CONTENTS

PREFACE ix
CONTRIBUTORS xi
CONVERSION TABLE xv

PART I INTRODUCTION 1

1 Chemical Engineering in the Pharmaceutical Industry: An Introduction 3
 David J. am Ende

2 Current Challenges and Opportunities in the Pharmaceutical Industry 21
 Joseph L. Kakura and Michael Paul Thien

3 Chemical Engineering Principles in Biologics: Unique Challenges and Applications 29
 Sourav Kundu, Vivek Bhatnagar, Naveen Pathak, and Cenk Undey

4 Designing a Sustainable Pharmaceutical Industry: The Role of Chemical Engineers 57
 Concepción Jiménez-González, Celia S. Ponder, Robert E. Hannah, and James R. Hagan

5 Scientific Opportunities Through Quality by Design 67
 Timothy J. Watson and Roger Nosal

PART II ACTIVE PHARMACEUTICAL INGREDIENT (API) 71

6 The Role of Chemical Engineering in Pharmaceutical API Process R&D 73
 Edward L. Paul

7 Reaction Kinetics and Characterization 79
 Utpal K. Singh and Charles J. Orella
CONTENTS

8 Understanding Rate Processes in Catalytic Hydrogenation Reactions
Yongkui Sun and Carl LeBlond 101

9 Characterization and First Principles Prediction of API Reaction Systems
Joe Hannon 113

10 Modeling, Optimization, and Applications of Kinetic Mechanisms with OpenChem
John E. Tolsma, Brian Simpson, Taeshin Park, and Jason Mustakis 137

11 Process Safety and Reaction Hazard Assessment
Wim Dermaut 155

12 Design of Distillation and Extraction Operations
Eric M. Cordi 183

13 Crystallization Design and Scale-Up
Robert Rahn McKeown, James T. Wertman, and Philip C. Dell’Orco 213

14 Scale-Up of Mixing Processes: A Primer
Francis X. McConville and Stephen B. Kessler 249

15 Stirred Vessels: Computational Modeling of Multiphase Flows and Mixing
Avinash R. Khopkar and Vivek V. Ranade 269

16 Membrane Systems for Pharmaceutical Applications
Dimitrios Zarkadas and Kamalesh K. Sirkar 299

17 Design of Filtration and Drying Operations
Saravanababu Murugesan, Praveen K. Sharma, and Jose E. Tabora 315

18 The Design and Economics of Large-Scale Chromatographic Separations
Firoz D. Antia 347

19 Milling Operations in the Pharmaceutical Industry
Kevin D. Seibert, Paul C. Collins, and Elizabeth Fisher 365

20 Process Scale-Up and Assessment
Alan D. Braem, Jason T. Sweeney, and Jean W. Tom 379

21 Scale-Up Dos and Don’ts
Francis X. McConville 407

22 Kilo Lab and Pilot Plant Manufacturing
Jason C. Hamm, Melanie M. Miller, Thomas Ramsey, Richard L. Schild, Andrew Stewart, and Jean W. Tom 417

23 Process Development and Case Studies of Continuous Reactor Systems for Production of API and Pharmaceutical Intermediates
Thomas L. LaPorte, Chenchi Wang, and G. Scott Jones 437

24 Drug Solubility and Reaction Thermodynamics
Karin Wichmann and Andreas Klant 457
25 Thermodynamics and Relative Solubility Prediction of Polymorphic Systems
Yuriy A. Abramov and Klimentina Pencheva

26 Toward a Rational Solvent Selection for Conformational Polymorph Screening
Yuriy A. Abramov, Mark Zell, and Joseph F. Krzyzaniak

27 Molecular Thermodynamics for Pharmaceutical Process Modeling and Simulation
Chau-Chyun Chen

28 The Role of Simulation and Scheduling Tools in the Development and Manufacturing of Active Pharmaceutical Ingredients
Demetri Petrides, Alexandros Koulouris, Charles Siletti, José O. Jiménez, and Pericles T. Lagonikos

PART III ANALYTICAL METHODS AND APPLIED STATISTICS

29 Quality by Design for Analytical Methods
Timothy W. Graul, Kimber L. Barnett, Simon J. Bale, Imogen Gill, and Melissa Hanna-Brown

30 Analytical Chemistry for API Process Engineering
Matthew L. Jorgensen

31 Quantitative Applications of NMR Spectroscopy
Brian L. Marquez and R. Thomas Williamson

32 Experimental Design for Pharmaceutical Development
Gregory S. Steeno

33 Multivariate Analysis for Pharmaceutical Development
Frederick H. Long

PART IV DRUG PRODUCTS

34 Process Modeling Techniques and Applications for Solid Oral Drug Products
Mary T. am Ende, Rahul Bharadwaj, Salvador García-Muñoz, William Ketterhagen, Andrew Prpich, and Pankaj Doshi

35 Process Design and Development for Novel Pharmaceutical Dosage Forms
Leah Appel, Joshua Shockey, Matthew Shaffer, and Jennifer Chu

36 Design of Solid Dosage Formulations
Kevin J. Bittorf, Tapan Sanghvi, and Jeffrey P. Katstra

37 Controlled Release Technology and Design of Oral Controlled Release Dosage Forms
Avinash G. Thombre, Mary T. am Ende, and Xiao Yu (Shirley) Wu

38 Design and Scale-Up of Dry Granulation Processes
Omar L. Sprockel and Howard J. Stamato

39 Wet Granulation Processes
Karen P. Hapgood and James D. Litster
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors/Editors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Spray Atomization Modeling for Tablet Film Coating Processes</td>
<td>Alberto Aliseda, Alfred Berchielli, Pankaj Doshi, and Juan C. Lasheras</td>
<td>781</td>
</tr>
<tr>
<td>42</td>
<td>Achieving a Hot Melt Extrusion Design Space for the Production of Solid Solutions</td>
<td>Luke Schenck, Gregory M. Troup, Mike Lowinger, Li Li, and Craig McKelvey</td>
<td>819</td>
</tr>
<tr>
<td>43</td>
<td>Continuous Processing in Secondary Production</td>
<td>Martin Warman</td>
<td>837</td>
</tr>
<tr>
<td>44</td>
<td>Pharmaceutical Manufacturing: The Role of Multivariate Analysis in Design Space, Control Strategy, Process Understanding, Troubleshooting, and Optimization</td>
<td>Theodora Kourtı</td>
<td>853</td>
</tr>
</tbody>
</table>

INDEX

879
PREFACE

Chemical Engineering in the Pharmaceutical Industry is unique in many ways to what is traditionally taught in schools of chemical engineering. This book is therefore intended to cover many important concepts and applications of chemical engineering science that are particularly important to the Pharmaceutical Industry. There have been several excellent books written recently on the subjects of process chemistry in the pharmaceutical industry and separately on formulation development, but relatively little has been published specifically with a focus on chemical engineering.

The intention of the book is to highlight the importance and value of chemical engineering to the development and commercialization of pharmaceuticals covering active pharmaceutical ingredient (API) and drug product (DP) as well as analytical methods. It should serve as a resource for practicing chemical engineers as well as for chemists, analysts, technologists, and operations and management team members—all those who partner to bring pharmaceuticals successfully to market. The latter will benefit through an exposure to the mathematical and predictive approach and the broader capabilities of chemical engineers and also by the illustration of chemical engineering science as applied specifically to pharmaceutical problems. This book emphasizes both the need for scientific integration of chemical engineers with synthetic organic chemists within process R&D and the importance of the interface between R&D engineers and manufacturing engineers. The importance of analytical chemists and other scientific disciplines necessary to deliver pharmaceuticals to the market place is also emphasized with chapters dedicated to selected topics.

Although specific workflows for engineers in R&D depend on each company’s specific organization, in general it is clear that, as part of a multidisciplinary team in R&D, chemical engineering practitioners offer value in many ways including API and DP process design, scale-up assessment from laboratory to plant, process modeling, process understanding, and general process development that ultimately reduces cost and ensures safe, robust, and environmentally friendly processes are transferred to manufacturing. How effective the teams leverage each of the various skill sets (i.e., via resource allocation) to arrive at an optimal process depends in part on the roles and responsibilities as determined within each organization and company. In general, it is clear that with increased cost pressures facing the pharmaceutical industry, including R&D and manufacturing, opportunities to leverage the field of chemical engineering science continue to increase. Indeed I have observed a significant increase in chemical engineering emphasis in API process development within Pfizer over the 15 years since I joined the company and especially in the past 5 years.

This book is divided into four main parts:

1. Introduction
2. Active Pharmaceutical Ingredient (API)
3. Analytical Methods and Applied Statistics
4. Drug Product (DP)

The introductory chapters span roles and opportunities for chemical engineering in small-molecule API, biologicals, drug products, as well as environmental sustainability and quality by design (QbD) concepts. The Active Pharmaceutical Ingredient part consists of 23 chapters covering chemical engineering principles applied to pharmaceutical specific unit operations (reaction engineering, crystallization, chromatography, filtration, drying, etc.) as well as pilot plant and scale-up manufacturing assessment chapters, including process safety. Process modeling promises
to have significant payback as more in silico screening enables process design to be performed with fewer resources (for selection process conditions/optimization, solubility, distillation, and extraction design, etc.). Several chapters are devoted to process modeling with emphasis on several of the software tools currently available. The section on drug product includes formulation chapters as well as chapters highlighting unit operations specific to drug product (wet granulation, dry granulation, extrusion, controlled release, and lyophilization). In addition, process modeling within drug product chapter describes the various modeling approaches used to understand and predict performance of powder blending, mixing, tablet presses, tablet coating, and so on. The Analytical Methods and Applied Statistics part describes important topics on chemometrics, statistics, and analytical methods applied toward chemical engineering problems (e.g., material balance, kinetics, design of experiments, or quality by design for analytical methods).

The contributors were encouraged to provide worked out examples—so in most chapters a quantitative example is offered to illustrate key concepts and problem-solving approaches. In this way, the chapters will serve to help others solve similar problems.

There are many people to thank who made this work possible. First, I would like to thank all the contributors of this book. I also would like to thank my colleagues at Pfizer for writing many of the chapters and for my management (past and present) who encouraged and made this effort possible and who continue to encourage the role of chemical engineering in chemical R&D and pharmaceutical sciences.

Special thanks to my family (Mary, Nathan, Noah, and Brianna) for their support during the preparation of this book. Special thanks to Mary, not only for contributing two chapters to this book but also for her assistance in all phases of the project including the cover art. Finally, a special thanks to my parents for their encouragement to pursue chemical engineering in 1983 and their support through my attendance at the University of Iowa and Purdue University.

DAVID J. AMENDE, PH.D.

Chemical R&D
Pfizer, Inc.
Groton, CT
January 2010
CONTRIBUTORS

Yuriy A. Abramov, Pfizer Global Research & Development, Pharmaceutical Sciences, Groton, CT, USA
Alberto Aliseda, Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
David J. am Ende, Chemical R&D, Pfizer, Inc., Groton, CT, USA
Mary T. am Ende, Pharmaceutical Development, Pfizer Global Research & Development, Groton, CT, USA
Firoz D. Antia, Product Development, Palatin Technologies, Inc., Cranbury, NJ, USA
Leah Appel, Green Ridge Consulting, Bend, OR, USA
Simon J. Bale, Pfizer Global Research & Development, Sandwich, Kent, UK
Kimber L. Barnett, Pfizer Global Research & Development, Groton, CT, USA
Alfred Berchielli, Pharmaceutical Development, Pfizer worldwide Research & Development, Groton, CT, USA
Rahul Bharadwaj, Pharmaceutical Development, Pfizer Global Research & Development, Groton, CT, USA
Vivek Bhatnagar, Process Development, Amgen Inc., West Greenwich, RI, USA
Kevin J. Bittorf, Formulation Development, Vertex Pharmaceuticals Inc., Cambridge, MA, USA
Alan D. Braem, Process Research & Development, Bristol-Myers Squibb Co., New Brunswick, NJ, USA
Chau-Chyun Chen, Aspen Technology, Inc., Burlington, MA, USA

Jennifer Chu, Pharmaceutical Sciences, Neurogen Corporation, Branford, CT, USA
Paul C. Collins, Eli Lilly & Co., Indianapolis, IN, USA
Eric M. Cordi, Chemical Research and Development, Pfizer Inc., Groton, CT, USA
Philip C. Dell’Orco, Chemical Development, GlaxoSmithKline, King of Prussia, PA, USA
Wim Dermaut, Process Safety Center, API Small Molecule Development, Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
Pankaj Doshi, Chemical Engineering and Process Division, National Chemical Laboratory, Pune, India
Elizabeth Fisher, Merck & Co., Inc., Rahway, NJ, USA
Salvador García-Muñoz, Pharmaceutical Development, Pfizer Global Research & Development, Groton, CT, USA
Imogen Gill, Pfizer Global Research & Development, Sandwich, Kent, UK
Timothy W. Graul, Pfizer Global Research & Development, Groton, CT, USA
James R. Hagan, GlaxoSmithKline, Sustainability and Environment, 1 Franklin Plaza, Philadelphia, PA, USA
Jason Hamm, Process Research & Development, Bristol-Myers Squibb Co., New Brunswick, NJ, USA
Melissa Hanna-Brown, Pfizer Global Research & Development, Sandwich, Kent, UK
Robert E. Hannah, GlaxoSmithKline, Sustainability and Environment, Philadelphia, PA, USA
Joe Hannon, Scale-up Systems Limited, Dublin, Ireland
Karen P. Hapgood, Department of Chemical Engineering, Monash University, Clayton VIC, Australia
José O. Jiménez, Intelligen, Inc., Amsterdam, The Netherlands
Concepción Jiménez-González, GlaxoSmithKline, Sustainability and Environment, Research Triangle Park, NC, USA
G. Scott Jones, Process Research & Development, Bristol-Myers Squibb Co., New Brunswick, NJ, USA
Matthew L. Jorgensen, Engineering Technologies, Chemical Research & Development, Pfizer Inc., Groton, CT, USA
Jeffrey P. Katstra, Formulation Development, Vertex Pharmaceuticals Inc., Cambridge, MA, USA
Stephen B. Kessler, Impact Technology Development, Lincoln, MA, USA
William Ketterhagen, Pharmaceutical Development, Pfizer Global Research & Development, Groton, CT, USA
Avinash R. Khopkar, Engineering Sciences, Dow Chemical International Private Ltd., Pune, Maharashtra, India
Andreas Klamt, COSMOlogic GmbH & Co. KG, Leverkusen, Germany and Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
Venkat Koganti, Pharmaceutical Development, Pfizer Global Research & Development, Pfizer, Inc., Groton, CT, USA
Alexandros Koulouris, A.T.E.I. of Thessaloniki, Thessaloniki, Greece
Theodora Kourtis, GlaxoSmithKline, Pharma Launch and Global Supply, Global Functions
Joseph F. Krzyzaniak, Pfizer Global Research & Development, Pharmaceutical Sciences, Groton, CT, USA
Joseph L. Kukura, Global Science Technology and Commercialization, Merck & Co., Inc., Rahway, NJ, USA
Sourav Kundu, Process Development, Amgen Inc., West Greenwich, RI, USA
Pericles T. Lagonikos, Merck & Co., Union, NJ, USA
Thomas L. LaPorte, Process Research & Development, Bristol-Myers Squibb Co., New Brunswick, NJ, USA
Juan C. Lasheras, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA, USA
Carl LeBlond, Department of Chemistry, Indiana University of Pennsylvania, Indiana, PA, USA
Li Li, Merck & Co., Inc., West Point, PA, USA
James D. Litster, School of Chemical Engineering and Industrial & Physical Pharmacy, Purdue University, West Lafayette, IN, USA
Frederick H. Long, Spectroscopic Solutions, LLC, Randolph, NJ, USA
Mike Lowinger, Merck & Co., Inc., West Point, PA, USA
Sumit Luthra, Pharmaceutical Development, Pfizer Global Research & Development, Pfizer, Inc., Groton, CT, USA
Brian L. Marquez, Pfizer Global Research & Development, Groton, CT, USA
Francis X. McConville, Impact Technology Development, Lincoln, MA, USA
Craig McKelvey, Merck & Co., Inc., West Point, PA, USA
Robert Rahn McKeown, Chemical Development, GlaxoSmithKline, Research Triangle Park, NC, USA
Melanie Miller, Process Research & Development, Bristol-Myers Squibb Co., New Brunswick, NJ, USA
Saravanababu Murugesan, Process Research & Development, Bristol-Myers Squibb Co, New Brunswick, NJ, USA
Jason Mustakis, Chemical R&D, Pfizer, Inc., Groton, CT, USA
Roger Nosal, Global CMC, Pfizer, Inc., Groton, CT, USA
Taeshin Park, RES Group, Inc., Cambridge, MA, USA
Naveen Pathak, Genzyme, Inc., Framingham, MA.
Edward L. Paul (Retired), Chemical Engineering R&D, Merck & Co., Inc., Rahway, NJ, USA
Klimentina Pencheva, Pfizer Global Research & Development, Pharmaceutical Sciences, Sandwich, Kent, UK
Demetri Petrides, Intelligen, Inc., Scotch Plains, NJ, USA
Michael J. Pikal, Pharmaceutics, School of Pharmacy, University of Connecticut, Storrs, CT, USA
Celia S. Ponder, GlaxoSmithKline, Sustainability and Environment, Research Triangle Park, NC, USA
Andrew Prpich, Pharmaceutical Development, Pfizer Global Research & Development, Groton, CT, USA
CONVERSION TABLE

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Equivalent Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>1 m</td>
<td>100 cm = 1000 mm = 10^6 μm = 10^10 Å</td>
</tr>
<tr>
<td></td>
<td>= 39.37 in = 3.2808 ft = 1.0936 yards</td>
</tr>
<tr>
<td></td>
<td>= 0.0006214 mile</td>
</tr>
<tr>
<td>1 ft</td>
<td>= 12 in = 0.3048 m = 1/3 yard = 30.48 cm</td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>1 m^2</td>
<td>= 10.76 ft^2 = 1550 in^2 = 10,000 cm^2</td>
</tr>
<tr>
<td></td>
<td>= 6.4516 cm^2 = 645.16 mm^2 = 0.00694 ft^2</td>
</tr>
<tr>
<td></td>
<td>= 929.03 cm^2 = 0.092903 m^2</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>1 m^3</td>
<td>= 1000 L = 10^6 cm^3 (mL) = 1000 dm^3</td>
</tr>
<tr>
<td></td>
<td>= 35.3145 ft^3 = 220.83 imperial gallons</td>
</tr>
<tr>
<td></td>
<td>= 264.17 gal (U.S.)</td>
</tr>
<tr>
<td>1 ft^3</td>
<td>= 1728 in^3 = 7.4805 U.S. gallons</td>
</tr>
<tr>
<td></td>
<td>= 0.028317 m^3 = 28.317 L</td>
</tr>
<tr>
<td>1 gal (U.S.)</td>
<td>= 3.785 L = 0.1337 ft^3 = 231 in^3</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>1 kg</td>
<td>= 1000 g = 0.001 metric ton (MT)</td>
</tr>
<tr>
<td></td>
<td>= 2.20462 lbm = 35.27392 oz</td>
</tr>
<tr>
<td>1 lbm</td>
<td>= 16 oz = 453.593 g = 0.453593 kg</td>
</tr>
<tr>
<td>1 MT</td>
<td>= 1000 kg = 2204.6 lbm</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
</tr>
<tr>
<td>1 atm</td>
<td>= 1.01325 bar = 1.01325 × 10^5 N/m^2 (Pa)</td>
</tr>
<tr>
<td></td>
<td>= 101.325 kPa = 1.01325 × 10^6 dynes/cm^2</td>
</tr>
<tr>
<td></td>
<td>= 760 mmHg @ 0 °C (Torr)</td>
</tr>
<tr>
<td></td>
<td>= 10.333 m H₂O @ 4 °C</td>
</tr>
<tr>
<td></td>
<td>= 14.696 lb/in^2 (psi) = 33.9 ft H₂O @ 4 °C</td>
</tr>
<tr>
<td></td>
<td>= 2116 lb/ft^2</td>
</tr>
<tr>
<td></td>
<td>= 29.921 in Hg @ 0 °C</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>= 5/9 (°F–32)</td>
</tr>
<tr>
<td>°F</td>
<td>= (9/5)°C + 32</td>
</tr>
<tr>
<td>K</td>
<td>= °C + 273.15 = 5/9 °R</td>
</tr>
<tr>
<td>°R</td>
<td>= °F + 459.67</td>
</tr>
<tr>
<td>Density</td>
<td></td>
</tr>
<tr>
<td>1 g/cm^3</td>
<td>= kg/L = 62.4 lbm/ft^3</td>
</tr>
<tr>
<td>1 lbm/ft^3</td>
<td>= 16.0185 kg/m^3 = 0.01602 g/cm^3</td>
</tr>
</tbody>
</table>

Force

1 N = 1 kg-m/s^2 = 10^5 dynes = 10^3 g-cm/s^2

= 0.22481 lbf

1 lbf = 32.174 lbm-ft/s^2 = 4.4482 N

= 4.4482 × 10^2 dynes

Energy

Based on conventional thermochemical definitions of calorie and Btu,

1 J = 1 N·m = 0.23901 cal = 10^7 ergs

= 10^7 dyne cm

1 J = 2.778 × 10^-7 kW·h = 0.7376 ft-lbf

= 0.00094845 Btu

1 cal = 4.184 J (exact)

1 Btu = 1054.35 J = 1.054 kJ = 251.995 cal

= 0.2930 W·h = 10.406 L-atm

1 kW·h = 3.6 MJ

Heat generation

1 Btu/lbm-h = 0.64612 W/kg

Heat transfer coefficient

1 W/(m^2 K) = 0.1761 Btu/(h-ft^2 °F)

1 Btu/(h-ft^2 °F) = 5.678 W/(m^2 K)

= 4.886 kcal/(h-m^2 °C)

Latent heat

1 Btu/lbm = 2.326 kJ/kg

1 J/g = 0.23901 cal/g

Power

1 W = 1 J/s = 1 kg-m^2/s^3 = 1 Nm/s

= 0.23901 cal/s

= 0.7376 ft-lbf/s = 0.0009486 Btu/s

= 3.414 Btu/h = 0.001341 hp

Power/volume

1 W/L = kW/m^3 = 0.03798 hp/ft^3

= 96.67 Btu/h-ft^2

= 12.9235 Btu/h-gal

Specific heat

1 kJ/(kg-K) = J/(g·K) = 0.2389 kcal/(kg °C)

= 0.2389 Btu/(lbm·°F)

1 Btu/(lbm °F) = 1 cal/(g °C)
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Equivalent Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity</td>
<td>1 Btu/(h-ft °F) = 1.7307 W/(m-K)</td>
</tr>
<tr>
<td></td>
<td>= 0.00413 cal/(s cm-K)</td>
</tr>
<tr>
<td></td>
<td>1 W/(m-K) = 0.5779 Btu/(h-ft °F)</td>
</tr>
<tr>
<td></td>
<td>= 0.85984 kcal/(h-m °C)</td>
</tr>
<tr>
<td>Throughput</td>
<td>1 year = 365 days = 8760 h = 5.256 × 10^5 min</td>
</tr>
<tr>
<td></td>
<td>1 kg/h = 16.67 g/min = 24 kg/day</td>
</tr>
<tr>
<td></td>
<td>= 8760 kg/year = 8.76 MT/year</td>
</tr>
<tr>
<td></td>
<td>10 MT/year = 10,000 kg/year = 27.4 kg/day</td>
</tr>
<tr>
<td></td>
<td>= 1.14 kg/h = 19.03 g/min</td>
</tr>
<tr>
<td></td>
<td>1 Billion tablets/year = 2.74 × 10^9 tablets/day</td>
</tr>
<tr>
<td></td>
<td>= 114,155 tablets/h = 31.7 tablets/s</td>
</tr>
<tr>
<td></td>
<td>10 MT API/year = 10,000 kg API/year</td>
</tr>
<tr>
<td></td>
<td>formulated as a 10 mg dose API/tablet</td>
</tr>
<tr>
<td></td>
<td>= 1.0 Billion tablets/year</td>
</tr>
<tr>
<td>Diffusivity</td>
<td>1 m²/s = 10.76 ft²/s = 38749 ft²/h</td>
</tr>
<tr>
<td></td>
<td>1 ft²/s = 929.03 cm²/s = 0.092903 m²/s</td>
</tr>
<tr>
<td>Viscosity</td>
<td>1 centipose (cp) = 0.01 poise = 0.01 g/(cm-s)</td>
</tr>
<tr>
<td></td>
<td>= 0.001 N-s/m² (Pa-s)</td>
</tr>
<tr>
<td></td>
<td>= 3.6 kg/(m-h) = 0.001 kg/(m-s)</td>
</tr>
<tr>
<td></td>
<td>= 2.419 lb-ft/(ft-h)</td>
</tr>
<tr>
<td></td>
<td>1 centistoke (cs) = 1 × 10⁻⁶ m²/s = 0.01 stoke</td>
</tr>
<tr>
<td></td>
<td>= 0.0036 m²/h = 0.0388 ft²/h</td>
</tr>
<tr>
<td>Gas constant R</td>
<td>8.31451 J/(mol-K) = 1.987 cal/(mol-K)</td>
</tr>
<tr>
<td></td>
<td>= 1.987 Btu/(lb-mol °R)</td>
</tr>
<tr>
<td></td>
<td>0.0820578 L-atm/(mol-K) = 82.057 atm-cm³/(mol-K)</td>
</tr>
<tr>
<td></td>
<td>= 10.73 psi-ft³/(lb-mol °R)</td>
</tr>
<tr>
<td>Gravitational force</td>
<td>g = 9.8066 m/s² = 32.174 ft/s²</td>
</tr>
</tbody>
</table>
PART I

INTRODUCTION
Although recently several excellent books have been published geared toward process chemistry [1–3] or formulation development in the pharmaceutical industry [4], relatively little has been published specifically with a chemical engineering (ChE) focus. This book, therefore, is about chemical engineering applied to the process research, development, and manufacture of pharmaceuticals. Across the pharmaceutical industry, chemical engineers are employed in R&D through to full-scale manufacturing in technical and management capacities. The following chapters provide an emphasis on the application of chemical engineering science to process development and scale-up for active pharmaceutical ingredients (APIs), drug products (DPs), and biologicals including sections on analytical methods and computational methods. This chapter briefly highlights a few industry facts and figures, in addition to some of the challenges facing the industry, and touches on how ChE can contribute to addressing those challenges. Chapter 2 by Kukura and Thien provides further perspective on the challenges and opportunities in the pharmaceutical industry and the role of chemical engineering.

In general, pharmaceuticals are drug delivery systems in which drug-containing products are designed and manufactured to deliver precise therapeutic responses [5]. The drug is considered the “active,” that is, active pharmaceutical ingredient, whereas the formulated final drug is simply referred to as the drug product.

In the United States, federal and state laws exist to control the manufacture and distribution of pharmaceuticals. Specifically, the Food and Drug Administration (FDA) exists by the mandate of the U.S. Congress with the Food, Drug & Cosmetics Act as the principal law to enforce and constitutes the basis of the drug approval process [6]. Specifically in the United States, “The FDA is responsible for protecting the public health by assuring the safety, efficacy, and security of human and veterinary drugs, biological products, medical devices, our nation’s food supply, cosmetics, and products that emit radiation. The FDA is also responsible for advancing the public health by helping to speed innovations that make medicines and foods more effective, safer, and more affordable; and helping the public get the accurate, science-based information they need to use medicines and foods to improve their health [7].”

A review of the structure within the FDA and the drug review process can be found in the cited references [8]. In Europe, the European Agency for the Evaluation of Medicinal Products (EMEA) is a decentralized body of the European Union with headquarters in London whose main responsibility is the protection and promotion of public and animal health, through the evaluation and supervision of medicines for human and veterinary use [9].

According to PhRMA statistics, more than 300 new medicines have been approved in the past 10 years that have contributed to increases in life expectancy. For example, since 1980, life expectancy for cancer patients has increased by about 3 years, and 83% of those gains are attributable to new treatments, including medicines. Death rates for cardiovascular disease fell a dramatic 26.4% between 1999 and 2005 [10]. The value of the biopharmaceutical industry to the American economy is substantial. In 2006, the industry employed over 680,000 people with each job indirectly supporting an additional 3.7 jobs. Thus, as an aggregate, the
industry supported 3.2 million jobs in 2006 contributing $88.5 billion in 2006 to the nation’s gross domestic product [11]. In terms of the total value that the pharmaceutical sector outputs (sum of the direct value of goods produced, indirect value of goods and services that support the sector, and economic activity induced by the direct/indirect employees), it is estimated to be over $635 billion for 2006 [12].

As an industry, global pharmaceutical sales have steadily increased over the past decade and are now approaching an $800 billion industry based on 2009 revenues. Despite the slowing growth rate over the past decade (Figure 1.1), sales are still expected to grow at 4–7% per year to approach $975 billion by 2013 [13]. This is due, in part, from emerging market countries (China, Brazil, Russia, Mexico, India, Turkey, South Korea) where sales are expected to grow by 13–16% annually over the next 5 years (IMS Health). Amid the uncertainty in long-term growth, as an industry sector, the pharmaceutical industry still ranks near the top of most profitable industries with approximately 19% return on revenues according to Fortune 500 rankings [14]. The top 15 pharmaceutical companies are listed in Table 1.1 according to IMS Health.

The top 15 global selling drugs are shown in Table 1.2, with Lipitor/atorvastatin topping the list with 2008 global sales of $13.7 billion. The top 15 drugs total nearly $90 billion and comprise approximately 12% of the global market of $724 billion in 2008. Table 1.3 includes some of the top selling small-molecule APIs, including their formulation type and formulation ingredients.

With patent expirations and fewer blockbusters on the horizon, the pharmaceutical industry is undergoing a transformation in part through consolidation of drug portfolios via mergers and acquisitions. At the time of this writing, further consolidation of the list in Table 1.1 includes Pfizer’s acquiring Wyeth and Merck’s acquisition of Schering-Plough in 2009. Patent expirations for branded pharmaceuticals create significant financial exposure to the industry. Specifically, products that generated $137 billion in sales face

TABLE 1.1 Top 15 Pharmaceutical Corporations in 2008 as Listed by IMS Health

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>724,465</td>
<td>673,043</td>
<td>612,013</td>
<td>572,659</td>
<td>530,909</td>
</tr>
<tr>
<td>1</td>
<td>43,363</td>
<td>44,651</td>
<td>45,622</td>
<td>45,869</td>
<td>49,401</td>
</tr>
<tr>
<td>2</td>
<td>36,506</td>
<td>37,951</td>
<td>37,516</td>
<td>32,256</td>
<td>33,231</td>
</tr>
<tr>
<td>3</td>
<td>36,172</td>
<td>34,409</td>
<td>31,560</td>
<td>29,616</td>
<td>26,404</td>
</tr>
<tr>
<td>4</td>
<td>35,642</td>
<td>33,819</td>
<td>31,460</td>
<td>30,953</td>
<td>28,446</td>
</tr>
<tr>
<td>5</td>
<td>32,516</td>
<td>30,107</td>
<td>27,540</td>
<td>24,741</td>
<td>22,526</td>
</tr>
<tr>
<td>6</td>
<td>30,336</td>
<td>27,578</td>
<td>23,354</td>
<td>20,105</td>
<td>16,787</td>
</tr>
<tr>
<td>7</td>
<td>29,425</td>
<td>29,092</td>
<td>27,730</td>
<td>27,190</td>
<td>26,919</td>
</tr>
<tr>
<td>8</td>
<td>29,191</td>
<td>27,294</td>
<td>25,174</td>
<td>23,872</td>
<td>24,334</td>
</tr>
<tr>
<td>9</td>
<td>29,191</td>
<td>27,294</td>
<td>25,174</td>
<td>23,872</td>
<td>24,334</td>
</tr>
<tr>
<td>10</td>
<td>19,466</td>
<td>17,587</td>
<td>16,065</td>
<td>14,849</td>
<td>13,310</td>
</tr>
<tr>
<td>11</td>
<td>19,140</td>
<td>17,386</td>
<td>15,388</td>
<td>14,232</td>
<td>13,042</td>
</tr>
<tr>
<td>12</td>
<td>15,974</td>
<td>16,536</td>
<td>16,270</td>
<td>13,435</td>
<td>10,944</td>
</tr>
<tr>
<td>13</td>
<td>15,682</td>
<td>15,965</td>
<td>14,695</td>
<td>14,469</td>
<td>14,019</td>
</tr>
<tr>
<td>14</td>
<td>15,274</td>
<td>13,547</td>
<td>12,001</td>
<td>10,053</td>
<td>8,675</td>
</tr>
<tr>
<td>15</td>
<td>15,660</td>
<td>14,178</td>
<td>12,553</td>
<td>11,828</td>
<td>11,019</td>
</tr>
</tbody>
</table>

Source: Ref. 15.
Companies in general are broadly looking for ways to reduce costs to offset the exposure of patent expirations, rising generic competition, and current market pressures. The cost of advancing candidates and entire pharmaceutical portfolios in R&D is significant. In 2001, the average cost for an approved medicine was estimated to be $802 million as reported by Tufts Center for the Study of Drug Development. In 2008, the cost of advancing a drug through clinical trials and through FDA approval was estimated to range from $1 billion to $3.5 billion in 2008 dollars [16]. Although these figures clearly depend on the drug type, therapeutic area, and speed of development, the bottom line is that the upfront investments required to reach the market are massive especially when considering the uncertainty whether the upfront investment will pay back.

Given there might be 10 or more years of R&D costs without any revenue generated on a new drug, the gross margins of a successful drug need to cover prior R&D investments as well as cover the continuing marketing and production costs. Figure 1.2 shows the classic cash flow profile for a new drug developed and marketed. First, there is a period of negative cash flow during development. When the drug is approved and launched, only then are revenues generated, and the drug has to be priced high enough to recoup the investment and provide a return on the investment. The net present value (NPV) calculation is one way to assess return on investment; it considers the discounted revenue minus the discounted costs and is computed over the product development and marketing life cycle. These calculations are used to rationalize investment decisions. For example, a minimum threshold product price can be computed for which the NPV calculation hits a desired return on investment target. If this price is sustained by the market, then the investment can be considered viable. A discount rate of 10–12% is generally chosen in the pharmaceutical industry as the rate to which to value products or programs for investment decisions [17]. Patents typically have a validity of 20 years from the earliest application grant date based on applications filed after 1995, so it is in the company’s best interest to ensure that the best patent protection strategy is in place to maximize the length of market exclusivity. Related to this is that patents and intellectual property in general need enforcement on a global basis to ensure fair competition and realize benefit in growth into emerging markets.

In some cases, time of market exclusivity can be extended through new indications, new formulations, devices, and so on, which are themselves patent protected. Once market exclusivity ends, generic competition is introduced, which will erode sales. It should be noted that independent of patent position or patent exclusivity, the FDA grants new drug product exclusivity (also known as Hatchman–Wax exclusivity) with specific periods of exclusivity. For example, the

TABLE 1.2 Top 15 Global Pharmaceutical Products (in 2008)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Brand Name</th>
<th>Compound</th>
<th>Marketer</th>
<th>Indication</th>
<th>2008 Sales ($ Billion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lipitor</td>
<td>Atorvastatin</td>
<td>Pfizer</td>
<td>Hypercholesterolemia</td>
<td>13.655</td>
</tr>
<tr>
<td>2</td>
<td>Plavix</td>
<td>Clopidogrel</td>
<td>Bristol-Myers Squibb</td>
<td>Atherosclerotic events</td>
<td>8.634</td>
</tr>
<tr>
<td>3</td>
<td>Nexium</td>
<td>Esomeprazole</td>
<td>AstraZeneca</td>
<td>Acid reflux disease</td>
<td>7.842</td>
</tr>
<tr>
<td>4</td>
<td>Seretide/Advair</td>
<td>Fluticasone and salmeterol</td>
<td>GlaxoSmithKline</td>
<td>Asthma</td>
<td>7.703</td>
</tr>
<tr>
<td>5</td>
<td>Enbrel</td>
<td>Etanercept</td>
<td>Amgen and Wyeth</td>
<td>Rheumatoid arthritis</td>
<td>5.703</td>
</tr>
<tr>
<td>6</td>
<td>Seroquel</td>
<td>Quetiapine</td>
<td>AstraZeneca</td>
<td>Bipolar, schizophrenia</td>
<td>5.404</td>
</tr>
<tr>
<td>7</td>
<td>Zyprexa</td>
<td>Olanzapine</td>
<td>Eli Lilly & Co.</td>
<td>Schizophrenia</td>
<td>5.023</td>
</tr>
<tr>
<td>8</td>
<td>Remicade</td>
<td>Infliximab</td>
<td>Centocor</td>
<td>Crohn’s disease, rheumatoid arthritis</td>
<td>4.935</td>
</tr>
<tr>
<td>9</td>
<td>Singulair</td>
<td>Montelukast</td>
<td>Merck & Co.</td>
<td>Asthma, allergies</td>
<td>4.673</td>
</tr>
<tr>
<td>10</td>
<td>Lovenox</td>
<td>Enoxaparin</td>
<td>Sanofi-Aventis</td>
<td>Anticoagulant</td>
<td>4.435</td>
</tr>
<tr>
<td>11</td>
<td>MabThera</td>
<td>Rituximab</td>
<td>Roche</td>
<td>Lymphoma</td>
<td>4.321</td>
</tr>
<tr>
<td>12</td>
<td>Takepron/Prevacid</td>
<td>Lansoprazole</td>
<td>Takeda</td>
<td>Antiulcer/gastric proton pump inhibitor</td>
<td>4.321</td>
</tr>
<tr>
<td>13</td>
<td>Effexor</td>
<td>Venlafaxine</td>
<td>Wyeth</td>
<td>Depression</td>
<td>4.263</td>
</tr>
<tr>
<td>14</td>
<td>Humira</td>
<td>Adalimumab</td>
<td>Abbott</td>
<td>Rheumatoid arthritis, Crohn’s disease</td>
<td>4.075</td>
</tr>
<tr>
<td>15</td>
<td>Avastin</td>
<td>Bevacizumab</td>
<td>Genentech/Roche</td>
<td>Metastatic cancers</td>
<td>4.016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure/Name/Company (2008 Sales)</th>
<th>Molecular Weight</th>
<th>Properties</th>
<th>Dosage Form</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free acid: MW 558.64</td>
<td>Calcium salt trihydrate: white to off-white crystalline powder. Freely soluble in methanol, slightly soluble in ethanol, very slightly soluble in acetonitrile, distilled water, and phosphate buffer (pH 7.4), and insoluble in aqueous solutions of pH 4 and below.</td>
<td>Tablets</td>
<td>10, 20, 40, or 80 mg</td>
<td>Lipitor tablets for oral administration contain atorvastatin calcium and the following inactives: calcium carbonate, USP; candelilla wax, FCC; croscarmellose sodium, NF; hydroxypropyl cellulose, NF; lactose monohydrate, NF; magnesium stearate, NF; microcrystalline cellulose, NF; Opadry White YS-1-7040 (hypromellose, polyethylene glycol, talc, titanium dioxide); polysorbate 80, NF; simethicone emulsion.</td>
</tr>
<tr>
<td>Sodium salt: MW 580.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium salt trihydrate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{13}H_{19}FN_{2}O_{5}){2}Ca·3H{2}O, MW 1209.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For the treatment of cardiovascular disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plavix / Clopidogrel				
Free base: C_{16}H_{16}ClNO_{2}S, MW 321.82	Clopidogrel bisulfate is a white to off-white powder. It is practically insoluble in water at neutral pH but freely soluble at pH 1. It also dissolves freely in methanol, dissolves sparingly in methylene chloride, and is practically insoluble in ethyl ether.	Tablets	75 and 300 mg	Each tablet contains clopidogrel bisulfate and the following inactives: hydrogenated castor oil, hydroxypropylcellulose, mannitol, microcrystalline cellulose, and polyethylene glycol 6000. The pink film coating contains ferric oxide, hypromellose 2910, lactose monohydrate, titanium dioxide, and triacetin. The tablets are polished with carnauba wax.
Hydrogen sulfate: C_{16}H_{16}ClNO_{2}S·H_{2}SO_{4}, MW 419.9				
Proton pump inhibitor; for the treatment of acid reflux disease				

Lipitor / Atorvastatin
Pfizer
$12.4 Billion in sales in 2008

Plavix / Clopidogrel
Bristol-Myers Squibb/Sanofi-Aventis
$4.9 Billion BMS + €2.6 Billion S-A
Nexium / Esomeprazole
AstraZeneca
$5.2 Billion in sales

Esomeprazole
Free base: C₁₇H₁₉N₃O₃S,
MW 345.42
Magnesium salt:
C₃₄H₃₆MgN₆O₆S₂,
MW 713.12
Magnesium salt trihydrate:
(C₁₇H₁₈N₃O₃S)₂Mg·3H₂O,
MW 767.2
For the treatment of acid reflux disease
Esomeprazole magnesium trihydrate is a white to slightly colored crystalline powder. The solubility in water is 0.3 mg/mL, and the solubility in methanol is initially high, but followed by precipitation. The pKₐ of the benzimidazole (omeprazole base) is 8.8, and that of the pyridinium ion is 4.0.

Capsules (delayed release)
20 and 40 mg
Sachet
10 mg

Each delayed release capsule contains esomeprazole magnesium trihydrate in the form of enteric-coated granules with the following inactive ingredients: glyceryl monostearate 40–55, hydroxypropyl cellulose, hypromellose, magnesium stearate, methacrylic acid copolymer type C, polysorbate 80, sugar spheres, talc, and triethyl citrate. The capsule shells have the following inactive ingredients: gelatin, FD&C Blue #1, FD&C Red #40, D&C Red #28, titanium dioxide, shellac, ethyl alcohol, isopropyl alcohol, n-butyl alcohol, propylene glycol, sodium hydroxide, polyvinylpyrrolidone, and D&C Yellow #10.

Advair (US)/Seretide (EU)
fluticasone + salmeterol
GlaxoSmithKline
£4.137 Billion in sales

Fluticasone propionate
C₂₅H₃₁F₃O₅S, MW 500.6
Salmeterol xinafoate
C₂₅H₃₇NO₄·C₁₁H₈O₃,
MW 603.8
For the treatment of asthma and chronic obstructive pulmonary disease
Salmeterol xinafoate is white to off-white crystalline powder with a melting point ~123°C. Solubility:
In water ~0.07 mg/mL (pH = 8)
In methanol ~40 mg/mL
In ethanol ~7 mg/mL
In chloroform ~3 mg/mL
In isopropanol ~2 mg/mL
Fluticasone propionate is white to off-white powder. It is freely soluble in DMSO and DMF, sparingly soluble in acetone, dichloromethane, ethyl acetate, and chloroform, slightly soluble in methanol and 95% ethanol, and practically insoluble in water. Fluticasone propionate decomposes without melting.

Dry powder inhaler
50 µg salmeterol with 100, 250, or 500 µg fluticasone propionate/bister
Aerosol
25 µg salmeterol with 50, 125, or 250 µg fluticasone propionate/ metered dose
Dry powder inhaler device containing a foil strip with 28 or 60 regularly placed blisters, each containing salmeterol (as the xinafoate salt) and fluticasone propionate. The inactives include lactose (milk sugar) and milk protein, which acts as the “carrier.” Aerosol comprises a suspension of salmeterol and fluticasone propionate in the propellant HFA-134a (1,1,1,2-tetrafluoroethane). It contains no excipients.

(continued)
<table>
<thead>
<tr>
<th>Structure/Name/Company (2008 Sales)</th>
<th>Molecular Weight</th>
<th>Properties</th>
<th>Dosage Form</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seroquel/Quetiapine
AstraZeneca
$4.452 Billion in sales**</td>
<td>Quetiapine
$C_{21}H_{25}N_3O_2S$
MW 383.51</td>
<td>Quetiapine fumarate is a white to off-white powder. It is only very slightly soluble in ether, slightly soluble in water, and soluble in 0.1 N HCl. Ionization constant: $pK_{a1} = 6.83$ in phosphate buffer at 22°C; $pK_{a2} = 3.32$ in formic buffer at 22°C. Partition coefficient: $\log P = 0.45$ (octanol/water). Melting point: 172.0–174°C.</td>
<td>Immediate release tablet
25, 100, 200, and 300 mg</td>
<td>Seroquel is available in four strengths containing 25, 100, 200, or 300 mg quetiapine per tablet (as quetiapine fumarate). The core of the tablet contains the following excipients: calcium hydrogen phosphate, lactose monohydrate, magnesium stearate, microcrystalline cellulose, povidone, and sodium starch glycolate type A. The coating of the tablet contains hydroxypropyl methylcellulose 2910, polyethylene glycol 400, red ferric oxide (25 mg tablets), titanium dioxide, and yellow ferric oxide (25 and 100 mg tablets).</td>
</tr>
<tr>
<td>Olanzapine
Eli Lilly & Co.
$4.7 Billion in Sales**</td>
<td>Olanzapine
$C_{17}H_{20}N_4S$, MW 312.43</td>
<td>Crystals from acetonitrile, mp 195°C. Practically insoluble in water.</td>
<td>Tablets
2.5, 5, 7.5, 10, 15, and 20 mg
Orally disintegrating tablets
zyprexa zydis 5, 10, 15, and 20 mg
Intramuscular injection
10 mg vial</td>
<td>Tablets: inactive ingredients are carnauba wax, crospovidone, hydroxypropyl cellulose, hypromellose, lactose, magnesium stearate, microcrystalline cellulose, and other inactive ingredients. The color coating contains titanium dioxide (all strengths), FD&C Blue No. 2 aluminum lake (15 mg), or synthetic red iron oxide (20 mg). The 2.5, 5, 7.5, and 10 mg tablets are imprinted with edible ink that contains FD&C Blue No. 2 aluminum lake.</td>
</tr>
</tbody>
</table>
Oral disintegrating tablets also contain the following inactives: gelatin, mannitol, aspartame, sodium methyl paraben, and sodium propyl paraben.

Montelukast sodium is a hygroscopic, optically active, white to off-white powder. Montelukast sodium is freely soluble in ethanol, methanol, and water and practically insoluble in acetonitrile.

Tablet
10 mg
Chewable tablets
4 and 5 mg
Granules
4 mg

For the treatment of asthma

Montelukast
Free acid: C_{35}H_{36}ClNO_3S,
MW 586.18
Montelukast sodium:
C_{35}H_{35}ClNaNO_3S,
MW 608.18

Singulair/montelukast
Merck & Co.
$4.337 Billion in Sales

(continued)
<table>
<thead>
<tr>
<th>Structure/Name/Company (2008 Sales)</th>
<th>Molecular Weight</th>
<th>Properties</th>
<th>Dosage Form</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lansoprazole
Prevacid/Lansoprazole
Takeda / Abbott
$4.321 Billion in Sales (IMS Health)**</td>
<td>C<sub>16</sub>H<sub>14</sub>F<sub>3</sub>N<sub>3</sub>O<sub>2</sub>S, MW 369.36</td>
<td>Lansoprazole is a white to brownish-white odorless, crystalline powder that melts with decomposition at approximately 166°C. Lansoprazole is freely soluble in DMF, slightly soluble in methanol, sparingly soluble in ethanol, slightly soluble in ethyl acetate, dichloromethane, and acetonitrile, very slightly soluble in ether, and practically insoluble in water and hexane. Octanol/water partition coefficient = 240 at pH 7.</td>
<td>Capsules
Delayed release capsules contain enteric-coated granules and are available in two dosage strengths: 15 and 30 mg of lansoprazole per capsule.</td>
<td>In addition to lansoprazole, each delayed release capsule contains the following inactive ingredients: cellulose polymers, colloidal silicon dioxide, D&C Red No. 28, FD&C Blue No. 1, FD&C Green No. 3 (15 mg capsules only), FD&C Red No. 40, gelatin, magnesium carbonate, methacrylic acid copolymer, starch, talc, sugar spheres, sucrose, polyethylene glycol, polysorbate 80, and titanium dioxide. Oral suspension sachets include lansoprazole granules and inactive granules composed of the following ingredients: confectioner’s sugar, mannitol, docusate sodium, ferric oxide, colloidal silicon dioxide, xanthan gum, crospovidone, citric acid, sodium citrate, magnesium stearate, and artificial strawberry flavor.</td>
</tr>
<tr>
<td>Venlafaxine
Effexor/venlafaxine
Wyeth
$3.928 Billion in sales**</td>
<td>C<sub>17</sub>H<sub>27</sub>NO<sub>2</sub>, MW 277.40</td>
<td>Venlafaxine HCl: white to off-white crystalline solid.
Solubility: Water: 540, 542, 501, and 21.6 mg/mL at pH 1.0, 5.38, 7.09 and 7.97, Ethanol: 91.7 mg/mL, Propylene glycol: 200 mg/mL, Glycerin: 115 mg/mL, pK<sub>a</sub> value: 9.4</td>
<td>Capsules
Effexor XR
Hard gelatin capsule 37.5, 75, and 150 mg</td>
<td>Composition: venlafaxine hydrochloride, ethylcellulose, NF; gelatin, NF; hydroxypropyl methylcellulose, USP; iron oxide, NF; microcrystalline cellulose, NF 60; titanium dioxide, USP; White Tek SB-0007 and/or Opacode Red S-1-15034 ink; talc, USP.</td>
</tr>
</tbody>
</table>
Rosuvastatin
C$_{22}$H$_{36}$FN$_3$O$_6$S, MW 481.54
Rosuvastatin calcium salt: white powder from water as the monohydrate; begins to melt at 155°C with no definitive melting point. Slightly soluble in water, methanol and slightly soluble in ethanol.

Tablets
5, 10, 20, and 40 mg

Composition: each tablet contains 5, 10, 20, or 40 mg of rosuvastatin as rosuvastatin calcium. Each tablet also contains the following nonmedicinal ingredients: calcium phosphate, crospovidone, glycerol triacetate, hydroxypropyl methylcellulose, lactose monohydrate, microcrystalline cellulose, magnesium stearate, ferric oxide red, ferric oxide yellow, and titanium dioxide.

Valsartan
C$_{24}$H$_{29}$N$_5$O$_3$, MW 435.52
Valsartan is a white to practically white fine powder. It is soluble in ethanol and methanol and slightly soluble in water. Crystals from diisopropyl ether, mp 116–117°C. Partition coefficient (n-octanol/aqueous phosphate buffer): 0.033. Soluble in water at 25°C.

Tablets
40, 80, 160, or 320 mg

The inactive ingredients of the tablets are colloidal silicon dioxide, crospovidone, hydroxypropyl methylcellulose, iron oxides (yellow, black, and/or red), magnesium stearate, microcrystalline cellulose, polyethylene glycol 8000, and titanium dioxide.

Pioglitazone
C$_{19}$H$_{20}$N$_2$O$_3$S, MW 356.44
Pioglitazone hydrochloride: colorless prisms from ethanol, mp 193–194°C. Soluble in DMF, slightly soluble in ethanol, very slightly soluble in acetone and acetonitrile, practically insoluble in water, and insoluble in ether.

Tablets
15, 30, and 45 mg

Actos is available as a tablet for oral administration containing 15, 30, or 45 mg of pioglitazone (as the base) formulated with the following excipients: lactose monohydrate, NF; hydroxypropylcellulose, NF; carboxymethylcellulose calcium, NF; magnesium stearate, NF.

(continued)
<table>
<thead>
<tr>
<th>Structure/Name/Company (2008 Sales)</th>
<th>Molecular Weight</th>
<th>Properties</th>
<th>Dosage Form</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cozaar (losartan potassium)
Merck & Co.
$3.558 Billion in sales</td>
<td>Losartan
$C_{22}H_{22}ClN_6O$, MW 422.91
Losartan potassium:
$C_{22}H_{22}ClKN_6O$
MW 461.00
For the treatment of hypertension
Losartan potassium is a white to off-white free-flowing crystalline powder. It is freely soluble in water, soluble in alcohols, and slightly soluble in common organic solvents, such as acetonitrile and methyl ethyl ketone.</td>
<td>Tablets
25, 50, or 100 mg</td>
<td>Cozaar contains losartan potassium and the following inactive ingredients: microcrystalline cellulose, lactose hydrous, pregelatinized starch, magnesium stearate, hydroxypropyl cellulose, hypromellose, titanium dioxide, D&C Yellow No. 10 aluminum lake, and FD&C Blue No. 2 aluminum lake.</td>
<td></td>
</tr>
<tr>
<td>Lyrica / pregabalin
Pfizer
$2.6 Billion in sales</td>
<td>Pregabalin
$C_8H_{17}NO_2$, MW 159.23
For the treatment of neurologic pain
Pregabalin is a white crystalline solid. It is soluble in water and in both basic and acidic aqueous solutions.</td>
<td>Capsules
25, 50, 75, 100, 150, 200, 225, and 300 mg</td>
<td>Each capsule of Lyrica contains pregabalin, lactose monohydrate, maize starch, and t alc. The capsule shells contain gelatin and titanium dioxide. In addition, the orange capsule shells contain red iron oxide and the white capsule shells contain sodium lauryl sulfate and colloidal silicon dioxide.</td>
<td></td>
</tr>
</tbody>
</table>