VIRAL ONCOLOGY
Basic Science and Clinical Applications

Edited by

Kamel Khalili, PhD
Department of Neuroscience
Center for Neurovirology
Temple University School of Medicine

Kuan-Teh Jeang, MD, PhD
Molecular Virology Section
National Institutes of Health
VIRAL ONCOLOGY
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Contributors</td>
<td>xiii</td>
</tr>
<tr>
<td>1 HUMAN PAPILLOMAVIRUS-ASSOCIATED CANCERS</td>
<td>1</td>
</tr>
<tr>
<td>Rachel A. Katzenellenbogen and Denise A. Galloway</td>
<td></td>
</tr>
<tr>
<td>2 MOLECULAR EVENTS ASSOCIATED WITH HUMAN PAPILLOMAVIRUS-INDUCED HUMAN CANCERS</td>
<td>23</td>
</tr>
<tr>
<td>Amy Baldwin and Karl Münger</td>
<td></td>
</tr>
<tr>
<td>3 THE ROLE OF THE HUMAN PAPILLOMAVIRUS E6 ONCOPROTEIN IN MALIGNANT PROGRESSION</td>
<td>57</td>
</tr>
<tr>
<td>Miranda Thomas, David Pim, and Lawrence Banks</td>
<td></td>
</tr>
<tr>
<td>4 JC VIRUS ASSOCIATION WITH BRAIN TUMORS: THE ROLE OF T ANTIGEN AND INSULIN-LIKE GROWTH FACTOR 1 IN DNA REPAIR FIDELITY</td>
<td>89</td>
</tr>
<tr>
<td>Krzysztof Reiss, Kamel Khalili, and Luis Del Valle</td>
<td></td>
</tr>
<tr>
<td>5 INVOLVEMENT OF THE POLYOMAVIRUS, JC VIRUS, IN COLORECTAL CANCER</td>
<td>113</td>
</tr>
<tr>
<td>C. Richard Boland, Luigi Ricciardiello, and Ajay Goel</td>
<td></td>
</tr>
<tr>
<td>6 POSSIBLE ASSOCIATION OF BK VIRUS WITH PROSTATE CANCER</td>
<td>129</td>
</tr>
<tr>
<td>Michael J. Imperiale and Dweepanita Das</td>
<td></td>
</tr>
<tr>
<td>7 ONCOGENIC TRANSFORMATION BY POLYOMAVIRUS LARGE T ANTIGEN</td>
<td>149</td>
</tr>
<tr>
<td>Abhilasha V. Rathi and James M. Pipas</td>
<td></td>
</tr>
<tr>
<td>8 SIMIAN VIRUS 40, HUMAN INFECTIONS, AND CANCER: EMERGING CONCEPTS AND CAUSALITY CONSIDERATIONS</td>
<td>165</td>
</tr>
<tr>
<td>Janet S. Butel</td>
<td></td>
</tr>
</tbody>
</table>
Cancer, in its several forms, has been and is one of the most common causes of death and disease in human populations. Primary prevention has been an effective means to decrease the incidence of several cancers. Programs for smoking cessation have lead to dramatic drops in cancer of the lung and other cancers and disease. The removal of carcinogenic toxins (i.e., asbestos) and other measures, such as diet control, have also had a positive effect. Prevention of cancers with antiviral vaccines has now been shown; this book will deal with issues related to the viral etiology of cancers and their prevention and treatment.

There have been significant improvements in treatment in recent decades, particularly of the hematological cancers of the young. However, for many cancers, particularly those with low survival expectations, even very effective treatments may only prolong life for a short time and the side effects of the treatments can decrease the enjoyment of life. Early detection and intervention have been effective for some cancers. The increased survival of patients with cancer of the breast has apparently been due, in large part, to early detection programs. Surveillance for polyps in the colon and rectum and their removal have helped decrease the incidence of clinical disease. However, not all early detection methods are effective. Recent research has questioned the value of screening for cancer of the prostate using prostate-specific antigen (PSA). Unnecessary surgery, radiotherapy, and other treatments may cause damage. Overall, PSA screening and intervention programs may not significantly decrease survival. Routine chest X-ray screening for the detection of early cancer of the lung was abandoned when it did not appear to be of benefit, although recent improvements in imaging may increase the value of surveillance.

It is obvious that preventing a disease is more desirable than becoming sick and then receiving treatment. The recent availability of viral vaccines that prevent cancer could usher in a new phase of effective cancer control. About 15% or more of human cancers are considered to be caused by viruses, and a discussion of these is a major goal of this book. Diseases have several causes, and it is likely that there are other cancers in which viruses have a role in causation, and where prevention of infection may favorably alter outcome.

The discovery of hepatitis B virus (HBV) in our laboratory was reported in 1967. We invented a method for a vaccine in 1969; in 1971 commercial production was being considered, and in 1975 it was agreed. The etiological association of HBV with primary cancer of the liver (hepatocellular carcinoma [HCC]) was postulated in 1969 by Smith and Blumberg and confirmed in the following years by striking epidemiological
evidence (Beasley in 1981, and others) and laboratory studies. HCC is the third most common cause of death from cancer in males and the seventh in females. There are probably about 1 million deaths a year from HCC and other diseases caused by HBV.

Following a convincing field trial of the hepatitis B vaccine by Szmuness and his colleagues (reported in 1980), the vaccine was approved in the early 1980s for use in the United States and later elsewhere. By 1990, universal or directed (to the newborn children of maternal HBV carriers) vaccination programs were in place in a large percentage of the national members of the World Health Organization and by 2005 in more than 75% of the nations. Compliance has, in general, been good, with recent fallback because of antivaccine sentiment in some locations. There has been a dramatic drop in the prevalence of HBV carriers in the vaccinated populations. On logical grounds, it would be expected that a fall in HBV prevalence (HBV is said to be the cause of about 70% of all primary cancers of the liver) would result in a fall in liver cancer incidence. After the vaccine had been in use for more than a decade, this inference was confirmed in a national study in Taiwan (1997) by Chang and colleagues. They found that the incidence of liver cancer had decreased by about two-thirds in the vaccinated cohorts. Soon afterward, Mark Kane, then the director of hepatitis programs at the World Health Organization, noted that vaccine prevention of HCC was one of the two most important cancer control programs along with smoking cessation projects. In less than two decades after the approval of the vaccine, it was in use worldwide and a common and deadly cancer had decreased in incidence.

About 25 years after the introduction of the first cancer prevention vaccine, a second was approved, and vaccination programs were initiated. In 2008, Harald zur Hausen was awarded the Nobel Prize in Medicine for identifying strains of the human papillomavirus (HPV) as the cause of cancer of the cervix of the uterus, and several other cancers. Painstakingly, zur Hausen had identified portions of the genomes of these strains in cancer cervical cancer cells and described the molecular pathogenesis of the cancer. Cancer of the cervix is the second most common cancer in women; worldwide, there are about half a million new cases annually and approximately 260,000 deaths.

In 2006, the U.S. Food and Drug Administration approved a vaccine that, based on a well-designed and well-executed field trial, protected against infection. Vaccination programs began soon afterward, and these are likely to become more widespread as the public health community learns more about the strategies for vaccination and the economics of national and regional vaccination programs.

An additional argument for national vaccination programs is the value of HBV and HPV vaccines in preventing diseases in addition to cancer. HBV vaccine prevents disabling and life-shortening acute and chronic hepatitis. HBV is also involved in the pathogenesis of kidney disease, polyarteritis nodosa, and other diseases that may be decreased by the use of the vaccine. (HBV infection is associated with cancer of the pancreas; the significance of these epidemiological observations requires further study.) HPV is associated with genital warts that can be disabling, as well as with several less common cancers. The use of the vaccines in large populations can be justified not only for the prevention of cancer but also for other more common diseases. HBV- and HPV-related pathologies are among the most common sexually transmitted diseases.
There are about 400 million people who are currently HBV carriers; some of them are at risk of developing chronic liver disease and HCC. Liaw (2004) and others have shown that antiviral treatment for relatively long periods can significantly decrease the risk of disease. This results need to be confirmed and the treatment modes determined in detail, including the problem of antiviral resistance with long usage. They hold promise for the treatment of early cancers with antivirals rather than cancer therapies that destroy normal cells along with cancer cells.

The widespread use of the vaccines has already and will in the future result in a dramatic drop in the prevalence of HBV and the strains of HPV affected by the vaccine. These viruses have affected large proportions of the world’s population for many generations, possibly even before the emergence of Homo sapiens. For HBV, it is known that there are multiple polymorphic susceptibility loci (SNIPS) that affect the probabilities that the viral hosts will become carriers or, alternatively, develop protective antibody (anti-HBs). The implication is that there has been a balance, at a population level, of advantages and disadvantages that have maintained the virus in many populations at a high level. There are also other microbial agents related to HBV in that they are affected by the same susceptibility loci. It will be important to monitor the changes in prevalence of these and other microorganisms in the environment as the vaccines alter these dynamic relations.

The success of the research on viruses and cancer, and in particular, the major contributions of the two cancer prevention vaccines, have revived interest in viral oncology. The publication of this book, the establishment of viral oncology programs in research centers, and the convening numerous conferences are indications of this change. These activities could once more bring virus research to the forefront in the never-ending endeavor to understand how viruses maneuver and negotiate in a complex environment, including the environment of the human host. It should also give urgency to a concerted program to develop vaccines and other interventions that will help prevent additional cancers and decrease their burden on human populations.

Baruch S. Blumberg
Fox Chase Cancer Center
Philadelphia, PA
Oncogenic viruses are the known etiologic agents in 15%–20% of all human cancers. Their impact on global health is significant. The first recognition that cancer can be caused by a virus dates back to observations of Rous sarcoma virus in chickens almost 100 years ago. However, it was not until the 1970s that the mechanistic basis for retroviral transformation became clearer. That era was marked by the discovery of many viral oncogenes and counterpart cellular proto-oncogenes. Additionally, insights into cell growth factors, cell cycle regulation, checkpoints, and their operative protein factors followed rapidly. Today in 2009, there are six well-established human cancer viruses (HBV, HCV, HPV, HTLV, EBV, and KSHV). Besides these six viruses, there is mounting evidence, as presented in many of the chapters in the book, that illustrate a strong association of other viruses, most notably human polyomaviruses, including JCV, BKV, and SV40, with a variety of human cancers.

This book emerged from a desire to provide an up-to-date survey of human oncogenic viruses and their pathogenic properties. The 21 chapters in this book bring together teams of expert authors from all parts of the globe. As the editors, we have been fortunate to personally witness many pivotal advances during our scientific careers. It is therefore fitting that we should assemble these findings to share with a larger audience. Thus, editing this book represents our desire to capture and review current and past exciting discoveries on human viral oncology for colleagues and students.

A few important scientific concepts that are detailed in the various chapters include the epidemiology of human viral-induced cancers, cofactors for viral transformation, the multisteped process of viral transformation, and the common and varying mechanisms used by different types of viruses. Through such mechanistic understanding, we hope that safer and more effective therapeutics and additional effective cancer virus vaccines (such as the one developed for HPV) will ensue in the future. The latter subject areas are not major areas of focus for this volume; however, in future editions, we plan to expand in these directions.

This book will be of interest to graduate students, medical students, and to anyone engaged in the study of oncogenic viruses, their molecular biology, evolution, epidemiology, pathologic potential, and cancer research. It is our hope that this book provides information that helps better understand the pathogenesis of human cancers, particularly those that are associated with viruses, and assists in the development of more customized strategies toward cancer treatment and prevention.
An undertaking such as this book could not be accomplished without the combined efforts of many individuals. We are particularly grateful to the authors who have contributed thoughtfully written chapters, and we are indebted to Thomas H. Moore and Ian Collins at Wiley, and to Sandy Weiss who has provided us with excellent logistics and editorial assistance. The publication of this book is also accompanied by the development of an annual meeting on human oncogenic viruses organized by the International Committee on Viral Oncology Research (ICVOR).

Kamel Khalili
Kuan-Teh Jeang
Melissa Agsalda, Hawaii Center for AIDS, Departments of Cell & Molecular Biology, Pediatrics, & Internal Medicine, University of Hawaii, Honolulu, HI

Donald J. Alcendor, Viral Oncology Program, Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD

Ravit Arav-Boger, Viral Oncology Program, Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD

Amy Baldwin, The Channing Laboratory, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA

Lawrence Banks, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy

Natalya Baranova, Cancer Research Center of the University of Hawaii, Honolulu, HI

Cristiana Bellan, Department of Human Pathology and Oncology, University of Siena, Siena, Italy

Timothy M. Block, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, PA

C. Richard Boland, GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX

Janet S. Butel, Department of Molecular Virology and Microbiology and the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX

Michele Carbone, Cancer Research Center of the University of Hawaii, Honolulu, HI

Mei-Hwei Chang, Departments of Pediatrics and Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan

Ding-Shinn Chen, Departments of Pediatrics and Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan

Wasim A. Dar, Department of General Surgery, University of Wisconsin-Madison, Madison, WI

Dweepanita Das, Department of Microbiology and Immunology, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
Giulia De Falco, Department of Human Pathology and Oncology, University of Siena, Siena, Italy

Luis Del Valle, Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA

Mark A. Feitelson, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA

Denise A. Galloway, Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA

Ajay Goel, GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX

Gary S. Hayward, Viral Oncology Program, Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD

Michael J. Imperiale, Department of Microbiology and Immunology, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI

Rachel A. Katzenellenbogen, Department of Pediatrics, University of Washington, Seattle, WA, and Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA

Kamel Khalili, Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA

Stefano Lazzi, Department of Human Pathology and Oncology, University of Siena, Siena, Italy

Lorenzo Leoncini, Department of Human Pathology and Oncology, University of Siena, Siena, Italy

Susan J. Marriott, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX

Masao Matsuoka, Institute for Virus Research, Kyoto University, Kyoto, Japan

Anand S. Mehta, Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA

Veenu Minhas, Nebraska Center for Virology, School of Biological Sciences, University of Nebraska, Lincoln, NE

Karl Münger, The Channing Laboratory, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA

Jing-hsiung James Ou, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA

Joseph S. Pagano, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC

Jingbo Pan, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
David Pim, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
James M. Pipas, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
Abhilasha V. Rathi, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
Helena M.G.P.V. Reis, MIT-Portugal Program, Lisbon, Portugal
Krzysztof Reiss, Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA
Luigi Ricciardiello, GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX
Bruce Shiramizu, Hawaii Center for AIDS, Departments of Cell & Molecular Biology, Pediatrics, & Internal Medicine, University of Hawaii, Honolulu, HI
Donna Sir, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA
Bill Sugden, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI
Bill Sun, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA
Miranda Thomas, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
Charles Wood, Nebraska Center for Virology, School of Biological Sciences, University of Nebraska, Lincoln, NE
INTRODUCTION—HUMAN PAPILLOMAVIRUS (HPV) TYPES AND HPV LIFE CYCLE

HPV is a small, nonenvelope, double-stranded DNA virus of the Papillomaviridae family. Different HPVs are defined by their genotypes, with more than 100 described to date. HPV genotypes are clustered into genera (de Villiers et al., 2004) based on genetic relatedness. Within each genus, HPVs are categorized into species based on distinct genotypes; members of a species have similar biological properties or phenotypes. Differences of 10% or more in the viral capsid gene (L1) are noted as different HPV types, differences of 2%–10% as subtypes, and differences of less than 2% are variants (Fig. 1.1) (de Villiers et al., 2004; Doorbar, 2006).

The two main genera of HPV are the alpha and beta papillomaviruses, with nearly 90% of typed HPVs falling within these groups (Fig. 1.1). Genus alpha papillomaviruses are associated with genital and mucosal infections, although a few infect cutaneous epithelium. Genus alpha HPVs are further defined as high-risk or low-risk based on their association with anogenital cancers or benign genital warts, respectively. The genus beta papillomaviruses are associated with benign skin infections; however, in immunocompromised patients or patients with epidermodysplasia verruciformis (EV),
HUMAN PAPILLOMAVIRUS-ASSOCIATED CANCERS

Figure 1.1. HPV cladogram. HPV types are categorized based on their genetic similarities. The genus alpha papillomaviruses primarily infect mucosal epithelium, and the genus beta papillomaviruses primarily infect the skin (figure from Doorbar, 2006).

a rare genetic disorder caused by mutations in the EVER1 or EVER2 genes (Ramoz et al., 2002; Keresztes et al., 2003; Kurima et al., 2003), squamous cell carcinomas (SCC) can develop.

HPV requires actively dividing and differentiating epithelium, typically the basal layer of stratified squamous epithelium, for its DNA replication, gene expression, and protein coat production. HPV reaches basal cells through epithelial microabrasions or at sites where the epithelium transitions from a monolayer to stratified squamous cells, such as at the cervical transformation zone or the anal verge (Fig. 1.2). Although these areas are more accessible to the virus for initial infection, they are poorer sites for viral production. This makes these anatomical transition areas sites where abnormal and inadequate viral gene expression, and ultimately HPV genome integration, are likely to occur. With HPV genome integration, regulatory viral genes may be lost, and epithelial cells are driven to immortalization, which can progress to cancer.

EPIDEMOIOLOGY OF HPV INFECTIONS AND CANCER

Genus Alpha HPV Infection in Women

HPV is the most common sexually transmitted infection (STI). Seventy-five percent of men and women in the United States have evidence of a current or prior genus alpha
Figure 1.2. HPV life cycle. HPV infects the basal layer of stratified squamous epithelium. E6 and E7 drive continued proliferation as cells differentiate in the suprabasal layers and other early genes increase HPV gene expression and genome amplification. In the epithelial granular layers, the late L1 and L2 proteins are expressed, forming infectious virions that are released through desquamation (figure adapted from Doorbar, 2006).

Table 1.1. HPV-Associated Cancers

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>HPV+ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical squamous cell carcinoma<sup>1-3</sup></td>
<td>89.3–99.7</td>
</tr>
<tr>
<td>Cervical adenocarcinoma<sup>4</sup></td>
<td>81.8</td>
</tr>
<tr>
<td>Vulvar<sup>1</sup></td>
<td>89</td>
</tr>
<tr>
<td>Vaginal<sup>1</sup></td>
<td>90.7</td>
</tr>
<tr>
<td>Anal<sup>1,4</sup></td>
<td>84–93.8</td>
</tr>
<tr>
<td>Penile<sup>1,5</sup></td>
<td>40–81.8</td>
</tr>
<tr>
<td>Head and neck<sup>6</sup></td>
<td>25</td>
</tr>
<tr>
<td>Oropharynx/tonsil<sup>7,8</sup></td>
<td>43.6–72</td>
</tr>
</tbody>
</table>

Note: The majority of anogenital cancers are associated with alpha genus HPV infections, and a significant subset of head and neck cancers are also associated with HPV.

¹Carter et al. (2001).
²Munoz et al. (2003).
³Walboomers et al. (1999).
⁴Frisch et al. (1997).
⁶Gillison et al. (2000).
⁷Schwartz et al. (1998).
⁸D’Souza et al. (2007).

Infection by serology, HPV DNA or RNA testing, cervical dysplasia, or genital warts (Koutsky and Kiviat, 1999). High-risk HPV infection has been identified as the key to cervical intraepithelial neoplasia and cancer (Table 1.1) (Durst et al., 1983; Koutsky et al., 1992; Munoz et al., 1992, 2003; Walboomers et al., 1999); however, most
HUMAN PAPILLOMAVIRUS-ASSOCIATED CANCERS

High-risk infections do not become cancerous, so high-risk HPV is required but not sufficient for cancer progression.

Several natural history studies have been conducted to document the frequency and length of HPV infection in sexually active female adolescents and adults (Burk et al., 1996; Ho et al., 1998; Moscicki et al., 2001; Woodman et al., 2001; Richardson et al., 2003; Winer et al., 2003, 2005). A prospective longitudinal study of female university students found that with each new lifetime partner, the risk of HPV acquisition rose: 3% for virginal women, 7% for women with one lifetime partner, 33% for women with two to four partners, and 53% for women with five or more partners (Burk et al., 1996). Moscicki et al.’s (2001) longitudinal study of female adolescents found that their risk of HPV infection was also directly associated with the number of new partners as well as evidence of other STIs on exam. Winer et al. (2003) found that cumulative incident HPV infections in university women was 32.3% by 24 months, which is consistent with other studies (Ho et al., 1998; Richardson et al., 2003; Winer et al., 2003). Woodman et al. (2001) found a cumulative incidence of HPV infection in 15- to 19-year-olds at 44% by 36 months and 60% at 5 years.

In university women, new partners and smoking were risk factors for HPV acquisition (Winer et al., 2003), and the younger a female is at coitarche, the more likely she is to become infected with HPV (Kahn et al., 2002). Several studies have found that males’ behaviors impact HPV infection in their female partners. The more lifetime partners a male has can increase the risk of HPV infection in a female partner; the briefer the relationship between a male and female can also increase the risk (Burk et al., 1996; Ho et al., 1998; Winer et al., 2003). So, the behavior of college-aged women and adolescents, as well as their partners, is an important risk factor for HPV infection. Young age at sexual debut, multiple partners, short relationships, smoking, and presence of other STIs all put teenagers and young women at risk for HPV.

The transition from a documented HPV infection to a low-grade squamous intraepithelial lesion (LGSIL) Pap smear is directly associated with a persistent infection as well as daily cigarette smoking in women (Moscicki et al., 2001). In a study of university women who had an HPV infection, nearly half of them developed cervical squamous intraepithelial lesions (SILs) and more than a quarter developed vaginal SILs within 36 months of their infection (Winer et al., 2005). These SILs regressed within 4.7–5.5 months on average (Winer et al., 2005).

LGSIL in adolescents also typically regress: 91% within 3 years (Moscicki et al., 2004). Women typically require a referral for colposcopy with the diagnosis of LGSIL; however, as adolescents and young women up to 21 years old have a greater likelihood of clearance of their HPV infection and regression of clinical disease, management of atypical cells of undetermined significance (ASCUS) and LGSIL Pap smears has been modified accordingly (http://www.asccp.org/consensus/cytological.shtml) (Wright et al., 2007). In contrast, older women are less able to clear infections and are more likely to have abnormal Pap smears, including high-grade squamous intraepithelial lesions (HGSIL) (Herrero et al., 2000; Castle et al., 2005), perhaps due to their relatively poor immune response to HPV infections (Garcia-Pineres et al., 2006).

Since the implementation of Pap smears for all sexually active women in the United States, rates of cervical cancer have fallen three-quarters since the 1950s. Within the
past 30 years, cervical cancer incidence has decreased from 14.2 per 100,000 in 1973 to nearly 3 per 100,000 in 1998, with a goal of 2 per 100,000 in Healthy People 2010 (http://www.ahrq.gov/clinic/3rdsuspstf/cervcan/cervcanrr.htm). However in the United States, women are still diagnosed with cervical cancer and die from this disease. In 2003, 11,820 women were diagnosed with cervical cancer and 3919 women died from it (U.S. Cancer Statistics Working Group, 2006). This makes understanding the infection and progression of disease critical to continued diagnosis and treatment.

More than 95% of cervical cancers contain high-risk HPV DNA, and HPV is also present in the majority of vulvar and vaginal cancers (Table 1.1) (Walboomers et al., 1999; Carter et al., 2001; Munoz et al., 2003). As the anal verge is similar to the cervix in transitioning from stratified squamous epithelium to columnar cells, HPV can also infect these cells and is associated with anal cancer in women. The rate of female anal cancer is increasing, likely representing a change in women’s sexual behaviors (Frisch et al., 1993, 1999).

Genus Alpha HPV Infection in Men

HPV infection in men has been less well studied. HPV has been detected in 42%–80% of penile cancers (Table 1.1) (Gross and Pfister, 2004; Daling et al., 2005), the rate of which may reflect a greater difficulty of sampling for HPV from the penis, or the overlap of two distinct cancer types, one due to high-risk HPV infection and one not (Bleecker et al., 2006; Micali et al., 2006; Partridge and Koutsky, 2006). When compared with women, men have a less good antibody response to infection, which may be due to lower viral load or faster clearance of infection (Partridge and Koutsky, 2006). It has been shown that circumcision is protective against HPV acquisition in men (Hernandez et al., 2008), as well as cervical cancer in their wives (Castellsague et al., 2002); when circumcised, the amount of columnar epithelium on the glans of the penis is reduced, making it more difficult for HPV to infect.

Like in women, anal cancer in men is associated with HPV infection and is increasing in incidence (Table 1.1) (Frisch et al., 1993, 1997, 1999; Daling et al., 2004). Unlike women, men who have sex with men have a high (over 50%) and persistent HPV infection rate regardless of age (Chin-Hong et al., 2004), as well as a high and persistent level of abnormal anal cytology (Chin-Hong et al., 2005). The high level of infection and abnormal cytology put men who have sex with men at greater risk for anal cancer when compared with women and cervical HPV infections.

Patients who are human immunodeficiency virus (HIV) positive or have acquired immune deficiency syndrome (AIDS) are at increased risk for abnormal cytology on anal cytology (Palefsky et al., 1998; Frisch et al., 2000; Sobhani et al., 2004). Although regular screening for men who have sex with men has not been universally recommended, studies have shown screening programs for anal cytology similar to cervical Pap smears to be reliable and potentially helpful (Cranston et al., 2004; Mathews et al., 2004).

Genus Alpha HPVs and Head and Neck Cancers

Head and neck cancers are associated with genus alpha HPV infections (Table 1.1), although this is a weaker correlation than with anogenital cancers (Fakhry and Gillison,
HUMAN PAPILLOMAVIRUS-ASSOCIATED CANCERS

Also, although tobacco and alcohol use are risk factors for non-HPV-associated head and neck cancers, this is not true in HPV-associated head and neck cancers (Fakhry and Gillison, 2006; D’Souza et al., 2007; Gillison et al., 2008). HPV appears to be important, specifically in oropharyngeal cancers, such as the tonsils and the base of the tongue. The tonsils mimic the cervix and the anal verge as sites of metaplastic epithelium, making them an appropriate site for HPV infection. Studies have shown patients with anogenital cancers have a two-and-a-half- to fourfold increased risk of tonsillar cancer, and their partners are at increased risk of tonsillar cancer or cancer of the tongue (Frisch and Biggar, 1999; Hemminki et al., 2000).

A case-control study of patients with oropharyngeal cancer showed sexual behavior as a primary risk factor; a high lifetime number of vaginal-sex partners or oral-sex partners was associated with cancer (3.1 and 3.4 odds ratio, respectively) (D’Souza et al., 2007). Oral infection with high-risk HPV types were strongly associated with oropharyngeal cancer (12.3 odds ratio) (D’Souza et al., 2007). Again, understanding sexual behaviors is critical for predicting changes in oral cancer epidemiology, just as seen in anal cancer incidence.

Genus Beta HPVs and Skin Cancer

Nonmelanoma skin cancer is the most common cancer in the United States, with more than 1 million cases diagnosed annually (http://www.cancer.gov/cancertopics/types/skin). Nonmelanoma SCC accounts for 20%–30% of skin cancers, and SCC has been associated with genus beta HPV infection on sun-exposed skin. This cancer rate is even higher among two clusters of patients: organ transplant patients who are on immuno-suppressive therapy and EV patients. Patients with EV develop lifelong warty lesions, 25% of which convert to SCC in sun-exposed areas (Orth et al., 1978, 1979; Ostrow et al., 1982; Orth, 2006). Genus beta HPVs are ubiquitously found in skin and hair follicle samples (Orth, 2006) and typically lead to benign lesions. However, the increasing number of transplant patients makes this infection a concern for future patients. The mechanism of genus beta HPVs leading to cancer is different than genus alpha HPVs and cancers, and it is the focus of ongoing research.

HPV EARLY AND LATE GENE EXPRESSION

The mechanism by which HPV binds to and enters basal epithelial cells is not known entirely, although both binding to laminin 5 and glycosaminoglycans are likely important (Joyce et al., 1999; Selinka et al., 2002; Culp et al., 2006). Once the virus infects cells, the HPV coat is removed and the HPV genome enters the nucleus. All HPV genomes have at least two promoters named early and late for their timed expression during the viral life cycle (Fig. 1.3). The E6 and E7 genes (designated E for early) are expressed from the early promoter (p97), and the E1, E2, E4, and E5 genes are expressed from the late promoter (p670) (Fig. 1.2) but utilize the early polyadenylation site. The early open reading frames drive viral DNA replication and expression, as well as dysregulate the normal epithelial cell cycle for the benefit of HPV viral production.
The E2 protein has several critical roles in HPV genome expression and replication. It is expressed early in the viral life cycle and is found in basal and suprabasal layers of stratified squamous epithelium infected by HPV. E2 binds as a dimer to DNA and recognizes the palindromic motif AACCg(N₄)cGGTT in the noncoding region of the HPV genome 5' of the early promoter (Hines et al., 1998; Masterson et al., 1998; Stubenrauch et al., 1998; Dell et al., 2003). E2 recruits the HPV viral helicase E1 to the viral origin and increases the DNA-binding affinity to the noncoding region (Masterson et al., 1998; Sun et al., 1998; Conger et al., 1999; Titolo et al., 2003). Both E1 and E2 together utilize cellular machinery for DNA replication and transcription (Masterson et al., 1998; Conger et al., 1999; Muller et al., 2002; Clower et al., 2006a,b). Although E2 is a transcriptional activator at low concentrations, high levels of E2 repress expression of E6 and E7 from the late promoter (Steger and Corbach, 1997; Francis et al., 2000). Finally, E2 also functions to segregate the HPV genome as cells divide by tethering the genome to cellular chromosomes during mitosis (You et al., 2004; McPhillips et al., 2005, 2006; Oliveira et al., 2006).

The E4 protein is found in the suprabasal and granular layers of stratified squamous epithelium. Without a functional E4 protein, HPV episomal DNA cannot amplify from their initial 50–100 copies per cell to the several thousands normally seen (Wilson et al., 2005).

E5 protein has effects on both cellular transformation and viral genome amplification. Although HPV E5 has little effect on monolayer undifferentiated keratinocytes in vitro, E5 does increase the number of suprabasal cells dividing in organotypic cultures grown to mimic stratified squamous epithelium (Genther et al., 2003). Additionally, in differentiated keratinocytes, E5 induces HPV genome amplification. HPV 16E5 can cause epithelial hyperplasia, abnormal cellular differentiation, and skin tumors when expressed in mice. This effect occurs through the epidermal growth factor receptor, although this may not be consistent across all HPV types (Fehrmann et al., 2003; Genther et al., 2005).
The viral coat proteins L1 and L2 are expressed from the late promoter after a change in splicing patterns and a transition to the late polyadenylation site. Three hundred sixty L1 proteins organize into 72 capsomers (Modis et al., 2002), with one L2 protein associated with each pentavalent capsomer (Trus et al., 1997). The capsomers self-assemble without HPV DNA in vitro as viruslike particles (VLPs) and in the cellular nucleus in vivo to encapsulate the HPV genome into infectious virus particles.

GENUS ALPHA HPV ONCOGENES

E6 and E7 expression is normally regulated by E2. In persistent HPV infections, HPV viral DNA can integrate into cellular DNA, and through this integration, the E2 gene is typically lost (Jeon et al., 1995). Unchecked, E6 and E7 mRNA and protein levels increase (Jeon and Lambert, 1995; Jeon et al., 1995), and this drives cell cycle dysregulation, cellular transformation (Munger et al., 1989), and immortalization (Hawley-Nelson et al., 1989). Cells with integrated high-risk HPV DNA grow faster, and for more populations doublings in culture, than do cells with extrachromosomal HPV DNA (Jeon et al., 1995). In transgenic mice expressing the early genes of HPV 16 that are exposed to estrogen, reproductive tract tumors develop (Arbeit et al., 1996; Elson et al., 2000; Riley et al., 2003). When high-risk E6 and E7 are coexpressed in epithelial cells in culture, they become immortalized (Kiyono et al., 1998), and when E6 and E7 expression is reduced, cervical cancer cell line’s growth is arrested and tumor formation in nude mice is blunted (von Knebel et al., 1992; Francis et al., 2000). Both the E6 and E7 genes push the oncogenic potential of epithelial cells through their dysregulation of cell cycle progression, senescence, and apoptosis.

Genus Alpha HPV E6 Oncogene

The E6 protein is critical to the HPV life cycle (Fig. 1.4). Mouse models have been used to document the oncogenic potential of the genus alpha E6 gene. Transgenic mice expressing HPV 16E6 in their epithelium have both a promotion and a progression of skin tumors when compared with nontransgenic mice (Simonson et al., 2005). When mice expressing HPV 16E6 are exposed to estrogen, they develop cervical dysplasias, and with prolonged exposure to estrogen, they can develop cervical cancers (Shai et al., 2007a). This is strong evidence that the high-risk HPV E6 is an oncogene.

E6 binds an endogenous E3 ubiquitin ligase, E6-associated protein (E6-AP), found in epithelial cells (Huibregtse et al., 1991, 1993). E6 and E6-AP bind the critical cell cycle protein p53 and target it for degradation by the 26S proteasomal pathway (Scheffner et al., 1993), and there is evidence that HPV 16E6 itself can blunt the effect of p53 without E6-AP (Shai et al., 2007b). When p53 is lost, epithelial cells no longer recognize senescence or apoptosis signals and continue to divide throughout the stratified squamous epithelial layers. This is key to HPV production, but moreover, this is critical to the immortalization of epithelial cells and the stochastic collection of genetic and epigenetic mutations that lead to cancer.
A second key role of high-risk HPV E6 in cell cycle dysregulation is the activation of telomerase (Fig. 1.4). Telomerase is a ribonucleoprotein that includes its catalytic subunit hTERT, its RNA component hTR, and dyskerin (Kilian et al., 1997; Meyerson et al., 1997; Nakamura et al., 1997; Counter et al., 1998; Cohen et al., 2007). Telomerase extends the repetitive telomeric DNA that caps the ends of chromosomes and protects genes within the chromosome from serial erosion with each round of DNA replication. Telomerase is normally expressed in stem cells, and telomerase activity is proportionate to the expression level of hTERT (Counter et al., 1998). In differentiated cells, hTERT expression is repressed. As these differentiated cells divide, their telomeres shorten; the age of a cell is therefore reflected in the inverse length of its telomeres. When the telomeres of a cell become critically shortened, it signals for that cell to go through senescence or apoptosis. In most cancers, telomerase is activated, so its expression is critical to the immortalization of cells and to oncogenic progression (Shay and Bacchetti, 1997).

E6 and E6-AP activate expression of hTERT in epithelial cells through transcriptional activation at the promoter (Gewin and Galloway, 2001; Gewin et al., 2004; Galloway et al., 2005; Liu et al., 2005). Additional regulators of hTERT that interact with E6 and E6-AP have been identified, such as c-myc, Mad, Max, NFX1-91, and NFX1-123 (Wang et al., 1998; Takakura et al., 1999; Wu et al., 1999; Oh et al., 1999, 2007).
Each of these endogenous protein partners is important in hTERT activation during HPV infection and HPV genome integration.

The loss of p53 and activation of telomerase are the two critical events driven by E6. These allow differentiated epithelial cells to continue to divide when they otherwise would not. They no longer recognize signals from DNA damage through the p53 pathway to go through apoptosis or senescence, and they no longer recognize their age as telomerase extends the ends of chromosomes. Loss of p53 and activation of telomerase are required in most cancers, so the role of E6 in oncogenic progression of HPV cancers is intuitive.

High-risk E6 proteins have roles beyond p53 degradation and telomerase activation (Fig. 1.4). High-risk E6 proteins have a four-amino-acid domain at their extreme C-terminus. This domain is required to bind proteins that contain a PDZ domain, such as PSD-95, Dlg (disk large protein), and ZO-1 (hence the name PDZ), as well as human Scribble, MUPP-1, and MAGI-1, 2, and 3. These PDZ proteins are found primarily in the apicobasal region of epithelial cells, and their interaction with and degradation by E6 may be important in HPV-driven cell growth, metaplasia, malignant progression, and metastatic disease (Dobrosotskaya and James, 2000; Glaunsinger et al., 2000; Thomas et al., 2002; Watson et al., 2003; Lee and Laimins, 2004; Massimi et al., 2004). Transgenic mice expressing HPV 16E6 with the PDZ-binding domain deleted are unable to develop epithelial hyperplasia, induce DNA synthesis, or promote papillomas when compared with HPV 16E6 wild-type (WT) mice (Nguyen et al., 2003; Simonson et al., 2005). However, once tumors do develop, 16E6 WT and PDZ-binding-domain-deleted mice have equal numbers of carcinomas (Simonson et al., 2005). So, the PDZ-binding domain of high-risk E6 proteins may be critical to the initial steps of oncogenesis. Other PDZ-domain-containing proteins have been identified as targets for degradation by high-risk E6. E6-AP is required for the degradation of some PDZ-containing proteins, such as Scribble and Dlg4/SAP97 (Nakagawa and Huibregtse, 2000; Handa et al., 2007), but perhaps not others (Pim et al., 2000; Grm and Banks 2004; Grm et al. 2004), although there is conflicting data on this (Brimer et al., 2007; Kuballa et al., 2007). Finally, E6 and E6-AP can bind other cellular regulators such as Bak, a protein in the apoptosis cascade, and target it for degradation like p53 (Thomas and Banks, 1998). Therefore, the tumorigenic potential of high-risk E6 involves other cellular proteins beyond p53 and hTERT.

Genus Alpha HPV E7 Oncogene

Like E6, E7 expression is normally regulated by E2. Also, like E6, high-risk E7 is an oncogene (Fig. 1.4); keratinocytes expressing HPV 16E7 can become immortalized in culture, although coexpression of HPV 16E6 accelerates this process (Halbert et al., 1991). Transgenic mice that express the HPV 16E7 protein in their epithelium develop skin hyperplasia and, late in life, skin tumors (Herber et al., 1996). Those mice that express E7 at a high level can have stunted growth and early mortality from the severe epithelial hyperplasia of the esophagus causing dysphagia (Herber et al., 1996). When these same mice are exposed to estrogen, they quickly develop tumors.
of the reproductive tract (Riley et al., 2003). All of these tissue culture and mouse model studies are strong evidence that high-risk E7 is an oncogene, driving epithelial cell proliferation and cancer.

E7 functions in tandem with E6 to drive differentiated epithelial cells to continue to divide. E7 is known to bind to many endogenous cell cycle proteins, including pocket proteins retinoblastoma protein (Rb), p107 and p130 (Dick and Dyson, 2002; Zhang et al., 2006), and cyclin-dependent kinase inhibitors p21 and p27 (Funk et al., 1997; Helt et al., 2002). The interaction of E7 and Rb has been the most studied of these interactions (Fig. 1.4). E7 degrades Rb through the ubiquitin-mediated proteasomal pathway (Boyer et al., 1996; Helt and Galloway, 2001; Dick and Dyson, 2002), and the degradation of Rb by E7 allows the transcription factor E2F to activate expression from S-phase promoters, driving DNA replication and cellular division. Transgenic mice expressing HPV 16E7 and a knocked-out Rb that cannot be bound by E7 have little skin hyperplasia, have a normal cell cycle arrest to DNA damage, and do not increase p21 protein levels (Balsitis et al., 2005). However, transgenic mice expressing HPV 16E7 and treated with estrogen develop cervical cancers whether or not Rb can be degraded (Balsitis et al., 2006). Therefore, the ability of high-risk E7 to degrade Rb is more important in skin tumorigenesis than in cervical cancer in mouse models. Other pocket proteins are bound by E7, and those interactions may be as important in the HPV life cycle as they are in oncogenic progression (Zhang et al., 2006). Finally, high-risk E7 can increase expression of DEK, a senescence inhibitory protein, which may be critical in HPV malignant progression (Wise-Draper et al., 2005).

High-risk E7 affects gene expression through its interaction with transcription factors and also chromatin remodeling proteins. HPV 16E7 can bind several factors from the AP1 family of transcription factors, which are likely important in driving the cell cycle (Antinore et al., 1996). E7 can bind to histone deacetylases (HDAC) (Brehm et al., 1999; Longworth et al., 2005), and this can allow continued cell growth (Brehm et al., 1999) and HPV DNA replication (Longworth et al., 2005) (Fig. 1.4). Combined, E7 can drive differentiated cells to continue to divide, activate genes normally quiescent in differentiated cells, and ignore DNA damage signals.

GENUS BETA HPV ONCOGENES

Like genus alpha HPV E6 and E7, genus beta HPV E6 and E7 have been increasingly identified as oncogenes. However, unlike genus alpha oncogenes in anogenital cancers, skin cancers do not universally have evidence of E6 or E7 DNA, and in an HPV-positive skin cancer, not all cells would have HPV DNA. So, a continued effect by genus beta HPV is not required in SCC development, and the cancer is not a clonal outgrowth from a genus beta HPV-positive cell, making their malignant progression fundamentally different from the classic high-risk HPV types. Despite these differences, genus beta HPV E6 and E7 are important in SCCs, especially in immunocompromised hosts, blocking apoptosis and activating telomerase. Their study is becoming increasingly important as the population at risk, including solid organ and bone marrow transplant patients, grows.
HPV 38 E6 and E7 expressed together in primary epithelial cells can drive DNA replication and the cell cycle, block senescence by Ras, and induce anchorage independence in fibroblast cultures, all of which point to transforming properties of beta HPV oncogenes (Caldeira et al., 2003). Organotypic epithelial cultures grown with several beta HPV E6 and E7 types show decreased differentiation of skin cells and basal cells within the suprabasal region (Boxman et al., 2001). Transgenic mice expressing the early genes of HPV 8 in the dermis develop skin tumors, and a subset develops SCC (Schaper et al., 2005), pointing to their importance in skin cancer progression.

Genus Beta HPV E6 Oncogene

Genus alpha HPV E6 binds E6-AP to degrade p53 and block apoptotic signals from DNA damage. Genus beta HPV E6 does not affect p53 protein levels, but instead, it targets proteins downstream of p53 for degradation. In the skin, the most common DNA damage seen is ultraviolet (UV) irradiation on sun-exposed skin; therefore, studies focus on this effect. In keratinocytes, p53 and p21 are induced after UV irradiation, as is the proapoptotic protein Bak. p53 activates the cascade of proapoptotic signals that lead to caspase release from mitochondria and cell death. In cultured and organotypic cells expressing genus beta HPV E6 types, p53 and p21 expression is increased after UV irradiation, but Bak is not induced. These cells do not undergo apoptosis but continue to divide despite double-stranded DNA damage (Jackson et al., 2000). Also, studies of HPV 77 E6 show disruption of proapoptotic gene activation by p53 after UV irradiation in epithelial cells (Giampieri et al., 2004). p53 levels may be important in E6 expression, as p53 can bind the HPV 8 E6 promoter, and it directly competes with HPV 8 E2 for binding and regulation of expression (Akgul et al., 2003). New evidence also points to a subset of genus beta E6 proteins that can activate telomerase and extend the life span of epithelial cells in culture (Bedard et al., 2008).

Genus Beta HPV E7 Oncogene

The genus beta E7 protein can function like genus alpha E7, triggering continued cellular proliferation while epithelial cells are terminally differentiating. Several genus beta E7 proteins have been reported to bind to Rb, and a subset of those can target Rb for degradation, although not all. However, in addition to the known cell cycle effects of E7, keratinocytes expression HPV 8 E7 protein can degrade the basement membrane, induce matrix metalloproteinase expression, and invade stromal tissues in organotypic cultures (Akgul et al., 2005; Smola-Hess et al., 2005). So, E7 alone may drive the oncogenic and metastatic potential of beta HPV-infected skin cells and push infected cells toward invasion even before collecting DNA damage from UV exposure.

FUTURE ISSUES

Although behavior modifications can decrease HPV infection rates, and consistent screening for and treatment of cytological abnormalities can decrease cancer rates and deaths, prophylactic vaccination against specific HPV types has the potential to