Pasta and Semolina Technology

Edited by

R.C. Kill and K. Turnbull

Science

PASTA AND SEMOLINA TECHNOLOGY

Pasta and Semolina Technology

Edited by

R.C. Kill and K. Turnbull

© 2001 by Blackwell Science Ltd Editorial Offices:
Osney Mead, Oxford OX2 0EL
25 John Street, London WC1N 2BS
23 Ainslie Place, Edinburgh EH3 6AJ
350 Main Street, Malden MA 02148 5018, USA
54 University Street, Carlton Victoria 3053, Australia
10, rue Casimir Delavigne 75006 Paris, France

Other Editorial Offices:

Blackwell Wissenschafts-Verlag GmbH Kurfürstendamm 57 10707 Berlin, Germany

Blackwell Science KK MG Kodenmacho Building 7-10 Kodenmacho Nihombashi Chuo-ku, Tokyo 104, Japan

Iowa State University Press A Blackwell Science Company 2121 S. State Avenue Ames, Iowa 50014-8300, USA

The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

First published 2001

Set in 10/12pt Times by DP Photosetting, Aylesbury, Bucks Printed and bound in Great Britain by MPG Books Ltd, Bodmin, Cornwall

The Blackwell Science logo is a trade mark of Blackwell Science Ltd, registered at the United Kingdom Trade Marks Registry

DISTRIBUTORS

Marston Book Services Ltd PO Box 269 Abingdon Oxon OX14 4YN (*Orders:* Tel: 01235 465500 Fax: 01235 465555) USA and Canada Iowa State University Press A Blackwell Science Company 2121 S. State Avenue

Ames, Iowa 50014-8300 (Orders: Tel: 800-862-6657 Fax: 515-292-3348 Web: www.isupress.com email: orders@isupress.com

Australia Blackwell Science Pty Ltd 54 University Street Carlton, Victoria 3053 (*Orders:* Tel: 03 9347 0300 Fax: 03 9347 5001)

A catalogue record for this title is available from the British Library

ISBN 0-632-05349-6

Library of Congress Cataloging-in-Publication Data is available

For further information on Blackwell Science, visit our website: www.blackwell-science.com

Contents

Preface Contribu	tors	xi xiii
Chapter	1 Introduction R.C. Kill	1
1.1 1.2 1.3 1.4 1.5	What is pasta? Pasta's past Pasta now The market for pasta Nutrition value References and further reading	1 2 3 7 10 10
Chapter	2 Durum Wheat G. Wiseman	11
2.1	The origins of wheat	11
2.2	The classification and evolution of modern wheats	12
2.3	Ouality and grain shape	18
	2.3.1 Factors used to assess quality	22
	2.3.1.1 Visual scrutiny	22
	2.3.1.2 Test weight	22
	2.3.1.3 Blackpoint	22
	2.3.1.4 Vitreousness	22
	2.3.1.5 Sprouted grains	23
	2.3.1.6 Contamination with other wheats	23
	2.3.1.7 Protein quality and quantity	23
2.4	Pasta and legislation	23
2.5	Verification of authenticity	24
2.6	Molecular techniques to identify adulteration	29
	2.6.1 The polymerase chain reaction	29
	2.6.2 Quantitative PCR and the 'Taqman' chemistry	32
	2.6.3 Fluorogenic 5'-3' exonuclease assay (Taqman)	53
	References and further reading	30
	Appendix: Current commercial 1. durum varieties	40

Chapter	3 Ad	vances in	ı Durum Milling	43	
3.1	Introd	luction	0	43	
3.2	Basic	Basic semolina requirements			
	K. Turnbull				
	3.2.1	Ash		43	
	3.2.2	Particle	e size	44	
	3.2.3	Speck c	count	44	
	3.2.4	Colour		44	
	3.2.5	Moistu	re	45	
3.3	Mode	rn durun	n wheat cleaning plants	45	
	Т. Ки	enzli			
	3.3.1	Introdu	iction	45	
	3.3.2	Wheat	cleaning principles	45	
		3.3.2.1	Removal of impurities	47	
		3.3.2.2	Cleaning of the grain surface	47	
		3.3.2.3	Tempering	48	
	3.3.3	Cleanir	ng plant	48	
		3.3.3.1	First cleaning	48	
		3.3.3.2	Water addition/tempering	51	
		3.3.3.3	Second cleaning	53	
	3.3.4	Remov	al of ergot	54	
	3.3.5	Summa	ry	55	
3.4	Partic	le size re	equirements of semolina for pasta		
	produ	ction		55	
	Т. Ки	enzli			
	3.4.1	Genera	l considerations	55	
	3.4.2	Traditio	onal semolina particle size	56	
		3.4.2.1	Quality parameters	57	
		3.4.2.2	Mixing times of semolinas with different		
			particle size distributions	57	
		3.4.2.3	Semolina size reduction in the pasta		
			factory	57	
		3.4.2.4	Semolina size reduction in the mill	58	
	3.4.3	Semoli	na requirements for modern extrusion		
		systems	5	59	
		3.4.3.1	Advantage of the eight-roller mill system	60	
		3.4.3.2	Application of the eight-roller mill system	61	
	3.4.4	Additic	on of durum flour	61	
		3.4.4.1	General considerations	61	
		3.4.4.2	Batch blending and mixing	62	
	o	3.4.4.3	Continuous blending	62	
	3.4.5	New du	irum mill concept	62	
		3.4.5.1	Flow sheet	62	
		3.4.5.2	Monitoring/quality assurance	63	

vi

CONTENTS	CONTENTS	
----------	----------	--

		3.4.5.3	Features of the new generation of	
			durum mills	63
		3.4.5.4	Summary	63
3.5	The a	pplicatio	n of a debranning process to durum	
	wheat	milling		64
	M. W	illis and J	I. Giles	
	3.5.1	Introdu	ction	64
		3.5.1.1	The development of debranning	64
		3.5.1.2	The technical challenge	65
		3.5.1.3	The challenge of debranning wheat	65
	3.5.2	Wheat	preparation	66
		3.5.2.1	Wheat cleaning system	66
		3.5.2.2	Water addition for tempering	67
		3.5.2.3	Kernel washer and hydrator	68
	3.5.3	The del	oranning system	69
		3.5.3.1	Overview	69
		3.5.3.2	Preconditioning equipment	69
		3.5.3.3	Vertical debranning machine	72
		3.5.3.4	By-product handling	75
	3.5.4	Milling	debranned wheat	76
	3.5.5	The cha	aracteristics of debranned wheat	79
		3.5.5.1	Ash and falling number	79
		3.5.5.2	Semolina ash: what is the significance?	81
		3.5.5.3	Germ removal with debranning	82
		3.5.5.4	The removal of microbiological and other	
			contamination with debranning	83
	3.5.6	The flo	w diagam of a mill for debranned wheat	83
		Referen	nces and further reading	85
~				
Chapter	4 Pas	sta Mixin	g and Extrusion	86
4.1	r.n	L. Dawe	nd background	96
4.1		Inction a	na background	00
	A.11	The bar	vic sim of the process	86
	4.1.1	The bas	antific basis of mixing and avtrusion	86
12	Practi	cal dosin	a mixing and extrusion	00
7.2		intheer	g, mixing and extrasion	20
	421	Introdu	ction	٩N
	422	Dosing	of the raw materials	92
	7.2.2	4221	Volumetric screw feeders	93
		4.2.2.2	Continuous belt weighers	94
		4.2.2.3	Continuous gravimetric feeders	95
	4.2.3	Mixing	<i>Q</i>	96
		Ģ		

vii

CONTENTS

		4.2.3.1	Influence of the water temperature on the	
			dampening of middlings or flour	99
		4.2.3.2	Dough preparation using the co-rotating	
			screw principle	101
	4.2.4	Extrusi	on	102
		4.2.4.1	Rheology of the extrusion screw	102
		4.2.4.2	Kneading and pressure build-up	103
		4.2.4.3	Dough temperature	105
		4.2.4.4	Influence of the condition of the extrusion	
			screw and of the cylinder on the pasta	
			quality and discharge from the die	107
		4.2.4.5	Vacuum systems and the influence of	
			evacuation	107
		4.2.4.6	Vacuum defects	110
		4.2.4.7	Retention times	110
	4.2.5	Aspects	s of hygiene	112
	4.2.6	CIP pro	ocess stages	113
		4.2.6.1	Flushing of residual dough	113
		4.2.6.2	Flushing with washing water	113
		4.2.6.3	Alkali treatment	114
		4.2.6.4	Flushing with fresh water	115
	4.2.7	Conclus	sion	116
	4.2.8	Trouble	e-shooting/sources of faults	116
	Refere	ences and	d further reading	118
Chapter	5 Pas	ta Shape	Design	119
	P.R	. Dawe		
5.1	Introd	uction		119
5.2	Princi	ples of d	ie design	119
	5.2.1	Materia	lls of construction	120
	5.2.2	Genera	l technical design criteria	123
	5.2.3	Insert c	omponents	126
	5.2.4	The des	sign of pasta theme shapes	128
	5.2.5	CAD-C	CAM as applied to dies	135
5.3	Visual	enhance	ement and functionality	138
	5.3.1	Ridged	pasta – pasta rigati	138
	5.3.2	Wavy c	onstruction – festonate	140
	5.3.3	Special	cutters	143
5.4	Sheete	ed pasta		149
5.5	Die-re	elated fat	ilts and their rectification	150
	Ackno	owledgen	nents	156
	Refere	ences and	d further reading	157

CONTENTS					
Chapter	6 Pasta Drying	158			
6.1	Introduction and background	158			
	6.1.1 The basic aim of the process	158			
	6.1.2 The scientific basis of pasta drying				
6.2	New drying technology and its influence on the final	150			
0.2	product quality	161			
	W. Dintheer				
	6.2.1 Introduction	161			
	6.2.2 Historical development of pasta drying	162			
	6.2.3 Effects of HHT drying: main criteria	163			
	6.2.4 Optimum HHT drying diagram	163			
	6.2.5 Effects of drying on the quality of the final				
	products	167			
	6.2.5.1 Behaviour of lysine in HHT-dried pasta	167			
	6.2.5.2 Product of colour	168			
	6.2.5.3 Behaviour of vitamins	170			
	6.2.5.4 Organoleptic/sensory characteristics of				
	HHT-dried pasta	171			
	6.2.6 Conclusion	172			
	6.2.7 Trouble-shooting: drying process	173			
Chapter	7 Additional Ingredients R.C. Kill	176			
71	Spinach	176			
7.1	Tomato	170			
7.2	Faa	177			
7.5	Vitamins	178			
,		170			
Chapter	8 Quality Assurance in a Dry Pasta Factory K. Turnbull	181			
8.1	Introduction	181			
8.2	The use of HACCP	181			
8.3	The quality assurance of raw materials	183			
	8.3.1 Durum semolina	183			
	8.3.1.1 Ash	184			
	8.3.1.2 Moisture content	186			
	8.3.1.3 Protein content	186			
	8.3.1.4 Protein quality	187			
	8.3.1.5 Colour	188			
	8.3.1.6 Speck count	190			
	8.3.1.7 Particle size	191			

		8.3.1.8 α-Amylase level	192
		8.3.1.9 Microbiology	192
		8.3.1.10 Other potential contaminants	194
		8.3.1.11 Non-durum contamination	194
		8.3.1.12 Insect infestation	195
	8.3.2	Water	195
	8.3.3	Egg	197
	8.3.4	Other raw materials	197
8.4	Qualit	ty assurance of the process	198
	8.4.1	Receipt and storage of raw materials	198
		8.4.1.1 Semolina	198
		8.4.1.2 Water	202
		8.4.1.3 Minor raw materials	202
	8.4.2	The blending and dry mixing of raw materials	202
	8.4.3	Transfer of dry ingredients to the wet mixer	203
	8.4.4	The wet mixing process	205
	8.4.5	Transfer to the extrusion barrel and application	
		of vacuum	206
	8.4.6	Extrusion and cutting	207
	8.4.7	Drying	208
	8.4.8	Pasta storage	211
	8.4.9	Pasta sieving (on short goods)	212
8.5	The q	uality assurance of the finished product	213
	8.5.1	Safety checks	214
		8.5.1.1 Moisture content	214
		8.5.1.2 Microbiology	214
		8.5.1.3 Contaminants	215
		8.5.1.4 Non-durum adulteration	215
	8.5.2	Quality checks (dry product)	215
		8.5.2.1 Colour	215
		8.5.2.2 Length control (short goods)	216
		8.5.2.3 Die wear	217
		8.5.2.4 Cracking	217
		8.5.2.5 Breakage	217
		8.5.2.6 Other visual defects	218
	8.5.3	Quality assessment (cooked product)	218
		8.5.3.1 Visual assessment	218
		8.5.3.2 Starch release during cooking	219
		8.5.3.3 Texture	219
		8.5.3.4 Aroma and flavour	220
		Further reading	221

Preface

When we were asked by the publisher to put together a book on current practices in pasta and semolina manufacture there was no hesitation on our part. It appeared to us that there had not been such a book for too long and we hope that we have achieved our aim. We felt that for some time now there has been a need for a book which examined the latest technologies in a practical way. To this end we have obtained contributions from some of the manufacturers at the leading edge of technological development in semolina milling and pasta manufacture.

In keeping with our aim of producing a practical guide to this industry, in addition to the general information given, some of the chapters also include trouble shooting sections.

Occasional reference is made in the text to particular manufacturers' names and items of equipment. In no case should any such reference be taken to imply endorsement by the authors over any similar product.

We have tried to cover all aspects of the production process, from farm to factory gate and our contributors from many different parts of the industry have made this an interesting and challenging task. We thank them all.

> R.C. Kill K. Turnbull

Contributors

Ron Kill	Micron Laboratories, Clarence House, 30 Queen Street, Market Drayton, TF9 1PS, United Kingdom. Ron holds a PhD in biology and has worked in the food industry from 1973 covering all aspects of food technology, safety and legality. He worked in the pasta industry from 1984 to 88 and has kept close links with it ever since in his capacity as senior partner of Micron Laboratories.
Keith Turnbull	Pasta Foods Limited, Pasteur Road, Great Yar- mouth, Norfolk, NR31 0DW, United Kingdom. Keith, a graduate of Nottingham University, has worked in the flour, semolina and pasta industries for 22 years.
Gordon Wiseman	RHM Technology, Lincoln Road, High Wycombe, Buckinghamshire, HP12 3QR, United Kingdom. Gordon holds a PhD in microbiological chemistry from Newcastle University. He specialises in wheat biochemistry and was awarded a Churchill Fellow- ship in 1997 to study the effect of geographical origin on durum wheat morphology.
Thomas Kuenzli	Bühler, Engineering Works, CH9240, Uzwil, Swit- zerland. Thomas served his apprenticeship as draughtsman at Bühler, studied mechanical engineering, trained in the engineering division of the milling department and is now area manager for the UK at Bühler.
John Giles	Satake Corporation, UK Division, PO Box 53, Horsfield Way, Bredbury, Stockport, Cheshire, SK6 2FG, United Kingdom. John has worked for Satake, previously Henry Simon, for over 35 years. He started as a trainee in the milling technical department, and has been

xiv	CONTRIBUTORS
	involved in all aspects of cereal plant process design. More recently he has concentrated on the use of debranning in wheat milling plants.
Mark Willis	Satake Corporation, UK Division, PO Box 53, Horsefield Way, Bredbury, Stockport, Cheshire, SK6 2FG, United Kingdom. Mark started his career in milling 30 years ago as an apprentice at Henry Simon. He has travelled the world as a commissioning miller and is now Satake UK Division's most experienced member of its technical department, specialising in all aspects of durum milling.
Ken Johnston	RHM Technology Ltd, Lincoln Road, High Wycombe, Buckinghamshire, HP12 3QR, United Kingdom. Ken has worked as a food and cereal scientist at RHM Technology since 1988. He specialises in the effect of physical properties of food on its processing, handling and eating quality. In the course of his career he has worked with bread, cake, biscuits, roller dried and cooker extruded cereals as well as with pasta. He is head of the food technology department at RHM Technology.
Peter R. Dawe	Pasta Foods Limited, Pasteur Road, Great Yar- mouth, Norfolk, NR31 0DW, United Kingdom. Peter graduated from Nottingham University in 1966. He joined Pasta Foods in 1972. He was instrumental in the successful diversification into snack half products which today is a global market for the company. He is now technical business development manager.
Werner Dintheer	Bühler, Engineering Works, CH9240, Uzwil, Swit- zerland. Werner joined Bühler in 1965 where he worked in the grain milling section. He has been active in the pasta field since 1982.

1 Introduction R.C. Kill

Just a few steps from the cascades of the Trevi Fountain in Rome, which is always so full of noise and life, is the Piazza Scandenberg. This is a rather quiet corner slightly off the tourist beat but in it you can find the world's first museum devoted to pasta, the National Museum of Pasta Foods.

It is entirely appropriate that this should be in the capital city of Italy. Although there are opinions that pasta originated far from Italy, perhaps in China, it is to Italy that westerners owe a debt of gratitude for the development of this simple but versatile food.

The museum is unusual, informative and entertaining, and well worth a visit for anyone interested in pasta. My visit provided some useful information for this introduction and I am grateful for the hospitality of the staff there.

1.1 WHAT IS PASTA?

The word 'pasta' is the Italian for 'dough'. The usual basic ingredients are wheat flour or semolina and water. Alternatives include potato flour (used in gnocci) and maize flour (in gluten-free product). Additional ingredients include egg, natural colourants such as spinach, tomato and in the case of some product for the USA, vitamins.

Essentially, though, most pasta in the Italian style is made from semolina from hard wheat and water. It is therefore a very simple food. This is especially so when it is made in the kitchen or restaurant and served after cooking within a short time of being made. The art of pasta making as described in this book takes us far from the kitchen and into highly sophisticated industrial techniques. The result of all that sophistication is still a very simple product with few ingredients. The techniques are applied to produce firstly a large range of shapes and sizes of the product and secondly a stable, dry product that has a long shelf life.

It is true that there is a growing market for so-called 'fresh' pasta, i.e. pasta that has not been dried. However the convenience, quality and cheapness of dry pasta for the retailer and consumer make this sector of the market by far the largest. Indeed some argue that it is difficult to justify the cost of fresh pasta to the consumer when the manufacturer has not had to bear the cost of drying and where the product yield is significantly greater because it contains far more water.

It is with dry pasta that the bulk of the market lies and this book is devoted to the modern technology of the production of this Italian-style pasta.

1.2 PASTA'S PAST

A good deal has been written and discussed in the past about the origins of pasta. In particular Italian authors are keen to point out that despite indications of the possible birthplace being China, very early evidence of pasta can be traced to Italian soil in the form of the Etruscan civilisation, several centuries BC. Speculation on pasta and its conception even include Italian mythological stories (Agnesi, 1996). They are fun, but it seems to this author for it not to be beyond the wit of humankind to have invented this fundamentally simple food several times over at several locations. This is particularly possible since the usual ingredients – milled wheat or other cereal and water – are almost universally available and have been since our early history.

It is not intended to say much more of the history of pasta in this book, although there are three points all concerning the development of pasta in Italy that are worth noting.

Many centuries after the origins of pasta, by the sixteenth century, pasta makers in Italy were well established and organised into trade associations. There were rules already established about trading and recipes. Today the industry in Italy is highly regulated. For example, manufacturers there are not permitted to produce from anything other than durum wheat unless a special licence is obtained (this is true even of 'wholewheat' durum pasta). These constraints in Italy may have helped to perpetuate the belief elsewhere that good quality pasta may only be made from durum wheat.

Pasta making in Italy had become something of a Neapolitan speciality by the nineteenth century and it was in Naples that production began to be fully commercialised and industrialised. Drying of pasta as a way of preserving began. This author has always held the romantic notion that the traditional, mechanised drying techniques, still sometimes in use today, were a means of capturing a little of Naples in a cabinet, reproducing the washing line drying of the early street sellers in the Neapolitan air.

The interiors of today's high-speed dryers little resemble that sultry climate, with temperatures as high as 90°C. However the development of these leviathan plants with outputs of many tonnes of product per hour began with this early industrialisation.

It was also probably in the 1800s that the marriage of pasta with tomatoes in cooking occurred. Southern Italy is also ideal for the growing of tomatoes. The two together provided for countless culinary possibilities and today the two complementary industries are a feature of this area.

1.3 PASTA NOW

Pasta today is a food which is accepted and used all over the world at varying degrees of importance (see section 1.4 below). It is also a sophisticated industry which now utilises advanced technologies to maximise efficiency (see Figs 1.1 and 1.2), output and quality. In contrast with some areas of the food industry (bread would be a good example) it is a tribute to the technicians and engineers involved in these advances that they have managed to make production of this food cheap and plentiful at no cost to the quality.

Fig. 1.1 View of part of extruder and drier of a modern plant

Fig. 1.2 View of extrusion of short cut pasta in a modern pasta plant

It is not possible to discuss pasta without also discussing durum wheat. Their stories are naturally now intertwined. When asked what were the three critical points in making good pasta a manufacturer once replied 'raw material, raw material, raw material'. We hope to be a little more informative here but can understand what he meant.

Why is durum wheat so important to pasta? Its essential characteristics are its hardness, its gluten quality and its colour. It is quite possible to make pasta products from other wheats, especially other hard wheats. Furthermore, perfectly good and legitimate products are made from mixtures of durum and soft wheats at up to 25% soft wheat. However there is an unmatchable eating quality to durum wheat product and the ingredient has become a byword for the best quality pasta.

Because durum wheat commands a premium price over other wheats (see below), in recent years the authenticity of the raw material has become a very important issue. The adulteration of pasta with common or soft wheats is all too easily possible. In Chapter 2 there is a detailed discussion of durum wheat and the history of its development. There is also some new insight into the important issue of authenticity and some fascinating and groundbreaking techniques for the analysis of pasta.

Pasta in the Italian style is almost universally made from the milled

INTRODUCTION

product of durum wheat: semolina. Semolina milling is a specialised part of the wheat milling industry. Particle size and uniformity of particle size are especially important for ease of mixing with water, extrusion and final quality after drying. The absence of specks, dark or light, is also critical for visual, and sometimes physical quality. In Chapter 3 there is a presentation of semolina milling, its history and the very latest techniques.

Durum wheat is grown only in certain parts of the world (see Fig. 1.3), unlike common wheat which can be grown much more widely. The total production varies and estimates for 1999 are for a global crop of about 28.5 million tonnes, a decrease of 6 million tonnes on the previous year. At the time of writing the demand is likely to exceed that figure, whereas in previous years supply has exceeded demand. Not surprisingly for a crop of this nature the price can fluctuate greatly year on year, however there is always a premium over the price of common wheat (van Lit, 1999).

Fig. 1.3 World durum production (van Lit, 1999).

The Mediterranean region produces 55–60% while the North American continent produces about 30% of the world's output. At the same time however the North American continent accounts for 80–90% of the world's exports. The Mediterranean area accounts for 50% of the world's imports.

If raw material is the first critical point in making good quality pasta, the second is the mixing and production of the dough. Semolina is mixed with the other principal 'ingredient' – water – and the quality of both is important. The quotation marks are used here because although a significant amount of water is added to the semolina at this stage, when pasta is dried it is taken down to a moisture content similar to that of the original raw material. Hence water need not appear on ingredient lists, in the EU at least.

Once the dough is made pasta may be produced in one of two ways. It may be simply rolled out into sheets. The thickness of these sheets can be easily varied and then they may be cut into, for example, lasagne sheets or fettuccini strips, or they may be stamped into special shapes such as bows (farfalle) or they may be used to produce filled pasta shapes such as tortellini.

While there are numerous and diverse ways in which sheeted pasta may be used, by far a wider diversity of shapes can be produced courtesy of extrusion techniques. By extruding pasta dough at high pressure through a die not only are the possibilities for shapes almost unlimited, the visual quality of the pasta itself is greatly enhanced.

As elsewhere, the mixing and extrusion stages are tightly controlled techniques. In Chapter 4 detail is provided on the theory of mixing and extrusion and on modern techniques and advances in this area.

As mentioned above, this is a simple food with the minimum of ingredients. Thanks to the diversity of shapes possible with extruded pasta there are any number of products, preparations and meals that can be made with pasta. The forms available range from the traditional long spaghetti products and short cut shapes such as penne to the novelty lines for canning pasta. As a result pasta occupies positions in both adult-oriented cuisine and in children's markets where the latest cinema hit or dinosaurs may yet rule.

The design and production of the dies responsible for all these shapes requires a blend of art and craft, and in a very enlightening and entertaining piece Chapter 5 takes us into the world of pasta die design.

Perhaps the most important advances in the past decade have been in the next critical point in modern pasta making: drying. Ten years ago it was normal for spaghetti drying to take 20 hours or more. At the time the technology was not available to speed this process up and to understand why one must appreciate the difficulties involved in drying this product without drying faults such as internal cracking (still often referred to as 'checking'). Chapter 6 presents the background and theories of drying pasta and brings us up to date with the current technology.

Today a drying time of 3 hours for short cut pasta shapes is possible and this has been brought about by the use of elevated temperatures, reaching 90°C and above. Apart from the obvious advantages of the shorter times involved, it appears that product quality has also benefitted from the new techniques.

Mention was made above of the minimal ingredients used in pasta manufacture. In fact, in addition to the essential presence of semolina, pasta has for many years been coloured by the addition of tomato or spinach. This enables manufacturers to produce a greater variety of products, including tricolore, a red, plain and green mixture coincidentally reminiscent of the Italian flag. Traditionally in the kitchen egg is typically added to pasta and so too in manufacturing egg pasta is very important. The presence of egg and/or egg albumen adds both strength and colour to the product.

Fortified pasta, made by adding vitamin mixes, is a relatively important variety, mainly for the US market. The presence of vitamins not only adds to the nutritive value of the product, but in the case of riboflavin will also improve colour by giving a yellow tone.

There is a small market for wholewheat pasta. Pasta made from wholewheat is quite different in appearance and texture and naturally has a higher fibre content. In Italy it is considered sufficiently different from plain pasta to be not 'durum wheat' pasta, even though it is generally made from such, and pasta makers there require a licence to produce it just as they do when they are including soft wheats in their mix. In Chapter 7 some details on these additional ingredients are presented.

There are many issues of concern when considering the quality of pasta at all stages of production. These include both quality and safety issues. Examples include drying faults, microbiological load and infestation. In our final chapter, Chapter 8, we address these issues and present plans to minimise quality and safety problems.

1.4 THE MARKET FOR PASTA

Today there is a market for Italian-style pasta all over the world. It may be no surprise that the Italians themselves continue to consume the most per person, but the amount consumed in such diverse countries as Venezuela, Tunisia, Switzerland and Chile is considerable (see Table 1.1).

Figures published over 30 years ago show how much consumption per head in the United Kingdom has increased; in Italy, which still tops the league, there appears to have been a slight decrease per capita.

In the USA a recent survey carried out by the National Pasta Association there has indicated that consumption per head has increased in recent years. The reasons given by consumers are that it is a healthy food that is easy to store at home and is quick and easy to prepare. Sadly for the US manufacturers this increase seems to be supplied by slightly higher imports, mainly from Italy, with a little from Turkey.

In the UK the growth in the market for dry pasta has slowed considerably and is now at about 2% per annum. The market for fresh pasta, although much smaller, is growing at 10% per annum. While the growth may be levelling off, pasta has been accepted by consumers in the UK as a normal part of the diet over the past 20 years and this is underlined by the rapid growth in sales of prepared pasta sauces (currently growing at 18%). Indeed they have probably helped to establish this untraditional food for UK consumers.

Country	Kg pasta per person		
_	1998	1966	
Italy	28.5	30–35	
Venezuela	12.7		
Tunisia	11.7		
Switzerland	9.6		
Chile	9.0		
USA	9.0	3.7	
Greece	8.5		
Peru	8.0		
France	7.3	6.3	
Russia	7.0		
Argentina	6.8		
Portugal	6.5		
Canada	6.3		
Sweden	5.5		
Germany	5.4		
Turkey	5.2		
Bolivia	4.8		
Spain	4.5		
The Netherlands	4.4		
Belgium/Luxembourg	4.3		
Austria	4.0		
Brazil	4.0		
Israel	4.0		
Former Yugloslavia	4.0		
Finland	3.2		
Australia	2.5		
Libya	2.5		
United Kingdom	2.5	0.4	
Mexico	2.3		
Costa Rica	2.0		
Denmark	2.0		
Japan	1.7		
Egypt	1.2		
Ireland	1.0		
China	0.8		

Table 1.1Estimates of national consumption of pasta(sources: Unione Industriali Pasta Italiani; Hummel, 1966).

Another significant factor in the UK is the very large market for canned pasta. This includes the largely children-oriented market for 'hoops' and various theme-based shapes. These tend to be canned in sweet sauces to attract youngsters. On the other hand there is also a significant market still for canned filled pasta such as ravioli, which tends to be aimed at both adults and children.

INTRODUCTION

If you speak to most Italians, while they are happy to manufacture canned products for the UK and other markets, they would rather not partake themselves. The eating qualities of these products are too far removed from the authentic product. Nevertheless in markets that have needed to be educated in the joys of eating 'real' pasta these canned products may have played a part in creating awareness and the acceptability of the authentic product.

			Type of pasta				
	Pla	in	Vitamin enriched	Egg	pasta	Cooked spaghetti ^b	
Nutrients							
Calories (kcal)	342 ^b	346 ^c	370	380	343 ^c	104	
Protein (g)	12 ^b	10 ^c	12.8	14	14 ^c	3.6	
Fat (g)	1.8 ^b	1.5 ^c	1.6	4.2	3.0 ^c	0.7	
Carbohydrate (g)	74 ^b	52 ^c	74	75	65°	22.2	
Dietary fibre (g)	2.9 ^b	3.0°	4.2	4.7	4.0 ^c	1.2	
Minerals							
Calcium (mg)	25 ^b		17.5	29		7	
Iron (mg)	2.1 ^b		3.8	4.5		0.5	
Magnesium (mg)	56 ^b		47	60		15	
Phosphorus (mg)	190 ^b		149	214		44	
Potassium (mg)	250 ^b		161	233		24	
Sodium (mg)	3 ^b	Trace ^c	7	21	20°	Tr	
Zinc (mg)	1.5 ^b		1.2	1.6		0.5	
Copper (mg)	0.32 ^b		0.2	0.3		0.1	
Manganese (mg)	0.9 ^b		0.7	0.7		0.3	
Vitamins							
Ascorbic acid (mg)	0 ^b		0	0		0	
Thiamin (mg)	0.22 ^b		1	1		0.01	
Riboflavin (mg)	0.31 ^b		0.44	0.5		0.01	
Niacin (mg)	3.1 ^b		7.5	8		0.5	
Pantothenic acid (mg)	0.3 ^b		0.43	0.7		Tr	
Vitamin B ₆ (μg)	0.17 ^b		0.1	0.1		0.02	
Folacin (µg)	34 ^b		17.5	30		4	
Vitamin B ₁₂ (μg)	0 ^b		0	0.4		0	
Vitamin A (iu)	0 ^b		0	61		0	
Cholesterol (mg)	0 ^b		0	94		0	

Table 1.2 Nutrition values for types of pasta.^a

^a All information per 100 g product.

Sources: ^b Holland et al. (1991); ^c UK retail packs.

All other data: USDA (1989).

Tr = trace