

a2
Micro
Edition

Innodata
0471437573.jpg

John Wiley & Sons, Inc.

Wiley Computer Publishing

NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO

Eric Giguère

Professional Developer’s Guide

Java 2
Micro
Edition

Publisher: Robert Ipsen
Editor: Carol Long
Managing Editor: John Atkins
Associate New Media Editor: Brian Snapp
Text Design & Composition: D&G Limited, LLC

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registra-
tion.

This book is printed on acid-free paper.

Copyright © 2000 by Eric Giguere. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authoriza-
tion through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to
the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212)
850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-39065-8

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Professional Developer’s Guide Series

Other titles in the series:

Advanced Palm Programming by Steve Mann and Ray Rischpater,
ISBN 0-471-39087-9

WAP Servlets by John L. Cook, III, ISBN: 0-471-39307-X

To Lisa, Victoria, Dino, and Taffy, with all my love.

Preface xv
Introduction xvii

Part One: Java and Small Devices 1

Chapter 1: It Really Is a Small World After All 3

Small Computing Devices 4
Memory and Storage Capacity 5
Processor Power 7
Input/Output Methods 8

Input Methods 8
Output Methods 12

Form Factor 13
Networking 13
Putting It All Together 15
Chapter Summary 15

Chapter 2: Java: Fat and Slow? 17

The Architecture of Java 18
Overview 18

 vii

Contents

The Execution Engine 19
The Virtual Machine 20
The Garbage Collector 29
The Class Loader 31
The Class Verifier 33
The Native Code Interface 33

Runtime Libraries 34
The Evolution of Java 35

Java 1.02: Client Programming 36
Applets 36
Applications 38

Java 1.1: Server Programming 39
Just-in-Time Compiling 39
Object Serialization 40
RMI 41
Database Connectivity 41
JavaBeans 42
Servlets 42
Browsers and the Java Plug-In 43
JRE 44

Java 2: Enterprise Programming 44
New Names and New Beginnings 45
One Version, Three Editions 45
Java 2 Standard Edition (J2SE) 46
Java 2 Enterprise Edition (J2EE) 47
Java 2 Micro Edition (J2ME) 47
What Is Next for Java 2? 47

The Devolution of Java 48
Chapter Summary 49

Chapter 3: Programming Strategies for Small Devices 51

If in Doubt, Do Not Use Java 51
Move Computation to the Server 52
Simplify the Application 53
Build Smaller Applications 54
Use Less Memory at Run Time 56

Use Scalar Types 56
Do Not Depend on the Garbage Collector 57
Help the Garbage Collector 57
Use Lazy Instantiation 58
Release Resources Early 59

 viii C O N T E N TS

Reuse Objects 59
Avoid Exceptions 61

Code with Performance in Mind 62
Use Local Variables 62
Avoid String Concatenation 63
Use Threads, but Avoid Synchronization 64

Separate the Model 65
An Introduction to MVC 65
Why Separate the Model? 66
How to Build a Model 66
The Tic-Tac-Toe Example 68

Chapter Summary 73

Part Two: Java 2 Micro Edition (J2ME) Specifications 75

Chapter 4: Java 2 Micro Edition (J2ME) 77

Introducing the Micro Edition 78
A New Virtual Machine 78
New and Changed Classes 79
Configurations and Profiles 79

The KVM 81
The Spotless System 82
Early KVM Controversy 83
The KVM Today 84

Related Technologies 86
Chapter Summary 87

Chapter 5: Configurations 89

Overview 89
The Purpose of a Configuration 90
Connected Device Families 90
Dynamic Application Delivery 91
Identifying a Configuration 91

The CLDC 91
CLDC Quick Summary 92
Detailed Requirements 94

Language Support 94
Virtual Machine Support 95
Sandbox Security 96
Inherited Classes 97
CLDC-Specific Classes: Generic Connections 98

CONTENTS ix

The CDC 101
CDC Quick Summary 101
Comparison to the CLDC 103

Chapter Summary 104

Chapter 6: Profiles 105

Overview 106
The Purpose of a Profile 106
How Profiles Are Used 106
Identifying a Profile 107

MIDP 107
Mobile Information Devices 108
MIDP Quick Summary 109
MIDlets and MIDlet Suites 109

What Defines a MIDlet? 110
What Defines a MIDlet Suite? 111
The Manifest 111
Application Descriptors 113
Application Lifecycle 114

User Interface Classes 115
The MIDP UI APIs and Abstract
Windowing Toolkit (AWT) 115
Screens and Events 116
Drawing and Repainting 119
Threading Issues 120

Other MIDP Classes 120
The Record Management System 120
HTTP Connections 123
Timer Notifications 124

Other Profiles 125
The PDA Profile 125
The Foundation Profile 125
The Personal Profile 126
The RMI Profile 126

Chapter Summary 126

Part Three: Java 2 Micro Edition (J2ME) Implementations 127

Chapter 7: The Connected Limited Device Configuration (CLDC)
Reference Implementation 129

Overview 129
Installation 130
Running the Samples 131

 x C O N T E N TS

Compiling, Preparing, and Running Classes 134
The Hello World Application 136
The Hello World Spotlet 137
Memory Usage 139
The JAM 139
Debugging 141
Internet Resources 142
Chapter Summary 142

Chapter 8: Java for Palm Connected Organizers 143

Using the CLDC with Palm Devices 143
A Palm Primer 144

A User’s Perspective 144
A Developer’s Perspective 145
The Palm OS Emulator 149

Installing the Palm CLDC 150
Running the Samples 151
KVMutil 152
Revisiting the Hello World Application 153
Additional MakePalmApp Options 155

Additional APIs 157
The User Interface 158

The Spotlet Model 158
Input Events 158
Drawing 160
Controls 161

Databases 163
Understanding Palm Databases 163
Using Databases in Java 164

Network Connectivity 165
The Connector Class 165
HTTP Connections 167

The Tic-Tac-Toe Example 167
Usage 168
How It Works 168
The Automatic Player 171

Third-Party Tools and Extensions 172
kAWT 172
Color KVM 172
JBuilder Handheld Express 173
Jbed MicroEdition (CLDC) 173

Chapter Summary 175

CONTENTS xi

Chapter 9: The Mobile Information Device Profile (MIDP)
Early Access Release 177

Overview 177
Installation 178
Using the Cellular Phone Simulator 179

Running the Simulator 180
Web Server Setup 180
Example Invocations 181

Running the Samples 182
Compiling and Preparing Classes 183
The HelloMIDlet Application 184
The Tic-Tac-Toe Example 187
Chapter Summary 191

Chapter 10: Java for Motorola Devices 193

The Motorola J2ME SDK 194
Installing the SDK 194
Using the SDK 194
Using the Emulator 195
Running the Samples 196
Compiling and Preparing Classes 198

The Tic-Tac-Toe Example 198
Chapter Summary 200

Chapter 11: Java for BlackBerry Wireless Handhelds 201

A BlackBerry Primer 201
A User’s Perspective 202
A Developer’s Perspective 203

The BlackBerry JDE 203
Installing the JDE 203
Starting the IDE 204
Using the IDE 204
Running and Debugging Code 206
Using the Simulator 208
Running the Samples 211

RIM’s J2ME Implementation 213
Overview 213
A First Application 213
A Better Application 216
Building Applications by Hand 218
The Application Model 219

Application Entry 219
Event Dispatching 220

 xii C O N T E N TS

Screens and Graphics 220
User-Interface Components 221

Network Communication 221
Miscellaneous Classes 222

The Tic-Tac-Toe Example 222
The TicTacToe Class 223
The TicTacToeUI Class 223

Chapter Summary 225

Chapter 12: Waba: An Alternative to Java 227

What Is Waba? 227
The Waba VM 228
The Waba Run Time 228
The Bridge Classes 229

Using Waba 230
Installation 230
Running the Samples 231
Compiling and Running Classes 233
The HelloWorld Application 235
Debugging 235

The Waba Foundation Classes 235
Overview 235
The Application Model 235
The User Interface 236
Input/Output (I/O) 236

The Tic-Tac-Toe Example 237
Chapter Summary 239

Chapter 13: Final Thoughts 241

Alternatives to J2ME 241
Conclusion 242

Appendix A: Tic-Tac-Toe Source Code 243

Index 289

CONTENTS xiii

Writing a book about software is a frustrating task, because you know
that by the time the book makes it into print, something about the
software will have changed. This is especially true when writing
about Java technology, because it evolves at Internet speeds. Rather
than just listing things, I have tried to explain them. How do I use
them? Where do I get them? What can I ignore? Where can I get more
information about them? How do they relate to each other and to
other things?

The primary purpose of this book, then, is to explain what Java 2
Micro Edition (J2ME) is and how you can use it—or not use it
because it does not meet your needs or expectations. When you get
to the end, you will be ready to start programming small computing
devices in Java. You will understand how configurations and profiles
work and what the KVM is and is not. You will know where to go in
order to get the tools and reference implementations that you need,
and you will know how to use them (which is not always obvious).
And you will know where to get updates on everything discussed
here: the book’s Web site at www.ericgiguere.com/microjava.

Preface

 xv

http://www.ericgiguere.com/microjava

Before I close this preface, I would like to make a few acknowledge-
ments. As usual, I would like to thank my editor at John Wiley &
Sons, Carol Long, for putting up with a busy part-time author who
tends to push the envelope when it comes to deadlines. And I would
like to thank all of the other good people at Wiley as well as my
agent, Carole McClendon. Jose Lacal at Motorola and David Yach at
Research In Motion also receive my thanks for allowing me to
include their software on the CD-ROM. My employer, iAnywhere
Solutions, a new subsidiary of Sybase, also deserves recognition for
providing a wonderful work environment and a chance to explore
and use new technologies while providing real solutions for our
customers and for allowing me to write this kind of book. And finally,
to my wife Lisa, whom I love dearly, and my baby daughter Victoria,
whose birth immediately followed the “birth” of my first book, for
providing a warm and fun home environment and reminding me that
there is more to life than programming—no matter how much you
enjoy it.

Eric Giguère

Waterloo, Ontario

October 2000

 xvi P R E FA C E

This book introduces you to Java programming for hand-held and embed-
ded systems, devices such as personal digital assistants (PDAs), cellular
telephones, and so-called intelligent appliances. The focus is on the Java
2 Micro Edition (J2ME), a new Java platform from Sun Microsystems
that is geared specifically toward devices that have limited memory
and/or processor power (which we refer to simply as small computing
devices). J2ME is still a developing platform, however, so we also will
look at other options when appropriate. By reading this book, you will
learn to apply your Java programming skills to an ever-increasing num-
ber of small computing devices.

Why Java?

As a software developer, you choose the programming language that
helps you get the job done as effectively and efficiently as possible. For
desktop- and server-based applications, many developers now choose
to program in Java because of the features that it offers:

Introduction

 xvii

Object-orientation. Apart from a few primitive types, everything in
Java is an object. This situation forces you to decompose your
application into classes and interfaces from the start, imposing a
certain structure on your code. We are not saying that you cannot
write bad code in an object-oriented system, but this system does
require you to think a bit about what you are doing (which is the first
step toward writing good code).

Automatic garbage collection. Java frees you from having to track
who is using a specific piece of memory and when it is available for
reuse by another part of the application. If nobody is referring to an
object, the system automatically reclaims that object. Without
garbage collection, you have to resort to schemes such as reference-
counting (like the auto_ptr type in C++ or the AddRef and
Release methods in COM) in order to ensure that an object is truly
unreferenced. These schemes require careful cooperation of all users
of the object, or else memory leaks or heap corruptions inevitably
result. (That said, garbage collection is not a solution to all memory
woes—as we will see in Chapter 3, one of your jobs as a programmer
is to help the garbage collector do its job.)

Exception handling. Exceptions are notifications that something has
gone wrong—something that might or might not be fixable—and that
execution must stop until the notification is handled. Java includes
support for throwing and catching exceptions.

Portability. Java promises that you can run the same program on any
platform (write once, run anywhere) with a conforming Java
interpreter and run-time library. Developers can reuse their skills and
knowledge in order to target a wider audience than would otherwise
be possible.

Multithreading. Java is thread-aware and includes built-in support for
thread creation, synchronization, and notification. Care is still
required to make code thread-safe, but the framework that the
language provides makes it easier and more portable than using the
operating system’s threading capabilities (if any).

Similarity to C++. Java is as close to C++ as any other programming
language not based on C, which makes it easier to transfer
programming skills.

These features also appeal to developers who work on smaller devices.
Garbage collection, for example, avoids memory leaks, which can be

 xviii I N T R O D U CT I O N

disastrous in an embedded system. Some would argue that these fea-
tures are even more important on these devices because they add a
robustness to programs that is only achieved with careful and disci-
plined programming in languages such as C or C++. There is a reluc-
tance, however, to adopt Java as a programming platform because of its
perceived shortcomings:

Java is fat. The original Java platform, what is now called the Java 2
Standard Edition (J2SE), has grown steadily in size since it was first
released. To reduce the installation footprint, the part required to run
Java programs (as opposed to the part required to compile them)
was split into a separate Java Runtime Environment (JRE)
containing the Java interpreter, run-time classes, and associated
support files. Even by itself, however, the JRE portion of J2SE is
large—about 26MB on the Windows platform at this writing—and it
grows as more and more classes are added to the core Java run time.
The JRE is simply too large for many devices, considering that a
typical Palm-connected organizer has between 2MB and 8MB of total
memory. Add to that the memory that is required to load and run a
Java program, and you will see why Java has been slow to make
inroads as a viable programming platform on these devices. You can
also make the argument that certain features of the language itself—
its object orientation, exception handling, and symbolic run-time
method resolution—lead to larger programs.

Java is slow. Java is an interpreted language, executing more slowly
by one or more orders of magnitude than comparable native code. To
make matters worse, a slower processor is often used in small
computing devices in order to extend battery life, because slower
processors use less power. Java performance is acceptable on
desktop and server systems not just because they use faster
processors, but also because of the run-time conversion of Java
bytecodes to native code by using technologies such as HotSpot and
just-in-time compilation (technologies that are not feasible on
smaller systems).

Portability is unnecessary. The promise of write once, run anywhere
appeals to developers who are writing applications that need to run
on different systems, but if you are writing code for a specific
embedded system or hand-held device, portability can be more of a
hindrance than a help. If you cannot access the unique features of
your device with the Java platform, then Java is useless. As well,

INTRODUCTION xix

portability is often never completely achieved in any case because of
bugs in the Java interpreter and in the run-time classes (write once,
debug everywhere as the joke goes).

As small computing devices evolve, they will undoubtedly include
more memory and faster processors—making standard Java a viable
programming language on these platforms. If you have 16MB of mem-
ory available on your PDA, however, you would probably rather have
most of that memory available to store addresses, images, sound
recordings, and other data (as opposed to using half of it just to run
your programs). The end user does not care if a program is written in
Java or C; instead, his or her only concern is that the application works
well and makes efficient use of the device’s limited resources. From
this viewpoint, Java would seem to fail.

The irony is that Oak, the early form of the Java language, was specifi-
cally designed as an embedded programming language for consumer
devices. (For some interesting reading about Oak and the Green Proj-
ect at Sun Microsystems, refer to the Web site http://java.sun.com/
people/jag/green/index.html). As such, there is nothing inherent in the
design of the language that limits it to usage on high-powered devices;
rather, it is all a matter of implementation. The recent surge in popular-
ity of hand-held devices is pushing Java to return to its roots as a pro-
gramming language for small devices. This situation is happening in a
number of ways, ranging from the simple (like writing tools in order to
compact Java code) to the complex (such as reimplementing the Java
interpreter).

The question remains, “Is Java usable on small computing devices?”
The answer is yes, at least with J2ME. When Sun Microsystems
announced J2ME at the JavaOne Conference in 1999, the major signifi-
cance of the announcement was that it demonstrated a will to make
Java work well on smaller platforms. It might take a while to get there,
but Java is on its way to acceptance as an alternative to C or C++ for
all platforms.

What to Expect from This Book

You will obtain two things from this book: a general understanding of
what makes Java programming on small devices different, and specific
instructions to get you started. You will still have to download and read

 xx I N T R O D U CT I O N

http://java.sun.com/people/jag/green/index.html
http://java.sun.com/people/jag/green/index.html

the various specifications for yourself, but the book will provide you
with valuable guidance to the material.

Who Should Read This Book?

This book is written for software developers. We assume that you have
a moderate level of Java programming experience. You do not need any
background in hand-held or embedded systems, however, because the
concepts that you need to understand are introduced as we go along. It
helps, however, to have access to some device—real or simulated—that
you can use for experimentation and to better understand the user
experience. If you do not own a device, do not worry—we will show
you how to get one or two simulators.

Chapter Summaries

This book has 13 chapters, grouped into three parts. The chapters are
best read in sequence.

Part One: Java and Small Devices

Chapter 1, “It Really Is a Small World After All,” defines what small
computing devices are all about.

Chapter 2, “Java: Fat and Slow?” looks at the architecture of Java and
its evolution so that we can better understand the need for somethidng
like J2ME.

Chapter 3, “Programming Strategies for Small Devices,” discusses
design and coding strategies that you can use in order to write Java
programs that work on small devices.

Part Two: J2ME Specifications

Chapter 4, “Java 2 Micro Edition (J2ME),” introduces the Micro Edition
and explains how it fits into the bigger Java picture. This chapter traces
the development of one of its key components, a new virtual machine
called the KVM.

INTRODUCTION xx

Chapter 5, “Configurations,” describes the two initial J2ME configura-
tions: the Connected Device Configuration (CDC) and the Connected,
Limited Device Configuration (CLDC). Configurations define basic Java
language and run-time library support.

Chapter 6, “Profiles,” describes the first J2ME profile: the Mobile Infor-
mation Device Profile (MIDP). This chapter also briefly describes other
profiles that are currently in development. Profiles build on top of con-
figurations by adding classes to support specific types of applications
or uses of devices.

Part Three: J2ME Implementations

Chapter 7, “The Connected Limited Device Configuration (CLDC) Ref-
erence Implementation,” shows you how to use the reference imple-
mentation of the CLDC on your desktop computer.

Chapter 8, “Java for Palm Connected Organizers,” shows you how to
use the Palm operating system (OS) port of the CLDC reference imple-
mentation. This chapter includes a short discussion of the unique archi-
tecture of Palm devices and how to use and obtain the Palm OS
Emulator so that you can try out the port even if you do not own a
Palm device yourself.

Chapter 9, “The Mobile Information Device Profile (MIDP) Early
Access Release,” shows you how to use the Early Access release of the
MIDP reference implementation. This release includes a cellular phone
simulator that lets you try your MIDP applications in a different envi-
ronment than Palm.

Chapter 10, “Java for Motorola Devices,” describes Motorola’s imple-
mentation of the MIDP, the first complete MIDP implementation from a
non-Sun party. A beta version of the Motorola J2ME SDK, complete
with emulators for various Motorola cellular telephones, is available on
the CD-ROM accompanying this book.

Chapter 11, “Java for BlackBerry Wireless Handhelds,” describes the
BlackBerry Java Development Environment—another non-Sun imple-
mentation of J2ME. An early-access version of the BlackBerry JDE is
available on the CD-ROM accompanying this book.

 xxii I N T R O D U CT I O N

Chapter 12, “Waba: An Alternative to Java,” explores a similar but dif-
ferent take on making Java work on small computing devices.

Chapter 13, “Final Thoughts,” concludes our exploration with a few
thoughts about the future of J2ME.

Appendices

Appendix A, “Tic-Tac-Toe Source Code,” lists the source code for the
tic-tac-toe game developed in this book.

INTRODUCTION xxiii

http://www.ericgiguere.com/microjava

Java and
Small Devices

PA RTONE

3

It Really Is a Small
World After All

These days, it seems that smaller is becoming just as important as
faster—at least, when it comes to computing. Whether it is something as
extreme as nanotechnology or as commonplace as internet appliances,
there is an increasing desire to embed computing technology in all
facets of the human experience. The popularity of personal digital assis-
tants (PDAs), cellular telephones, and other hand-held devices is just
the first wave of this surge.

Today’s small computing devices are comparable in power to the com-
puters of five years ago. Most will always lag behind what is considered
adequate for a desktop computer, however, due to space and power-
consumption considerations. The challenge is to adapt programs that
work well on the fastest processors and that use memory indiscrimi-
nately so that they also work on these smaller devices. In this chapter,
we discuss small computing devices to see what makes them different
from desktop and server computers. This knowledge prepares us for the
next chapter, where we will explore how Java works and why it needs
to change in order to work with these devices.We will then conclude
this part of the book with a discussion of programming strategies for
small devices.

C H A P T E R 1

4 C H A P T E R 1

Small Computing Devices

First, we should define a small computing device, which is simply a
computing device that has limited processor speed and/or available
memory when compared to a desktop or server computer. A typical
small computing device is a PDA, such as a Palm V, but the category
also covers devices that do not have a conventional user interface.
Some devices, for example, are meant to be embedded inside other
systems—with no explicit human interaction. These devices are also
of interest to us, although we will be dealing mostly with interactive
devices throughout this book (because they are more general and more
readily available).

Admittedly, the line separating a small computing device from the capa-
bilities of a full-fledged desktop or server computer is rather blurry as
thinner notebook computers, Web pads, and other devices come onto
the market. In general, however, you can use the following rule of
thumb to separate the two camps. If you never worry about the speed
of your application (if it is acceptable without any extra work on your
part) or about the amount of memory that it requires (within normal
limits), you are not working with a small computing device.

We can now examine the characteristics that separate small computing
devices from their more powerful siblings.

Speed Is Always Important

No matter what platform you are programming for, the speed of your application
is always important. What your goal is, however, is acceptable performance—not
the best possible performance. Achieving the best possible performance is usu-
ally a lower-priority task than fixing bugs or otherwise improving the application.
In many cases, the difference between acceptable and best possible simply is not
worth the effort that it requires. The challenge with small computing devices is
achieving acceptable performance, not surpassing it.

It Really Is a Small World After All 5

Memory and Storage Capacity

Memory capacity is an important measuring stick, and at first glance, a
small computing device might not seem that limited. You will find that
it is not unusual, for example, for a modern PDA to have 4MB, 8MB, or
more of memory. While this amount is less than the 64MB or 128MB
that you will get in a typical desktop system, it is not a debilitating
amount. Programs can fit comfortably in the 0MB–to–4MB range,
regardless of the platform. Focusing on memory capacity is rather
deceiving, however, because what we need to focus on is total storage
capacity (which is a much more important number).

Total storage capacity is the sum of a device’s online and offline storage
capacity. Online storage capacity is simply another term for memory
capacity—the amount of memory available to store runtime application
data (stack, threading information, and heap), system data, built-in
applications, and the operating system. Online storage is characterized
by instant availability and might or might not be persistent. Offline stor-
age capacity, on the other hand, is the capacity of secondary, persistent
storage modules such as hard disks or memory sticks. Offline storage is
usually slower to access and is not normally available for storing run-
time application data.

Compare the memory capacity of a desktop computer with 64MB of
random access memory (RAM) and a Palm Vx with 8MB of RAM, as
illustrated in Figure 1.1. The difference is not that pronounced. Now
compare the total storage capacity of the two devices. Say that the
desktop computer includes a 10GB hard drive for offline storage. Fig-
ure 1.2 demonstrates the difference between the two quite dramati-
cally: the desktop computer’s capacity is roughly 10GB (we can
effectively ignore the 64MB of RAM for this calculation), and the Palm
Vx’s still stands at 8MB. The desktop computer has almost infinite stor-
age capacity when compared to the basic Palm Vx.

Total storage capacity is not always a distinguishing feature, however.
Consider the IBM Microdrive, for example—a 340MB storage device
that can be plugged into any device that supports the CompactFlash
Type II expansion slot. In other words, you can use it with PDAs such
as the Hewlett-Packard Jornada 430se or the Psion Series 7. While

