TEXTBOOK OF BIOLOGICAL PSYCHIATRY

Edited By

Jaak Panksepp, Ph.D.
J. P. Scott Center for Neuroscience, Mind and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, Ohio

and

Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois

and

Adjunct Professor of Psychiatry, Medical College of Ohio, Toledo

WILEY-LISS

A JOHN WILEY & SONS, INC., PUBLICATION
TEXTBOOK OF BIOLOGICAL PSYCHIATRY
CONTENTS

Foreword .. xv
Preface .. xix
Contributors ... xxi

Part I FOUNDATIONAL CONCEPTS

1 BIOLOGICAL PSYCHIATRY SKETCHED—PAST, PRESENT, AND FUTURE

Jaak Panksepp

Overture .. 3
Historical Overview 5
Three Giants of the First Half of the 20th Century ... 7
Three Great Phases of 20th-Century American Psychiatry 9
World War II through the 1970s: The Psychoanalytic Era 10
Ultrapositivistic Psychopharmacology Era (1970–Present) 12
Dilemma of Psychiatric Diagnostics: DSMs and Beyond 17
Functions of Diagnostics 19
From Pathophysiology to Pathogenesis .. 20
Perennial Problem: Distinguishing Affective and Cognitive Processes 24
Coda: Intersection of 20th-Century Forces Leading to a 21st-Century Synthesis 28
References .. 29

2 IMAGING HUMAN EMOTIONS AND AFFECTIVE FEELINGS:
IMPLICATIONS FOR BIOLOGICAL PSYCHIATRY

Mario Liotti and Jaak Panksepp

v
CONTENTS

3 NEURAL SUBSTRATES OF CONSCIOUSNESS: IMPLICATIONS FOR CLINICAL PSYCHIATRY
Douglas F. Watt and David I. Pincus

Introduction 75
Dualism versus Emergent Properties 77
Nosology: Core versus Extended Consciousness 78
Classical Work on the Neural Substrates of Consciousness 79
Recent Work on the Neural Substrates of Consciousness: Brief Overview of Anatomical, Connectivity, Neuromodulatory, and Neurodynamic Aspects 80
Case Study 1: Delirium—A Common Disorder of Attentional Function and Working Memory 84
Neuroanatomical Systems and Consciousness—Basic Lesion/Functional Correlates 88
Thalamic Systems 92
Cortical Systems 94
Two Case Studies of Mesodiencephalic Lesions 98
Neurodynamic Aspects of Consciousness 102
Summary Heuristics/Questions for Future Research 105
References 107

4 STRESS, SLEEP, AND SEXUALITY IN PSYCHIATRIC DISORDERS
Terrence Deak and Jaak Panksepp

Introduction 111
Theoretical Framework for Understanding Stress Responsive Systems 112
Diathesis-Stress Models 114
Stress Responsive Systems 115
8 TREATMENT OF MOOD DISORDERS
Pedro L. Delgado and Paul Zarkowski
Overview 231
Classification 232
General Treatment Principles 235
Antidepressants 239
Somatic Treatments for Major Depression 250
Antimanic and Mood Stabilizers 252
Summary and Conclusions 259
References 259

9 NEUROSCIENCE OF SCHIZOPHRENIA
Christine Pesold, Rosalinda C. Roberts, and Brian Kirkpatrick
Introduction 267
Diagnosis and Classification of Schizophrenia 268
Etiology 270
Environmental Risks 274
Course of Illness 276
Neuropathological Abnormalities 277
Neurocognitive Problems 285
Neuropsychiatric Syndromes 287
Neurochemical Abnormalities 287
Animal Models 289
Conclusion 292
References 293

10 PHARMACOLOGICAL TREATMENT OF SCHIZOPHRENIA
Rajiv Tandon and Michael D. Jibson
Introduction 299
Targets of Pharmacological Treatment 300
Pharmacological Treatment 302
Course of Treatment 306
14 BIOLOGICAL BASIS OF CHILDHOOD NEUROPSYCHIATRIC DISORDERS 393
Bradley S. Peterson and Jaak Panksepp

Introduction 393
Pervasive Developmental Disorders and Specific Genetic Syndromes 394
Childhood-Onset Schizophrenia 408
Disorders of Impulse Control 409
Conclusions 419
References 420
Further Readings 435

15 AGING AND DEMENTIA 437
Mark T. Wright, A. John McSweeny, and Amy Kieswetter

History 437
Cognition and Memory in Normal Aging 439
Mild Cognitive Impairment 443
Definition of Dementia 448
Diagnosis of Dementia 450
Some Major Causes of the Syndrome of Dementia 451
Alzheimer’s Disease 452
Frontotemporal Dementia 461
Vascular Dementia 467
Dementia with Lewy Bodies 471
Conclusions 475
References 476

Part III FUTURE PROSPECTS 487

16 EMERGING NEUROSCIENCE OF FEAR AND ANXIETY: THERAPEUTIC PRACTICE AND CLINICAL IMPLICATIONS 489
Jaak Panksepp

Introduction 489
Subcortical FEAR System of the Mammalian Brain: The “Royal Road” to Understanding the Nature of Angst 492
Treatment of Anxiety in Clinical Practice 499
Dispersion and Functions of Fear Systems in the Brain: Continuing Studies of the Neuroanatomy of FEAR 505
CONTENTS

Experiential-Affective Attributes of Fear and Anxiety 506
Concluding Remarks 511
References 512

17 SOMATIC TREATMENTS IN PSYCHIATRY 521
Ziad Nahas, Jeffrey P. Lorberbaum, Frank A. Kozel, and Mark S. George

Introduction 521
Electroconvulsive Therapy 522
Magnetic Seizure Therapy 525
Transcranial Magnetic Stimulation 526
Vagus Nerve Stimulation 532
Deep Brain Stimulation 536
Psychiatric Neurosurgery 537
Future Directions 539
References 540

18 PSYCHOANALYSIS AND PSYCHOPHARMACOLOGY: ART AND SCIENCE OF COMBINING PARADIGMS 549
Marcia Kaplan

Introduction 549
Definition of Psychoanalytic Concepts 550
Challenge of Combining Paradigms 552
Future Prospects 566
Conclusions 567
References 568

19 DEPTH PSYCHOLOGICAL CONSEQUENCES OF BRAIN DAMAGE 571
Oliver H. Turnbull and Mark Solms

Introduction 571
Depth Neuropsychology and Issues of Methodology 573
Prevalence of Psychological Changes in Neurological Patients 575
Lesions to the Left Convexity 576
Ventromesial Frontal Lobes 579
Confabulation and the Neurobiology of Emotion Systems 582
Lesions to the Right Convexity 585
CONTENTS

xii

Conclusion 590
References 591

20 SOCIOPHYSIOLOGY AND EVOLUTIONARY ASPECTS OF PSYCHIATRY 597
Russell Gardner, Jr. and Daniel R. Wilson

Introduction 597
Relevant Evolutionary Concepts 598
Sociobiological Factors of Ultimate Causation 604
Psychiatric Pathogenesis as Communicational Disorder 607
Research on Substance Abuse and Social Rank Hierarchy 613
Preliminary Treatment Implications 618
Conclusions 620
References 620

21 FUTURE OF NEUROPEPTIDES IN BIOLOGICAL PSYCHIATRY AND EMOTIONAL PSYCHOPHARMACOLOGY: GOALS AND STRATEGIES 627
Jaak Panksepp and Jaanus Harro

Introduction 627
Neuropeptide Medicines: Still Waiting in the Wings 630
Emotional Foundations of Psychiatric Disorders 632
Neuropeptides in Psychiatric Disorders 634
Affective Foundations of Psychiatric Disorders and the Neurochemical Coding of Emotions 636
Two Childhood Disorders: Debatable Examples of Neuropeptide and Neurobehavioral Approaches 645
Neurotrophins and Psychiatric Disorders 647
Conclusions 649
References 651

Appendix A PHARMACODYNAMICS AND PHARMACOKINETICS 661
Jaanus Harro

Introduction 661
Pharmacodynamics: What Can the Drug Do to the Body? 662
This is not the first attempt to integrate biology with human behavior and mental illness. The Bible attributes emotional and cognitive functions to heart, bowels, and kidneys. The ancients favored a humoral view of temperament (sanguine, phlegmatic, choleric, and melancholic). Over the ages the many attempts to treat mental illness have included physical and medicinal measures: purging, hydrotherapy, galvanic stimulation, and many other strange interventions, in the belief that doing something to the body would exorcise mental illness.

With the discovery of hormones, their effects on body, mind, and behavior—both normal and abnormal—were studied in the hope that they would be therapeutically useful. Early electroencephalographic investigation was expected to give us easy access to the functions of the brain and mind, but instead revealed disappointingly little information about mental illness and, in fact, about mental function in general. Only in the mid-20th century did Adolf Meyer promote a biological psychiatry that brought everything that was known to be relevant to mental health and illness to bear upon psychiatric diagnosis and treatment.

Sigmund Freud, who was best known for his original and perceptive insights into the psychology of mental illness, in fact maintained a consistent interest in biology. From the outset he argued that the same neural systems and functions that, in illness, give rise to the signs and symptoms of neurological disease, also bring about the signs and symptoms of mental illness. In 1891, Waldeyer gave final form to the neuron theory. Freud enthusiastically embraced it as a possible basis for what he called a "scientific psychology," resulting in an uncompleted work, later known as the Project for a Scientific Psychology. He abandoned that effort when he realized that it was a will o' the wisp, an illusory scheme, based on verbal constructs rather than neural mechanisms. Biological psychiatry, as it became fully biologized, has also abandoned many ambiguous mental constructs. Now a key challenge is how to bring those subtle attributes of the brain-mind, such as affects, into the neurobiological arena. One credible way is to try to link the visually observable instinctual apparatus of animals to affective processes.

Freud's concept of drive was closely aligned with the ethologic concept of instinct; he attributed qualities to the drive that resemble closely those commonly associated with instinct. He saw instinct as "a concept on the frontier between the mental and
the somatic, . . . the psychical representative of the stimuli originating from within the organism and reaching the mind.” (Instinct and Their Vicissitudes, 1915, p. 121–122, Standard Edition) Running like a red thread throughout his work was the concept of energy, which always remained poorly defined. That too was a border concept: On the one hand, it was psychic energy; on the other hand it anticipated that medications still to be discovered in 1939, the year of his final statement, would exert their therapeutic effect by influencing this psychic energy.

Early intimations of a direct relation between the brain and hallucinated images and emotions were disclosed by the studies of the effects of direct stimulation of the exposed human brain by Wilder Penfield and his disciples in the middle of the 20th century. Soon thereafter, psychedelic and other psychoactive drugs revealed a chemically based mental apparatus with which neither scientific psychiatry nor psychology has come to terms.

It was soon after World War II that modern neuroscientific studies were initiated and rapidly developed momentum. Applied neuroscience (i.e., psychopharmacology) exerted its initial impact on a clinical psychiatry that had yet to become fully biologized. Though they had been preceded by the barbiturates that, in their day, had proved very useful, the newer agents now exhibited antipsychotic and mood-correcting powers. When the possibility of affecting mental illness chemically became clear, the drug companies addressed the problem with their formidable resources and in rapid succession introduced new variants of the basic therapeutic agents. Although the psychiatric profession accepted and employed these medications enthusiastically, the early literature exhibited little interest in using psychopharmacologic experience as a point of entry for a neuroscience of mental illness. The amazing development of molecular neuropharmacology recently has catalyzed that coordination.

The present volume represents a landmark in this developing trend. Trained as a behavioral neuroscientist and psychologist, editor Jaak Panksepp is knowledgeable in the field of psychoanalysis and experienced in practical psychotherapy. He has actively pursued reliable knowledge about brain function in its relation to behavior through careful animal experiments. He proceeds from the assumption that affect is the central variable in human behavior, to which other features are secondary. His 1998 work, Affective Neuroscience, is becoming one of the scriptures of the third revolution in 21st-century psychiatry. I consider psychoanalytic psychiatry the first, psychopharmacologic psychiatry the second, and a functional neuroscientific psychiatry the third.

In Affective Neuroscience, Panksepp examined the several instinctual systems, their affective correlates, and the autonomic and physiologic systems that subserve them. The neurochemistries involved also provided points of correlation with established and potentially new pharmacologic strategies. His was a novel and original approach to human behavior that permitted clinicians like myself a view of the opportunities and the promise of the neuroscientific approach to psychiatry.

In this Textbook of Biological Psychiatry, Panksepp fulfills this promise. I draw the reader’s attention especially to his introductory chapter in which he points the way to the elusive synthesis of studies of mind and brain, focusing on affect as the essential
and functional link. This emphasis is both timely and ironic since affect had been remote from the central interest of both psychoanalysts and neuroscientists.

For this endeavor, he has assembled a group of scientists and clinicians and invited them to apply contemporary neuroscience to psychiatric issues. This coordination of Panksepp’s persistence and brilliance along with the insights of his carefully selected collaborators will afford a new, practical understanding of biological psychiatry, at once imaginative and realistic.

Mortimer Ostow, M.D., Med. Sc. D.
President, Psychoanalytic Research and Development Fund
This work was initiated with the aim of bringing together the traditions that have helped create modern biological psychiatry. The hope was to craft a perspective that could help project our thinking fruitfully into the future. During the past few decades, we have learned to quantify normal and abnormal brain functions at a level of precision unimaginable just a generation ago. However, progress in biological psychiatry is also based on new theoretical perspectives, for it is only through theory that we can envision what may emerge on the horizon of knowledge. Of course, theory can also be a lens that distorts reality.

Our aim was to seek the middle ground—a balance of facts and theories, as well as consideration of both clinical and preclinical perspectives. My hope is that this text will be useful for students, teachers, and practitioners, as well as the scientists who harvest the basic knowledge from which future understanding must emerge. I owe a debt of gratitude to the many contributors who took precious time from their busy schedules to summarizes the important themes covered in this book. The only regret I have is that space constraints made it impossible to treat all topics as fully as they deserve. Luna Han, the acquisition editor for this contribution, exhibited remarkable forebearance and did not outwardly waver in her faith that the project would reach completion in a reasonably timely manner. That proved to be a challenge for many.

A special word of gratitude goes to my wife Anesa who read and commented extensively on the entire text. Each of the chapters underwent at least one major revision to optimize style and coverage, and several underwent cycles of intellectual adventure for both the contributors and editors. But even where the needs of the book and the desires of authors briefly clashed, the middle road was eventually found. Jeff Burgdorf, Casey Cromwell, and Nikki Gordon also provided assistance at several critical phases of the project. I thank all for their contributions.

We wish to dedicate this text to the many pioneers, past and present, who have devoted their lives to understanding the normal and abnormal functions of the human mind. Many now appreciate that such a quest cannot be completed unless we also try to understand the brains and minds of other creatures. Indeed, some of the most interesting research on mind, brain, and behavioral relations has been emerging from animal research conducted in departments of psychiatry and neurology. This is a tradition in which all of the three giants—Emil Kraepelin, Adolf Meyer, and Sigmund Freud—to
whom we dedicate this volume were immersed at some point in their illustrious careers. Their portraits are used with the permissions, respectively, of The University of Tartu Library, The Adolf Meyer Library of Medicine at Johns Hopkins University, and the Freud Archive, London.

Although each of these pioneers started with physiological and neurological interest, their intellectual paths eventually diverged. However, because of historical and intellectual circumstances that emerged during the 20th century (as summarized in Chapter 1), all hewed paths that made contributions to future efforts to blend mind, brain, and body perspectives to understanding mental disorders. The whole person is no less important that the dizzying arrays of parts of which he or she is composed. Below the surface features of mental phenomena are mechanisms with which we must become conversant in order to make progress, never forgetting that the emergent whole is greater than the parts. This book was constructed with such perspectives in mind, and thank everyone that contributed to this effort.

Jaak Panksepp
Falk Center for Molecular Therapeutics
J.P. Scott Center for Neuroscience, Mind and Behavior

Emil Kraepelin
(1856–1926)

Adolf Meyer
(1866–1950)

Sigmund Freud
(1856–1939)

Color image from this volume are available at ftp://ftp.wiley.com/public/sci_tech_med/biological_psychiatry/
CONTRIBUTORS

Fredric N. Busch, M.D., Department of Psychiatry, Weill Cornell Medical College, and Columbia University Center for Psychoanalytic Training and Research, New York, New York

Terrence Deak, Ph.D., Department of Psychology, SUNY–Binghamton, Binghamton, New York

Pedro L. Delgado, M.D., Department of Psychiatry, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio

Russell Gardner, Jr., M.D., Department of Psychiatry, University of Wisconsin Medical School and Medical College of Wisconsin, Madison, Wisconsin; 214 DuRose Terrace, Madison, Wisconsin 53705

Mark S. George, M.D., Center for Advanced Imaging Research (CAIR), Radiology Department, Medical University of South Carolina, Charleston, South Carolina

Jaanus Harro, M.D., Ph.D., Department of Psychology, Center of Behavioral and Health Sciences, University of Tartu, Tartu, Estonia

Andreas Heinz, M.D., Clinic for Psychiatry and Psychotherapy, Humboldt University, Berlin, Germany

Michael D. Jibson, M.D., Ph.D., Department of Psychiatry, University of Michigan Medical Center, Ann Arbor, Michigan

Marcia Kaplan, M.D., Department of Clinical Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio

Shitij Kapur, M.D., FRCPC, Ph.D., Schizophrenia-PET Program, Center for Addiction and Mental Health, University of Toronto, Ontario, Canada

Amy Kieswetter, M.D., Department of Geriatric Psychiatry, Medical College of Ohio, Toledo, Ohio
Brian Kirkpatrick, Ph.D., Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland

Nikolas Klein, M.D., Schizophrenia-PET Program, Center for Addiction and Mental Health, University of Toronto, Ontario, Canada

Brian Knutson, Ph.D., Department of Psychology, Stanford University, Stanford, California

Frank A. Kozel, M.D., Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina

Mario Liotti, Ph.D., Department of Psychiatry, University of Nottingham, Nottingham, United Kingdom

Jeffrey P. Lorberbaum, M.D., Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina

Helen S. Mayberg, M.D., Departments of Psychiatry and Medicine (Neurology), The Rotman Institute, University of Toronto, Ontario, Canada

A. John McSweeny, Ph.D., Department of Psychiatry, Medical College of Ohio, Toledo, Ohio

Barbara L. Milrod, M.D., Department of Psychiatry, Cornell University Medical College, New York, New York

Ziad Nahas, M.D., Brain Stimulation Laboratory, Medical University of South Carolina, Institute of Psychiatry, Charleston, South Carolina

Jaak Panksepp, Ph.D., Department of Psychology, Bowling Green State University, Bowling Green, Ohio and Falk Center of Molecular Therapeutics, Northwestern University, Evanston, Illinois

Christine Pesold, Ph.D., Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois

Bradley S. Peterson, M.D., Department of Psychiatry, Columbia College of Physicians and Surgeons and the New York State Psychiatric Institute, New York, New York

David I. Pincus, Ph.D., Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio

Rosalinda C. Roberts, Ph.D., Maryland Psychiatric Research Center, Departments of Psychiatry, Anatomy, and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland

Lisa A. Snider, M.D., Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, Bethesda, Maryland
Mark Solms, Ph.D., Department of Psychology, University College of London, United Kingdom, and Department of Psychology, University of Cape Town, South Africa

Susan E. Swedo, M.D., Pediatrics and Developmental Neuropsychiatry Branch, National Institute of Mental Health, Bethesda, Maryland

Rajiv Tandon, M.D., Department of Psychiatry, University of Michigan Medical Center, Ann Arbor, Michigan

Johannes Tauscher, M.D., Department of General Psychiatry, University of Vienna, Austria

Oliver H. Turnbull, Ph.D., School of Psychology, University of Wales, Bangor, United Kingdom

Bessel A. van der Kolk, M.D., Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts

Douglas F. Watt, Ph.D., Department of Neuropsychology, Quincy Medical Center, Boston University School of Medicine, Quincy, Massachusetts

Daniel R. Wilson, M.D., Ph.D., Departments of Psychiatry and Anthropology, Creighton University School of Medicine, Omaha, Nebraska

Mark T. Wright, M.D., Department of Psychiatry, Medical College of Ohio, Toledo, Ohio

Paul Zarkowski, M.D., Department of Psychiatry, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
The background topics relevant to psychiatric disorders in biological terms is vast and typically includes neuroanatomy, neurophysiology, and neurochemistry. Since such approaches are remarkably well represented in various recent handbooks, and typically all substantive neuroscience courses, one more redundant effort in that direction would not be all that useful. Accordingly, we have used the limited space available to focus on topics that are more intimately related to psychological issues—the nature of emotionality, consciousness, stress, personality, and the brain imaging technologies that have changed the face of psychiatry in the past decade.

This decision was also fostered by the recognition that we have finally reached an era where the mind-brain barrier is beginning to dissolve. Although there are many ambiguities about what we may mean when we talk about “the mind,” most generous scholars accept that the dynamics of mind ride upon the dynamics of the brain, and we now know that for any psychotherapy to work, it must influence brain functions (Cozolino, 2002). Empirical demonstrations of this concept are growing rapidly, ever since Baxter and colleagues (1989) demonstrated that cognitive behavioral therapy could reduce the frontal cortical overactivity in obsessive-compulsive disorders. A few years ago the Archives of General Psychiatry published two back-to-back lead articles on how interpersonal therapy modified brain activities of depressed individuals in ways resembling those of modern serotonin-specific antidepressants (Brody et al., 2001; Martin, 2001).
Daniel J. Stern said it well in the foreword to Cozolino’s (2002) treatise on the *Neuroscience of Psychotherapy*, as he indicated that clinicians immerse themselves “in the stories of individuals who come for help in feeling better... Whatever the approach, lasting change in therapy occurs as a result of changes in the human mind... which involve changes in the functions of the brain. Exactly how the mind changes during the therapeutic process is the fundamental puzzle that the synthesis of neuroscience and psychotherapy seeks to solve” (p. ix). Stern emphasized the difficult but productive marriage between clinical and neuroscientific disciplines, highlighting how “psychotherapy emphasizes the importance of subjective experience and the power of relationships to transform the growing mind” while “neuroscience focuses on quantifiable, objective data and the scientific method to create models of mind and brain” (p. x). The interpenetration of neuroscientific knowledge and psychiatric practice is becoming much more than the impressive recitation of the great victories of the neuroscience revolution of the past half century. We are finally seeing, in many experimental domains, how subjective psychological processes are related to a demonstrable impact on the objective dynamics of the brain.

The first half dozen chapters of this text attempt to bridge between the clinical and scientific issues. To do this, we have to blend the fine and abundant evidence that is being derived from rather indirect studies of the human brain/mind and the detailed knowledge about brain functions we can cull from our fellow creatures, who also live emotional lives that deserve our close attention and sympathy. These subtle issues, such as the fundamental neural nature of affective experiences, need to be discussed not only in neural terms, but also in terms of the evolved substrates and qualities of consciousness. The logo of this book reflects this philosophy of recognizing that the multiple layers of brain/mind evolution are reflected in the evolutionary passages which serve as a foundation for the human mind.

REFERENCES

Martin SD (2001). Brain blood flow changes in depressed patients treated with interpersonal therapy or venlafaxine hydrochloride. *Arch Gen Psychiatry* 58:641–648.
OVERTURE

It is a difficult task to capture the history of biological psychiatry in a brief essay. Let me frame this modest effort in a timeless humanistic perspective.

Psychiatry is the study and treatment of troubled mental lives. Its ultimate goal is to heal broken spirits. At its core, it is an attempt to better understand human thoughts and emotions and to allow this understanding to inform the healing arts. Despite our modern scientific hubris, we know rather little about how brains truly construct our minds and passions. Partly, this is because few scholars have come to terms with the need to understand the evolutionary neural dynamics that affective experiences are ultimately made of. It is all too easy to accept emotions as primitive “givens” and proceed toward a superficial understanding based on words, arbitrary definitions, and the quiddities of logic rather than biology. But the greater and more significant
depths of this mystery have to be plumbed by an integrative neuroscience that has barely emerged.

It is surely not off the mark to claim that the single most important scientific question for biological psychiatry is the accurate decoding of the basic neural nature of affective values and related cognitive experiences. Emotions and moods guide most of our thinking processes and behavioral choices, whether well-arranged or deranged. Many psychopathologies arise from imbalances in these feeling systems that motivate us to think and act in certain ways. At a deep psychological level, that often goes unspoken, emotionally disturbed people have some insight into the weaknesses of their minds. They simply don’t know how to manage their persistent psychic disequilibrium. They are certainly no more accustomed to thinking about these psychic forces in neural terms than are the counselors and psychotherapists from whom they seek assistance.

Taxonomic schemes that do not directly acknowledge the underlying emotional faculties of the human mind and brain must be deemed provisional approximations of the goals to which we should aspire. Brain sciences that do not acknowledge or attempt to explore how such processes motivate and guide thinking do no great service to psychiatric thought. Mind sciences that do not dwell on the complexity of the internal world, replete with all manner of feelings and cognitions, do not serve our understanding well. The cognitive, behavioral, and affective sciences must devote equal effort to understanding the embeddedness of mind in brain, body, environment, and culture; otherwise essential components will be overlooked. Only by blending these perspectives judiciously, without inflaming simple-minded polarities such as nurture versus nature, is psychiatric practice well served.

By the end of the 20th century neuroscience had advanced to a point where we now understand the brain rather well. Unfortunately, the discussion of equally important, but more slippery, mind matters continues to lag far behind. Credibly linking facts about the brain to mental functions is maddeningly difficult. There are few incentives in our current system for integrating the abundant peppercorns of brain data into an integrated psychobiological understanding. A prevailing positivistic hope has been that knowledge will emerge automatically from the raw facts like cream rising from freshly expelled milk. To an undesirable degree, theoretical views have been demoted to second-class citizenship. Accordingly, rich discussions of many key functional issues almost disappeared in neuroscience as it mastered how to milk our neural nature during the last third of the 20th century. Indeed, the very concept of productive hypothesizing came to be termed, scornfully, as “mere speculation,” perhaps because too many students of the mind (and certainly too many science popularizers) forgot the difference between a “working hypothesis” and a “provisional conclusion.” Major textbooks of biological psychiatry and neuropsychiatry no longer discuss emotions prominently. Some consider them needless frills that intervene between reliable diagnostic categories and descriptions of related brain changes. Often, there is little tolerance for such “middle-level” theorizing that seeks to meaningfully link brain functions with mind. One aim of this text is to reverse this trend.