Foundations of Intensional Semantics

Chris Fox and Shalom Lappin
Foundations of Intensional Semantics
Foundations of Intensional Semantics

Chris Fox and Shalom Lappin

Blackwell Publishing
For my parents

לאברהם בןليفון הומאיר אום חי
Contents

Preface xi
List of Abbreviations xv

1 Introduction 1
 1.1 Montague’s Intensional Logic 4
 1.2 Architectural Features of IL 7
 1.3 Structure of the Book 9

2 Alternative Approaches to Fine-Grained Intensionality 13
 2.1 An Algebraic Representation of Possible Worlds Semantics 13
 2.2 Two Strategies for Hyperintensionalism 19
 2.3 Thomason’s Intentional Logic 23
 2.4 Bealer’s Intensional Logic 25
 2.5 Structured Meanings and Interpreted Logical Forms 28
 2.6 Landman’s Data Semantics 30
 2.7 Situation Semantics and Infon Algebras 31
 2.8 Situations as Partial Models 33
 2.9 Topos Semantics 34
 2.10 Conclusion 37
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Intensions as Primitives</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>3.1 A Simple Intensional Theory</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>3.2 Types and Sorts</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>3.3 Abstraction and Application</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3.4 PT: An Untyped Theory</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>3.5 Intensionality in FIL and PTCT</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>3.6 Conclusion</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>A Higher-Order, Fine-Grained Intensional Logic</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>4.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>4.2 Fine-Grained Intensional Logic</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>4.3 A Semantics for FIL</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>4.4 Conclusion</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Property Theory with Curry Typing</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>5.1 PTCT: A Curry-Typed Theory</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5.2 PTCT: Syntax of the Basic Theory</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>5.3 A Proof Theory for PTCT</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>5.4 Example Proof</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>5.5 Extending the Type System</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>5.6 Intensional Identity vs. Extensional Equivalence</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>5.7 A Model Theory for PTCT</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>5.8 Types and Properties</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>5.9 Separation Types and Internal Type Judgements</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>5.10 Truth as a Type</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>5.11 Conclusion</td>
<td>108</td>
</tr>
<tr>
<td>6</td>
<td>Number Theory and Cardinality</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>6.1 Proportional Cardinality Quantifiers</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>6.2 Peano Arithmetic</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>6.3 Number Theory in FIL</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>6.4 Proportional Generalized Quantifiers in FIL</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>6.5 Number Theory in PTCT</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>6.6 Proportional Generalized Quantifiers in PTCT</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>6.7 Presburger Arithmetic</td>
<td>119</td>
</tr>
</tbody>
</table>
6.8 Presburger Arithmetic in PTCT 120
6.9 Conclusion 121

7 Anaphora and Ellipsis 123
7.1 A Type-Theoretical Approach to Anaphora 124
7.2 Ellipsis in PTCT 127
7.3 Comparison with Other Type-Theoretical Approaches 130
7.4 Conclusion 133

8 Underspecified Interpretations 134
8.1 Underspecified Representations 135
8.2 Comparison with Other Theories 144
8.3 Conclusion 148

9 Expressive Power and Formal Strength 150
9.1 Decidability and Completeness 150
9.2 Arguments for Higher-Order Theories 152
9.3 Arguments against Higher-Order Theories 153
9.4 Self-application, Stratification and Impredicativity 155
9.5 First-Order Status and Finite Cardinality 156
9.6 Relevance of PTCT to Computational Semantics 161
9.7 Conclusion 161

10 Conclusion 163
10.1 Montague Semantics and the Architecture of Semantic Theory 163
10.2 Algebraic Semantics and Fine-Grained Alternatives to MS 164
10.3 A Conservative Revision of MS 165
10.4 Enriching Property Theory with Curry Typing 166
10.5 An Intensional Number Theory 167
10.6 A Dynamic Type-Theoretic Account of Anaphora and Ellipsis 168
10.7 Underspecified Interpretations as \(\lambda \)-Terms of the Representation Language 169
10.8 PTCT and Computational Semantics: Directions for Future Work 170

BIBLIOGRAPHY 172

AUTHOR INDEX 181

SUBJECT INDEX 183
We began working on this book in 2000 in order to address several issues in the foundations of intensional logic and computational semantics that we felt had been neglected for too long in these fields. Both of us had been thinking along parallel lines within different formal frameworks, and we wanted to explore the possibility of combining our respective approaches into a unified theory. In the course of writing the book, our ideas evolved considerably under pressure of joint research and helpful critical responses from colleagues. What we had originally envisaged as a one-or two-year project turned into a four-and-a-half-year odyssey through some of the most complex and recalcitrant problems in type theory and intensional semantics of natural language. We discovered that these problems are far more difficult than we had originally appreciated, and we came to understand why much of the field preferred to set them aside in favour of more tractable and empirically accessible questions.

We cannot claim that this book provides definitive solutions to the foundational questions that we set out to deal with, and, in many ways, the proposals that we present in this monograph represent work in progress. However, we do think that the theory of intensional semantics that we develop in this study offers a promising framework for a computationally viable semantic
representation language, and we hope that this study will stim-
ulate further work on the issues that we take up. Above all, we
have learned a great deal about the nature of the problems that
we address and the range of possible solutions to them. Our joint
work has significantly enriched our understanding of the role of
foundational issues in the development of an adequate semantic
theory.

Earlier versions of the ideas discussed in this book were pre-
sented at Logical Aspects of Computational Linguistics 2001, (Le
Crosic), Sinn und Bedeutung 2001 (Osnabrück), Seventh Inter-
national Workshop on Natural Language Understanding and
Logic Programming 2002 (Copenhagen), Seventh Symposium
for Logic and Language 2002 (Pécs), Représentation du Sens
2003 (Montreal), Fields Workshop on Mathematical Linguistics
2003 (Ottawa), Logical Foundations of Computational Linguis-
tics Workshop at Logic in Computer Science 2003 (Ottawa), Re-
cent Advances in Natural Language Processing 2003 (Borovets),
the Workshop on Lambda Calculus, Type Theory, and Natural
Language (King’s College, London) 2003, the Cognitive Science
Colloquium, University of Osnabrück 2004, the Artificial Intelli-
gence Colloquium of the Computer Science Department, Harvard
University 2004, the Human Communication Research Centre
Colloquium of the University of Edinburgh 2004, Strategies of
Quantification 2004 (York), and the Eighth Symposium on Logic
and Language 2004 (Debrecen). We are grateful to the participants
of these forums for helpful discussion.

We would also like to thank Peter Aczel, Danny Bobrow, Robin
Cooper, Cleo Condoravdi, Dick Crouch, Jan van Eijck, Nissim
Francez, Dov Gabbay, Paul Gilmore, Jonathan Ginzburg, Howard
Gregory, Ron Kaplan, Lauri Karttunen, Graham Katz, Ed Keenan,
Kai-Uwe Kühnberger, Michael Kolhase, Jim Lambek, Peter Laser-
sohn, Tom Maibaum, Valeria Paiva, Gerald Penn, Ian Pratt-Hart-
mann, Steve Pulman, Michael Rabin, Dana Scott, Phil Scott,
Kenneth Shan, Stuart Shieber, Mark Steedman, and Yoad Win-
ter for helpful advice on a number of significant formal issues.

The second author used an earlier draft of this monograph
as the main text of his MSc course in Advanced Computational
Semantics for the Spring Semester of 2004, in the Department
of Computer Science at King’s College, London. The students in this course identified numerous mistakes in the book, and they offered many helpful suggestions for improving it. We are particularly indebted to Robert Schubert for careful, detailed and constructive comments on our proposed proof and model theories, and Christian Ebert, for his meticulous proof-reading and helpful feedback. We would also like to thank Adam Wyner for useful ideas on how to structure the book and for indicating ways in which we could render our formal concerns more accessible.

The chapter on a fine-grained higher-order intensional logic developed out of joint work with Carl Pollard. He has played an important role in shaping our ideas on general issues of intensionality and type theory, and we would like to thank him for his contribution to our work. We are also indebted to Ray Turner for reviewing the technical details presented in Chapters on Property Theory with Curry Typing, and for giving us insights into the issues of formal power and consistency. Needless to say, we bear sole responsibility for any errors that may remain in the book.

Finally, we owe a debt of gratitude to our respective families. Our wives and children have shown good-natured patience in the face of frequent joint working days in our homes, extended telephone calls at all hours of the day and night, ongoing email exchanges, and conference absences. They have even had to suffer our occasional jam sessions on guitar during breaks from our work. We have reluctantly accepted their urgent plea to put the band on hold and keep our day jobs. It seems that The Good Intensions will not be producing a hit record any time soon, but we do hope to implement components of our system in the near future.

The research of the second author has been supported by grant number AN/2687/APN from the Arts and Humanities Research Board of the UK, and grant number RES–000–23–0065 from the Economic and Social Research Council of the UK.

Chris Fox and Shalom Lappin
Wivenhoe and London
List of Abbreviations

ACE antecedent contained ellipsis
BNF Backus–Naur Form
CCC Closed Cartesian Category
CG Categorial Grammar
DRT Discourse Representation Theory
FIL Fine-grained Intensional Logic
GQ Generalized Quantifier
HOU higher-order unification
HPSG Head-Driven Phrase Structure Grammar
IHOL intensional higher-order logic
IL intensional logic
ILF interpreted logical form
ITT intensional theory of types
LF Logical Form
MLTT Martin-Löf Type Theory
MS Montague Semantics
NP noun phrase
PLU Logic Unplugged
PT Property Theory
PTCT Property Theory with Curry Typing
STT Simple Theory of Types
UF ultra filter
UT Universal Type
UTIL Untyped Intensional Logic
VP verb phrase
The past 30 years have seen a vast expansion of research in formal and computational semantics of natural language. Much of this work has consisted in applications, extensions, and revisions of Montague’s (1974) model of intensional semantics. This model has provided a remarkably enduring and effective framework for developing analyses of complex properties of natural language interpretation. It remains one of the most rigorously specified, elegant theories of meaning yet formulated. However, it suffers from a number of formal and empirical limitations, and the recognition of these shortcomings has provoked fruitful investigations of alternative approaches to Montague Semantics (MS). In most cases, these alternatives have been developed to address a particular set of problems with MS. They generally focus only on those aspects of the theory that prevent it from accommodating the phenomena with which they are concerned, while bypassing a systematic re-evaluation of its general architecture and foundational assumptions.¹

Two important post-MS approaches that have played a prominent role in shaping research in semantic theory during the past

¹ See Dowty et al. (1981) for a classic introduction to MS. See Lappin (2000b) and Lappin (2003) for discussion of the three post-MS approaches to semantic theory sketched here.
two decades are dynamic semantics (Chierchia 1995; Groenendijk and Stokhof 1990, 1991; Heim 1982; Kamp 1981; Kamp and Reyle 1993) and situation semantics (Barwise and Etchemendy 1990; Barwise and Perry 1983; Cooper 1996; Seligman and Moss 1997). Dynamic semantics is devoted to modelling evolving relations of anaphora that emerge in discourse, between pronouns and certain types of definite descriptions, and their noun phrase antecedents. MS specifies the interpretations of sentences statically and in isolation. Therefore, it cannot handle the dynamic intersentential anaphora of discourse. Dynamic semantic theories propose representation languages that capture anaphoric dependencies exhibited in discourse sequences such as A student arrived, He entered the class, and in the donkey sentence Every man who owns a donkey beats it, where these dependencies are beyond the expressive resources of MS.

Situation semantics is concerned with the fact that MS represents the meaning of an expression in terms of its denotation in a possible world. MS uses an entire world, corresponding to a fully specified set of elementary facts, as a parameter for characterizing meaning. This creates difficulties for adequate analyses of reference, definite descriptions, and quantified NPs. Situation semanticists argue that these problems can be overcome if one substitutes situations (partial worlds) for worlds as the primary parameter relative to which the denotation of a term and the truth-value of a proposition are determined. Situations are fragments of worlds, and they provide a device for formally representing the contribution of contextual parameters to interpretation. So, for example, a definite description like the book does not have a unique denotation in most possible worlds, and certainly not in the actual world. However, it can be used to refer uniquely in an appropriately specified situation. Similarly, Every student handed in a good paper is false in the actual world, but true for an intended situation.

A third important trend in post-MS semantics is the move to underspecified semantic representations which leave the relative scope relations of quantified NPs and other scope-defining expressions (quantificational adverbs and adjectives, and negation) undefined in the interpretation of a sentence (Blackburn
and Bos 2005; Bos 1995; Copestake et al. 1997; Crouch and van Genabith 1999; Dalrymple et al. 1999; Reyle 1993). The sentence *Every student wrote three programs for two courses* allows six possible scope readings corresponding to the six possible distinct linear orderings of its three quantified NP arguments. MS adopts the principle of compositionality, which requires that the meaning of an expression E is a function of the meanings of its constituents and the syntactic structure of E. MS takes the relation between syntax and semantics to be a homomorphism that maps all the elements of a syntactic category to the same semantic type. This entails that a sentence with six possible scope readings is ambiguous between six syntactic structures, each of which yields a representation with a distinct ordering of quantifiers. This approach generates spurious syntactic ambiguities that are not independently motivated by syntactic factors. If a single underspecified representation is assigned to the sentence, then one syntactic structure is sufficient, and unmotivated ambiguities are avoided. The underspecified representation can be resolved in different ways in order to generate the six scope readings.

While each of these approaches has contributed significant insights into semantic phenomena that MS is not able to capture adequately, none of them offers a systematic alternative to the basic assumptions underlying MS’s notion of intension and its relation to modality. Nor do any of these approaches examine and revise the type theory within which MS encodes its intensional logic. Instead they each construct a task-specific logic that is intended to solve their own particular range of problems.

In this monograph we depart from the strategy of local revision that has driven much of post-MS research, and instead focus on the major design choices of the MS framework. We pursue two main objectives. First, we are concerned to show that it is necessary to characterize intensions independently of modality and treat them as basic elements of one’s model theory in order to avoid the unattractive consequences of MS’s reduction of intensional identity to logical equivalence. These consequences continue to infect most post-MS theories. Second, we intend to demonstrate that by adopting a radically revised type theory,