses to initially spread to humans in
Hong Kong and Southern China through wet markets. The actual precursor
viruses of neither SARS nor H5N1 bird influenza have been identified, but their
closest genetic relatives were detected in animals and poultry in wet markets at the
time they initially spread to humans.

Southeast Asia has been described as the epicentre for the emergence of pan-
demic influenza viruses, including the Asian H2N2 influenza of 1957, the Hong
Kong H3N2 virus of 1968, as well as the re-emerging H1N1 Russian influenza
virus of 1977. Both the H5N1 highly pathogenic avian influenza virus and the
SARS coronavirus emerged in this region of the world. While culling of all domes-
tic poultry in Hong Kong in 1997 successfully stamped out the initial genotype of
H5N1, the virus re-emerged from apparently healthy ducks and geese in the region
and spread to multiple countries in Southeast Asia including Vietnam, Cambodia,
Laos, Indonesia, Japan and South Korea. The virus was largely restricted to the
Southeast Asia region until 2005. The dramatic spread of the virus in mid-2005
occurred after H5N1 infected Bar-headed geese and other wild water fowl in
Qinghai Lake in Western China. After that event, the virus spread rapidly through
the Indian subcontinent, the African continent and Europe. The role of migratory
birds seems probable. While the highly pathogenic H5N1 virus continues to spread
throughout Eurasia it has, to date, not spread to the Americas despite the overlap
of migrating birds in Alaska.

Both SARS and H5N1 bird flu are similar in being poorly transmissible in
humans. During the SARS outbreak, this virus infected 8096 persons globally with
774 deaths (9.6%), while H5N1 bird flu has infected over 300 humans with 60%
lethality. The poor transmissibility of SARS led to the control of this virus by
conventional biosecurity and quarantine. While SARS is under control, H5N1 bird
flu is not. H5N1 appeared in Hong Kong a decade ago: it has now spread to over
60 countries in Eurasia and has evolved into at least four antigenically distinct
clades. Although H5N1 has not acquired consistent human-to-human transmis-
sion the possibility exists that we may be witnessing the evolution of a human
influenza pandemic in real time.

Dr Yee-Joo Tan from The Institute of Molecular and Cell Biology, Proteos,
Singapore, who participated in the battle against SARS in Singapore, proposed the
topic of emerging and re-emerging respiratory viruses as the subject for the present
meeting. Both the topic and the site for the meeting were most appropriate.
Although the economic impact of SARS turned out to be relatively short term (due
to rapid acquisition of scientific knowledge and control strategies) the initial impact
on service exports in Singapore and Hong Kong, especially on tourism, was par-
particularly severe. If SARS had not been controlled so expediently, the economic impact would have been much worse.

The lessons from SARS are certainly applicable to the expanding problem of H5N1 bird flu and to future emerging infectious diseases. The successful containment of SARS and the lessons learned from that successful programme are important to be considered in the face of a possibly emerging influenza pandemic in humans. However, we must keep in mind that the transmissibility of influenza is likely to be very different from that of the SARS coronavirus.
Identification and characterization of novel viruses

Larry J. Anderson and Suxiang Tong

Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA

Abstract. Although much has been learned about the agents and the clinical and epidemiological features of acute respiratory illness (ARI), much still remains unknown. Among children in the USA, the agent of 25–50% of cases of ARI remains unknown and among adults the agent remains unknown for about 50% of ARI cases. Roadblocks to detecting the etiological agent include quality of specimens, sensitivity and specificity of assays, and probably presence of as yet unknown pathogens. For example, since the year 2000, five new viral agents of ARI have been identified (human metapneumovirus [hMPV], SARS CoV, two human coronaviruses [NL63 and HKU1] and a new parvovirus [human bocavirus]). A variety of methods have been used to try to detect novel viral pathogens and include classic techniques such as tissue culture isolation, antigen detection assays and electron microscopy, and molecular methods designed specifically to detect novel pathogens. Examples of different successful methods to detect novel pathogens include those used to identify the hepatitis C virus, human herpes virus 8, Sin Nombre virus, and SARS coronavirus. At CDC, we have developed several molecular methods to identify new pathogens including pan viral family PCR assays that can detect any member of a given family of viruses. To date, we have developed pan viral family (or genera) PCR assays for 11 viral families. The improving methods to discover new viruses are likely to present investigators with the challenge to determine if and what disease an increasing number of novel viruses might cause. Koch's postulates provide guidelines for establishing a causal relationship between a pathogen and disease and include establishing an epidemiologic link between the pathogen and disease and then showing a causal relationship, most often through animal inoculation studies. The success of new molecular tools for pathogen discovery highlight the need for more efficient ways to determine what disease might be associated with the infection.

2008 Novel and re-emerging respiratory viral diseases. Wiley, Chichester (Novartis Foundation Symposium 290) p 4–16

Acute respiratory illnesses (ARI) include the common cold, bronchitis, bronchiolitis, croup, sore throat and pneumonia, and are the most common illnesses of humans. They are a major cause of morbidity and mortality world-wide. It is estimated that globally ~2 million deaths/year occur in children <5 years old from

1Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention/the Agency for Toxic Substances and Disease Registry.
ARI (Williams et al 2002). In adults in the USA, there are an estimated 1 million cases of community acquired pneumonia each year and pneumonia is among the 10 most common causes of death. As noted in Table 1, there is wide variety of viral and bacterial pathogens commonly associated with ARI. Influenza viruses are the most important cause of serious viral ARI and respiratory syncytial virus (RSV) probably is the second most important viral respiratory pathogen. Influenza has most often been considered an important pathogen in adults but can also be a significant cause of ARI in children (Weinberg et al 2004). RSV is most often associated with serious disease in the infant and young child but also causes serious ARI disease throughout life (Falsey et al 2005). Our understanding of viral ARI is changing because of the discovery of novel viruses and the availability of better diagnostic assays. Five novel respiratory viruses including human metapneumovirus (van den Hoogen et al 2001), SARS coronavirus (CoV) (Drosten et al 2003, Ksiazek et al 2003, Peiris et al 2003), two novel human coronaviruses, NL63 and HKU1 (Fouchier et al 2004, van der Hoek et al 2004, Woo et al 2005), and human bocavirus (Allander et al 2005) have been discovered since 2000. Improved diagnostics, especially sensitive polymerase chain reaction (PCR) assays, have also made it possible to consistently identify difficult to detect viruses such as rhinoviruses, and it is becoming increasingly clear that rhinoviruses have been under appreciated as serious respiratory pathogens (Miller et al 2007, Falsey et al 2002). Even with the discovery of novel viruses and improved diagnostics, there remain a significant number of ARIIs for which the aetiology remains unknown. In adults, up to 50% of hospitalized patients with lower respiratory tract illnesses (LRIs) have no aetiological agent detected. Between 25% and 50% of children hospitalized with LRI have no aetiological agent detected. Some of these undiagnosed

<table>
<thead>
<tr>
<th>TABLE 1 Pathogens associated with acute respiratory illness (ARI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral agents</td>
</tr>
<tr>
<td>Adenoviruses</td>
</tr>
<tr>
<td>Coronaviruses including SARS CoV</td>
</tr>
<tr>
<td>Enteroviruses</td>
</tr>
<tr>
<td>Human bocavirus</td>
</tr>
<tr>
<td>Human metapneumovirus</td>
</tr>
<tr>
<td>Human parainfluenza viruses 1–4</td>
</tr>
<tr>
<td>Influenza virus A and B (Flu A and B)</td>
</tr>
<tr>
<td>Respiratory Syncytial Virus (RSV)</td>
</tr>
<tr>
<td>Rhinoviruses</td>
</tr>
<tr>
<td>Bacterial agents</td>
</tr>
<tr>
<td>S. pneumonia, H. influenza, M. pneumonia, Chlamydia, etc.</td>
</tr>
<tr>
<td>Gram negatives, M. tuberculosis, Legionella species, other</td>
</tr>
<tr>
<td>Unknown pathogens</td>
</tr>
</tbody>
</table>
illnesses may be caused by as yet unknown pathogens and others by known pathogens but existing methods are either not sufficiently specific or not sufficiently sensitive to confirm the diagnosis. For example, detecting *Streptococcus pneumoniae* infection in the upper respiratory tract is not sufficiently specific to confirm it as the aetiology of pneumonia (Butler et al 2003). RSV infection is difficult to diagnose in adults because the assays traditionally used to detect infection are not sufficiently sensitive. In a study by Falsey et al (Table 2), most RSV infections (about 75%), diagnosed serologically with acute- and convalescent-phase serum specimens, are detected with a sensitive, nested PCR assay but only about one-third by virus isolation (Falsey et al 2002). Sensitive PCR assays can also improve our ability to detect viral respiratory infections in children as illustrated in a study by Weinberg et al (2004) (Fig. 1).

Novel viruses have been detected in illnesses of unknown aetiology, including ARIs, through various combinations of traditional and newer molecular methods.

TABLE 2 Detection of RSV in 1112 elderly patients

<table>
<thead>
<tr>
<th>Serology</th>
<th>Number</th>
<th>PCR+*</th>
<th>Isolation +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>104 (9.4%)</td>
<td>74 (6.7%)</td>
<td>37 (3.3%)</td>
</tr>
<tr>
<td>Negative</td>
<td>1008 (90.6%)</td>
<td>13 (1.1%)**</td>
<td>6 (0.5%)</td>
</tr>
</tbody>
</table>

* Nested PCR assay.
** 6/13 were isolation +.

Note: 117+ (serology detected 89%; PCR 74%; isolation 37%).
Adapted from Falsey et al (2002).

![Graph showing detection of respiratory pathogens: sensitive PCR versus isolation or antigen detection](image)

FIG. 1. Detection of respiratory pathogens: sensitive PCR versus isolation of antigen detection. Adapted from Weinberg et al (2004).