Digital Communication over Fading Channels

Second Edition

Marvin K. Simon Mohamed-Slim Alouini

Digital Communication over Fading Channels

Digital Communication over Fading Channels

Second Edition

Marvin K. Simon Mohamed-Slim Alouini

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Simon, Marvin Kenneth, 1939-

Digital communication over fading channels/Marvin K. Simon and Mohamed-Slim Alouini.—2nd ed.

p. cm.—(Wiley series in telecommunications and signal processing)

"A Wiley-Interscience publication."

Includes bibliographical references and index.

ISBN 0-471-64953-8 (cloth : acid-free-paper)

1. Digital communications-Reliability-Mathematics. 2. Radio-Transmitters and transmission-Fading. I. Alouini, Mohamed-Slim. II. Title. III. Series.

TK5103.7.8523 2004 621.382-dc22

2005042040

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Marvin K. Simon dedicates this book to his wife, Anita, whose devotion to him and this project never once faded during its preparation.

Mohamed-Slim Alouini dedicates this book to his parents and his family.

CONTENTS

Preface	XXV
Nomenclature	xxxi

PART 1 FUNDAMENTALS

CHAPTER 1	Introduction		
	1.1	System Performance Measures	4
		1.1.1 Average Signal-to-Noise Ratio (SNR)	4
		1.1.2 Outage Probability	5
		1.1.3 Average Bit Error Probability (BEP)	6
		1.1.4 Amount of Fading	12
		1.1.5 Average Outage Duration	13
	1.2	Conclusions	14
		References	14
CHAPTER 2	Fading Channel Characterization and Modeling		
	2.1	Main Characteristics of Fading Channels	
		2.1.1 Envelope and Phase Fluctuations	17
		2.1.2 Slow and Fast Fading	18
		2.1.3 Frequency-Flat and Frequency-Selective	
		Fading	18
	2.2	Modeling of Flat-Fading Channels	19
		2.2.1 Multipath Fading	20
		2.2.1.1 Rayleigh	20
		2.2.1.2 Nakagami-q (Hoyt)	22
		2.2.1.3 Nakagami-n (Rice)	23
		2.2.1.4 Nakagami- <i>m</i>	24

			2.2.1.5 Weibull	25
			2.2.1.6 Beckmann	28
			2.2.1.7 Spherically-Invariant Random	
			Process Model	30
		2.2.2	Log-Normal Shadowing	32
		2.2.3	Composite Multipath/Shadowing	33
			2.2.3.1 Composite Gamma/Log-Normal	
			Distribution	33
			2.2.3.2 Suzuki Distribution	34
			2.2.3.3 <i>K</i> Distribution	34
			2.2.3.4 Rician Shadowed Distributions	36
		2.2.4	· · · · · ·	
			Shadowed/Unshadowed Fading	37
	2.3	Model	ling of Frequency-Selective Fading Channels	37
		Refere	ences	39
CHAPTER 3	Тур	es of C	Communication	45
	3.1	Ideal	Coherent Detection	45
		3.1.1	Multiple Amplitude-Shift-Keying (<i>M</i> -ASK)	
			or Multiple Amplitude Modulation (<i>M</i> -AM)	47
		3.1.2	Quadrature Amplitude-Shift-Keying	
			(QASK) or Quadrature Amplitude	
			Modulation (QAM)	48
		3.1.3	M-ary Phase-Shift-Keying (M-PSK)	50
		3.1.4	Differentially Encoded <i>M</i> -ary	
			Phase-Shift-Keying (M-PSK)	53
			3.1.4.1 π /4-QPSK	54
		3.1.5	Offset QPSK (OQPSK) or Staggered QPSK	
			(SQPSK)	55
		3.1.6	<i>M</i> -ary Frequency-Shift-Keying (<i>M</i> -FSK)	56
		3.1.7	Minimum-Shift-Keying (MSK)	58
	3.2	Nonid	eal Coherent Detection	62
	3.3		bherent Detection	66
	3.4	Partial	lly Coherent Detection	68
		3.4.1	Conventional Detection	68
			3.4.1.1 One-Symbol Observation	68
			3.4.1.2 Multiple-Symbol Observation	69
		3.4.2	Differentially Coherent Detection	71
			3.4.2.1 <i>M</i> -ary Differential	
			Phase-Shift-Keying (M-DPSK)	71
			3.4.2.2 Conventional Detection	
			(Two-Symbol Observation)	73
			3.4.2.3 Multiple-Symbol Detection	76

3.4.3	π /4-Differential QPSK (π /4-DQPSK)	78
Refere	nces	78

PART 2 MATHEMATICAL TOOLS

CHAPTER 4			Representations of Classical	83	
	Functions				
	4.1		an Q-Function	84	
			One-Dimensional Case	84	
		4.1.2 4.1.3		86	
		4.1.5	Cases	88	
		4.1.4	Alternative Representations of Higher	00	
			Powers of the Gaussian <i>Q</i> -Function	90	
	4.2	Marcu	m Q -Function	93	
		4.2.1	First-Order Marcum <i>Q</i> -Function	93	
			4.2.1.1 Upper and Lower Bounds	97	
		4.2.2	Generalized (<i>m</i> th-Order) Marcum		
			Q-Function	100	
			4.2.2.1 Upper and Lower Bounds	105	
	4.3	The N	uttall <i>Q</i> -Function	113	
	4.4	Other	Functions	117	
		Refere	nces	119	
		Appen	dix 4A. Derivation of Eq. (4.2)	120	
CHAPTER 5	Use	ful Exp	ressions for Evaluating Average		
	Error Probability Performance				
	5.1		ls Involving the Gaussian <i>Q</i> -Function	123	
		-	Rayleigh Fading Channel	125	
			Nakagami-q (Hoyt) Fading Channel	125	
		5.1.3		126	
		5.1.4	Nakagami-m Fading Channel	126	
		5.1.5	Log-Normal Shadowing Channel	128	
		5.1.6	Composite Log-Normal		
			Shadowing/Nakagami-m Fading Channel	128	
	5.2	Integra	ls Involving the Marcum Q-Function	131	
		5.2.1	Rayleigh Fading Channel	132	
		5.2.2	Nakagami-q (Hoyt) Fading Channel	133	
		5.2.3	Nakagami- <i>n</i> (Rice) Fading Channel	133	
		5.2.4 5.2.5	Nakagami- <i>m</i> Fading Channel	133 133	
		5.2.5	Log-Normal Shadowing Channel	155	

		5.2.6	Composite Log-Normal	
		507	Shadowing/Nakagami- <i>m</i> Fading Channel	134
		5.2.7	Some Alternative Closed-Form Expressions	135
	5.3	-	als Involving the Incomplete Gamma Function	137
		5.3.1	Rayleigh Fading Channel	138
		5.3.2	Nakagami-q (Hoyt) Fading Channel	139
		5.3.3	Nakagami- <i>n</i> (Rice) Fading Channel	139
		5.3.4	6 6	140
		5.3.5	6	140
		5.3.6	Composite Log-Normal Shadowing/Nakagami- <i>m</i> Fading Channel	140
	5.4	Integra	als Involving Other Functions	141
		5.4.1	The <i>M</i> -PSK Error Probability Integral	141
			5.4.1.1 Rayleigh Fading Channel	142
			5.4.1.2 Nakagami- <i>m</i> Fading Channel	142
		5.4.2	Arbitrary Two-Dimensional Signal	
			Constellation Error Probability Integral	142
		5.4.3	Higher-Order Integer Powers of the	
			Gaussian Q-Function	144
			5.4.3.1 Rayleigh Fading Channel	144
			5.4.3.2 Nakagami- <i>m</i> Fading Channel	145
		5.4.4	Integer Powers of <i>M</i> -PSK Error Probability	
			Integrals	145
			5.4.4.1 Rayleigh Fading Channel	146
		Refere	ences	148
			ndix 5A. Evaluation of Definite Integrals	
		Assoc	iated with Rayleigh and Nakagami- <i>m</i> Fading	149
		5A.1	Exact Closed-Form Results	149
		5A.2	Upper and Lower Bounds	165
CHAPTER 6	and	Cumu	esentations of Some Probability Density Ilative Distribution Functions for	
	Cor	relativ	e Fading Applications	169
	6.1	Bivari	ate Rayleigh PDF and CDF	170
	6.2		and CDF for Maximum of Two Rayleigh om Variables	175
	6.3		and CDF for Maximum of Two Nakagami- <i>m</i> om Variables	177
	6.4		and CDF for Maximum and Minimum of Two Normal Random Variables	180
		6.4.1	The Maximum of Two Log-Normal Random Variables	180

6.4.2	The Minimum of Two Log-Normal Random	
	Variables	183
Referen	nces	185

PART 3 OPTIMUM RECEPTION AND PERFORMANCE EVALUATION

CHAPTER 7	Optimum Receivers for Fading Channels			
	7.1	The C	ase of Known Amplitudes, Phases, and	
		Delay	s—Coherent Detection	191
	7.2	The C	The Case of Known Phases and Delays but	
		Unkno	own Amplitudes	195
		7.2.1	Rayleigh Fading	195
		7.2.2	Nakagami-m Fading	196
	7.3	The C	ase of Known Amplitudes and Delays but	
		Unkno	own Phases	198
	7.4	The C	ase of Known Delays but Unknown	
		Ampli	itudes and Phases	199
		7.4.1	One-Symbol Observation—Noncoherent	
			Detection	199
			7.4.1.1 Rayleigh Fading	201
			7.4.1.2 Nakagami- <i>m</i> Fading	206
		7.4.2	Two-Symbol Observation—Conventional	
			Differentially Coherent Detection	211
			7.4.2.1 Rayleigh Fading	214
			7.4.2.2 Nakagami- <i>m</i> Fading	217
		7.4.3	N _s -Symbol Observation—Multiple	
			Differentially Coherent Detection	217
			7.4.3.1 Rayleigh Fading	218
			7.4.3.2 Nakagami- <i>m</i> Fading	218
	7.5	The C	ase of Unknown Amplitudes, Phases, and	
		Delay	S	219
		7.5.1	One-Symbol Observation—Noncoherent	
			Detection	219
			7.5.1.1 Rayleigh Fading	220
			7.5.1.2 Nakagami- <i>m</i> Fading	221
		7.5.2	Two-Symbol Observation—Conventional	
			Differentially Coherent Detection	221
		Refere	ences	222
CHAPTER 8	Per	formar	nce of Single-Channel Receivers	223

HAPTER 8	Performance of Single-Channel Receivers	223	
	8.1 Performance Over the AWGN Channel	223	

8.2

8.1.1	Ideal Co	herent Detection	224
	8.1.1.1	Multiple Amplitude-Shift-Keying	
		(M-ASK) or Multiple Amplitude	
		Modulation (<i>M</i> -AM)	224
	8.1.1.2	Quadrature Amplitude-Shift-	
		Keying (QASK) or Quadrature	
		Amplitude Modulation (QAM)	225
	8.1.1.3	M-ary Phase-Shift-Keying	
		(M-PSK)	228
	8.1.1.4	Differentially Encoded <i>M</i> -ary	
		Phase-Shift-Keying (<i>M</i> -PSK)	
		and $\pi/4$ -QPSK	234
	8.1.1.5	Offset QPSK (OQPSK) or	
		Staggered QPSK (SQPSK)	235
	8.1.1.6	<i>M</i> -ary Frequency-Shift-Keying	
		(<i>M</i> -FSK)	236
	8.1.1.7	Minimum-Shift-Keying (MSK)	237
8.1.2		1 Coherent Detection	237
8.1.3		erent Detection	242
8.1.4		Coherent Detection	242
	8.1.4.1	Conventional Detection	
		(One-Symbol Observation)	242
	8.1.4.2	Multiple-Symbol Detection	244
8.1.5		tially Coherent Detection	245
	8.1.5.1	<i>M</i> -ary Differential	
		Phase-Shift-Keying (<i>M</i> -DPSK)	245
	8.1.5.2	<i>M</i> -DPSK with Multiple-Symbol	-
		Detection	249
	8.1.5.3	π /4-Differential QPSK	-
		$(\pi/4-DQPSK)$	250
8.1.6	Generic	Results for Binary Signaling	251
Danfam			
		ver Fading Channels	252
8.2.1		herent Detection	252
	8.2.1.1	Multiple Amplitude-Shift-Keying	
		(<i>M</i> -ASK) or Multiple Amplitude	
		Modulation (<i>M</i> -AM)	253
	8.2.1.2	Quadrature Amplitude-Shift-	
		Keying (QASK) or Quadrature	
		Amplitude Modulation (QAM)	254
	8.2.1.3	M-ary Phase-Shift-Keying	
		(<i>M</i> -PSK)	256
	8.2.1.4	Differentially Encoded <i>M</i> -ary	
		Phase-Shift-Keying (M-PSK) and	
		π /4-QPSK	258

			8.2.1.5	Offset QPSK (OQPSK) or	
				Staggered QPSK (SQPSK)	262
			8.2.1.6	M-ary Frequency-Shift-Keying	
				(M-FSK)	262
			8.2.1.7	Minimum-Shift-Keying (MSK)	267
		8.2.2	Nonidea	al Coherent Detection	267
			8.2.2.1	Simplified Noisy Reference Loss	
				Evaluation	273
		8.2.3	Noncoh	erent Detection	281
		8.2.4	•	Coherent Detection	282
		8.2.5		tially Coherent Detection	284
			8.2.5.1	M-ary Differential Phase-Shift-	
				Keying (M-DPSK)—Slow Fading	285
			8.2.5.2	M-ary Differential Phase-Shift-	
				Keying (M-DPSK)—Fast Fading	290
			8.2.5.3	π /4-Differential QPSK	
				$(\pi/4-DQPSK)$	294
		8.2.6		ance in the Presence of Imperfect	
				Estimation	294
			8.2.6.1	e ,	
				Probability Evaluation for	
				Rayleigh Fading	295
			8.2.6.2	Special Cases	297
		Refere	ences		301
		Apper	ndix 8A. S	Stein's Unified Analysis of the Error	
				formance of Certain Communication	
		Syster	•		304
		J			
CHAPTER 9	Per	formar	nce of M	ultichannel Receivers	311
	9.1	Divers	sity Comb	pining	312
	,	9.1.1	•	y Concept	312
		9.1.1		atical Modeling	312
		9.1.2		arreat woodening arvey of Diversity Combining	512
		7.1.5	Techniq		313
			-	Pure Combining Techniques	313
				Hybrid Combining Techniques	315
		9.1.4		xity–Performance Tradeoffs	316
	02			Combining (MRC)	316
	9.2			e (
		9.2.1		r Structure	317
		9.2.2		sed Approach	319
		9.2.3		ased Approach	320
			9.2.3.1	Average Bit Error Rate of Binary	220
				Signals	320

		9.2.3.2	Average Symbol Error Rate of	
			M-PSK Signals	322
		9.2.3.3	Average Symbol Error Rate of	
			M-AM Signals	323
		9.2.3.4	Average Symbol Error Rate of	
			Square <i>M</i> -QAM Signals	324
	9.2.4	Bounds	and Asymptotic SER Expressions	326
9.3	Coher	ent Equal	Gain Combining	331
	9.3.1	Receive	r Structure	331
	9.3.2	Average	e Output SNR	332
	9.3.3	Exact E	rror Rate Analysis	333
		9.3.3.1	Binary Signals	333
		9.3.3.2		339
	9.3.4	Approxi	imate Error Rate Analysis	340
	9.3.5		otic Error Rate Analysis	342
9.4	Nonco	oherent ar	nd Differentially Coherent Equal	
		Combinin		342
	9.4.1	DPSK.	DQPSK, and BFSK Performance	
			and with Bounds)	343
			Receiver Structures	343
		9.4.1.2	Exact Analysis of Average Bit	
			Error Probability	346
		9.4.1.3	Bounds on Average Bit Error	
			Probability	352
	9.4.2	M-ary (Orthogonal FSK	353
		9.4.2.1	Exact Analysis of Average Bit	
			Error Probability	356
		9.4.2.2	Numerical Examples	364
	9.4.3	Multiple	e-Symbol Differential Detection with	
		Diversit	y Combining	367
		9.4.3.1		367
		9.4.3.2	Average Bit Error Rate	
			Performance	368
		9.4.3.3		371
		9.4.3.4	Numerical Results	372
9.5	Optim	um Diver	rsity Combining of Noncoherent	
	FSK			375
	9.5.1	Compar	ison with the Noncoherent Equal	
		Gain Co	ombining Receiver	377
	9.5.2	Extensio	on to the <i>M</i> -ary Orthogonal FSK	
		Case		378
9.6	Outag	e Probabi	lity Performance	379
	9.6.1	MRC a	nd Noncoherent EGC	379
	9.6.2			380

	9.6.3	Numerical Examples	381		
9.7	Impac	t of Fading Correlation	389		
	9.7.1	Model A: Two Correlated Branches with			
	,	Nonidentical Fading	390		
		9.7.1.1 PDF	390		
		9.7.1.2 MGF	392		
	9.7.2	Model B: D Identically Distributed			
		Branches with Constant Correlation	392		
		9.7.2.1 PDF	393		
		9.7.2.2 MGF	393		
	9.7.3	Model C: D Identically Distributed			
		Branches with Exponential Correlation	394		
		9.7.3.1 PDF	394		
		9.7.3.2 MGF	394		
	9.7.4	Model D: D Nonidentically Distributed			
		Branches with Arbitrary Correlation	395		
		9.7.4.1 MGF	395		
		9.7.4.2 Special Cases of Interest	396		
		9.7.4.3 Proof that Correlation Degrades			
		Performance	397		
	9.7.5	Numerical Examples	399		
9.8	Selection Combining				
	9.8.1	MGF of Output SNR	405		
	9.8.2	-	406		
	9.8.3		409		
		9.8.3.1 Analysis	409		
		9.8.3.2 Numerical Example	410		
	9.8.4	Average Probability of Error	411		
		9.8.4.1 BDPSK and Noncoherent BFSK	411		
		9.8.4.2 Coherent BPSK and BFSK	413		
		9.8.4.3 Numerical Example	415		
9.9	Switch	ned Diversity	417		
	9.9.1	Dual-Branch Switch-and-Stay Combining	419		
		9.9.1.1 Performance of SSC over			
		Independent Identically Distributed			
		Branches	419		
		9.9.1.2 Effect of Branch Unbalance	433		
		9.9.1.3 Effect of Branch Correlation	436		
	9.9.2	Multibranch Switch-and-Examine			
		Combining	439		
		9.9.2.1 Classical Multibranch SEC	440		
		9.9.2.2 Multibranch SEC with			
		Post-selection	443		
		9.9.2.3 Scan-and-Wait Combining	446		

9.10	Perform	mance in the Presence of Outdated or	
	Imperf	Fect Channel Estimates	456
	9.10.1	Maximal-Ratio Combining	457
		Noncoherent EGC over Rician Fast Fading	458
		Selection Combining	461
		Switched Diversity	462
		9.10.4.1 SSC Output Statistics	462
		9.10.4.2 Average SNR	463
		9.10.4.3 Average Probability of Error	463
	9.10.5	Numerical Results	464
9.11	Combi	ning in Diversity-Rich Environments	466
	9.11.1	Two-Dimensional Diversity Schemes	466
		9.11.1.1 Performance Analysis	468
		9.11.1.2 Numerical Examples	469
	9.11.2	Generalized Selection Combining	469
		9.11.2.1 I.I.D. Rayleigh Case	472
		9.11.2.2 Non-I.I.D. Rayleigh Case	492
		9.11.2.3 I.I.D. Nakagami-m Case	497
		9.11.2.4 Partial-MGF Approach	502
		9.11.2.5 I.I.D. Weibull Case	510
	9.11.3	Generalized Selection Combining with	
		Threshold Test per Branch (T-GSC)	512
		9.11.3.1 Average Error Probability	
		Performance	515
		9.11.3.2 Outage Probability Performance	520
		9.11.3.3 Performance Comparisons	524
	9.11.4	Generalized Switched Diversity (GSSC)	531
		9.11.4.1 GSSC Output Statistics	531
		9.11.4.2 Average Probability of Error	532
	9.11.5	Generalized Selection Combining Based on	
		the Log-Likelihood Ratio	532
		9.11.5.1 Optimum (LLR-Based) GSC for	
		Equiprobable BPSK	533
		9.11.5.2 Envelope-Based GSC	536
		9.11.5.3 Optimum GSC for Noncoherently	
		Detected Equiprobable Orthogonal	526
		BFSK	536
9.12		etection Combining	537
	9.12.1	System and Channel Models	537
		9.12.1.1 Overall System Description	537
		9.12.1.2 Channel Model	537
		9.12.1.3 Receiver	539
	9.12.2	Post-detection Switched Combining	
		Operation	539
		9.12.2.1 Switching Strategy and Mechanism	539

		9.12.2.2	Switching Threshold	540
	9.12.3	Average	BER Analysis	540
			Identically Distributed Branches	542
			Nonidentically Distributed	
			Branches	542
	9.12.4	Rayleigh		543
			Identically Distributed Branches	544
			Nonidentically Distributed	
			Branches	547
	9.12.5	Impact of	f the Severity of Fading	548
		-	Average BER	550
			Numerical Examples and	
			Discussion	552
	9.12.6	Extension	n to Orthogonal <i>M</i> -FSK	552
		9.12.6.1	System Model and Switching	
			Operation	552
		9.12.6.2	Average Probability of Error	555
		9.12.6.3	Numerical Examples	562
9.13	Perform	nance of 1	Dual-Branch Diversity Combining	
			og-Normal Channels	566
			nd Channel Models	566
			-Ratio Combining	568
			Moments of the Output SNR	568
		9.13.2.2	Outage Probability	570
		9.13.2.3	Extension to Equal Gain	
			Combining	571
	9.13.3	Selection	Combining	571
		9.13.3.1	Moments of the Output SNR	572
		9.13.3.2	Outage Probability	575
	9.13.4	Switched	Combining	575
		9.13.4.1	Moments of the Output SNR	576
		9.13.4.2	Outage Probability	581
9.14	Averag	e Outage	Duration	584
	9.14.1	System a	nd Channel Models	585
		9.14.1.1	Fading Channel Models	585
		9.14.1.2	GSC Mode of Operation	585
	9.14.2	Average	Outage Duration and Average	
		Level Cr	ossing Rate	586
		9.14.2.1	Problem Formulation	586
		9.14.2.2	General Formula for the Average	
			LCR of GSC	586
	9.14.3		yleigh Fading	589
		9.14.3.1	Generic Expressions for GSC	589
			Special Cases: SC and MRC	590
	9.14.4	Numerica	al Examples	591

9.15	Multiple-Input/Multiple-Output (MIMO) Antenna					
	Diversity Systems	594				
	9.15.1 System, Channel, and Signal Models	594				
	9.15.2 Optimum Weight Vectors and Output SNR	595				
	9.15.3 Distributions of the Largest Eigenvalue of					
	Noncentral Complex Wishart Matrices	596				
	9.15.3.1 CDF of S	596				
	9.15.3.2 PDF of S	598				
	9.15.3.3 PDF of Output SNR and Outage					
	Probability	599				
	9.15.3.4 Special Cases	600				
	9.15.3.5 Numerical Results and Discussion	601				
	References	604				
	Appendix 9A. Alternative Forms of the Bit Error Probability for a Decision Statistic that Is a Quadratic Form of Complex Gaussian Random					
	Variables	619				
	Appendix 9B. Simple Numerical Techniques for Inversion of Laplace Transform of Cumulative					
	Distribution Functions	625				
	9B.1 Euler Summation-Based Technique9B.2 Gauss-Chebyshev Quadrature-Based	625				
	Technique	626				
	Appendix 9C. The Relation between the Power Correlation Coefficient of Correlated Rician Random Variables and the Correlation Coefficient of Their Underlying Complex Gaussian Random					
	Variables	627				
	Appendix 9D. Proof of Theorem 9.1					
	Appendix 9E. Direct Proof of Eq. (9.438)					
	Appendix 9F. Special Definite Integrals	634				

PART 4 MULTIUSER COMMUNICATION SYSTEMS

CHAPTER 10 Outage Performance of Multiuser Communication Systems 639

10.1	Outage Probability in Interference-Limited Systems	640
	10.1.1 A Probability Related to the CDF of the	
	Difference of Two Chi-Square Variates with	
	Different Degrees of Freedom	640

	10.1.2 Fading and System Models	643
	10.1.2.1 Channel Fading Models	643
	10.1.2.2 Desired and Interference Signals	
	Model	644
	10.1.3 A Generic Formula for the Outage	
	Probability	644
	10.1.3.1 Nakagami/Nakagami Scenario	645
	10.1.3.2 Rice/Rice Scenario	646
	10.1.3.3 Rice/Nakagami Scenario	647
	10.1.3.4 Nakagami/Rice Scenario	647
10.2	Outage Probability with a Minimum Desired Signal	
	Power Constraint	648
	10.2.1 Models and Problem Formulation	648
	10.2.1.1 Fading and System Models	648
	10.2.1.2 Outage Probability Definition	648
	10.2.2 Rice/I.I.D. Nakagami Scenario	649
	10.2.2.1 Rice/I.I.D. Rayleigh Scenario	649
	10.2.2.2 Extension to Rice/I.I.D. Nakagami	
	Scenario	652
	10.2.2.3 Numerical Examples	652
	10.2.3 Nakagami/I.I.D. Rice Scenario	654
	10.2.3.1 Rayleigh/I.I.D. Rice Scenario	654
	10.2.3.2 Extension to Nakagami/I.I.D. Rice	
	Scenario	656
	10.2.3.3 Numerical Examples	657
10.3	Outage Probability with Dual-Branch SC and SSC	
	Diversity	659
	10.3.1 Fading and System Models	661
	10.3.2 Outage Performance with Minimum Signal	001
	Power Constraint	661
	10.3.2.1 Selection Combining	662
	10.3.2.2 Switch-and-Stay Combining	663
	10.3.2.3 Numerical Examples	664
10.4	Outage Rate and Average Outage Duration of	
10.1	Multiuser Communication Systems	667
	·	
	References	671
	Appendix 10A. A Probability Related to the CDF	
	of the Difference of Two Chi-Square Variates with	
	Different Degrees of Freedom	674
	Appendix 10B. Outage Probability in the	
	Nakagami/Nakagami Interference-Limited	
	Scenario	678

CHAPTER 11	Communie	Combining – a Diversity Technique for cation over Fading Channels in the of Interference	681
		mance of Diversity Combining Receivers	682
		Single Interferer; Independent, Identically	002
	11.1.1	Distributed Fading	682
		11.1.1.1 Rayleigh Fading—Exact	002
		Evaluation of Average Bit Error	
		Probability	686
		11.1.1.2 Rayleigh Fading—Approximate	
		Evaluation of Average Bit Error	
		Probability	689
		11.1.1.3 Extension to Other Modulations	692
		11.1.1.4 Rician Fading—Evaluation of	(0.2
		Average Bit Error Probability	693
		11.1.1.5 Nakagami- <i>m</i> Fading—Evaluation of Average Bit Error Probability	695
	1112	Multiple Equal Power Interferers;	095
	11.1.2	Independent, Identically Distributed Fading	697
		11.1.2.1 Number of Interferers Less than	071
		Number of Array Elements	700
		11.1.2.2 Number of Interferers Equal to or	
		Greater than Number of Array	
		Elements	706
	11.1.3	Comparison with Results for MRC in the	
	11.1.4	Presence of Interference	710
	11.1.4	Multiple Arbitrary Power Interferers;	715
		Independent, Identically Distributed Fading 11.1.4.1 Average SEP of <i>M</i> -PSK	715 715
		11.1.4.1 Average SEP of M-FSK 11.1.4.2 Numerical Results	715
	11.1.5	Multiple-Symbol Differential Detection in	/10
	11110	the Presence of Interference	718
		11.1.5.1 Decision Metric	718
		11.1.5.2 Average BEP	718
	11.2 Optim	um Combining with Multiple Transmit and	
	-	ve Antennas	721
	11.2.1	System, Channel, and Signals Models	721
		Optimum Weight Vectors and Output SIR	723
		PDF of Output SIR and Outage Probability	723
		11.2.3.1 PDF of Output SIR	724
		11.2.3.2 Outage Probability	724
		11.2.3.3 Special Case When $L_t = 1$	725
	11.2.4	Key Observations	726
		11.2.4.1 Distribution of Antenna Elements	726

			11.2.4.2 Effects of Correlation between	
			Receiver Antenna Pairs	726
		11.2.5	Numerical Examples	727
		Referen	nces	729
		Append	dix 11A. Distributions of the Largest	
		Eigenv	alue of Certain Quadratic Forms in	
		Comple	ex Gaussian Vectors	732
		11A.1	General Result	732
		11A.2	Special Case	733
CHAPTER 12	Dire	ct-Sea	uence Code-Division Multiple Access	
-		CDMA		735
	12.1	Single-	Carrier DS-CDMA Systems	736
		12.1.1	System and Channel Models	736
			12.1.1.1 Transmitted Signal	736
			12.1.1.2 Channel Model	737
			12.1.1.3 Receiver	738
		12.1.2	Performance Analysis	739
			12.1.2.1 General Case	740
			12.1.2.2 Application to Nakagami- <i>m</i>	
			Fading Channels	740
	12.2	Multica	arrier DS-CDMA Systems	741
		12.2.1	System and Channel Models	742
			12.2.1.1 Transmitter	742
			12.2.1.2 Channel	743
			12.2.1.3 Receiver	743
			12.2.1.4 Notations	744
		12.2.2	Performance Analysis	745
			12.2.2.1 Conditional SNR	745
			12.2.2.2 Average BER	749
		12.2.3	Numerical Examples	750
		Referen	nces	754

PART 5 CODED COMMUNICATION SYSTEMS

CHAPTER 13 Coded Communication over Fading Channels	759
13.1 Coherent Detection	761
13.1.1 System Model	761
13.1.2 Evaluation of Pairwise Error Probability	763
13.1.2.1 Known Channel State Information	764
13.1.2.2 Unknown Channel State	
Information	768

		13.1.3 Transfer Function Bound on Average Bit	
		Error Probability	772
		13.1.3.1 Known Channel State Information 13.1.3.2 Unknown Channel State	774
		Information	774
		13.1.4 An Alternative Formulation of the Transfer	
		Function Bound	774
		13.1.5 An Example	775
	13.2	Differentially Coherent Detection	781
		13.2.1 System Model	781
		13.2.2 Performance Evaluation	783
		13.2.2.1 Unknown Channel State	
		Information	783
		13.2.2.2 Known Channel State Information	785
		13.2.3 An Example	785
	13.3	Numerical Results—Comparison between the True	
		Upper Bounds and Union-Chernoff Bounds	787
		References	792
		Appendix 13A. Evaluation of a Moment Generating	
		Function Associated with Differential Detection of	
		M-PSK Sequences	793
		in Tore Sequences	175
		-	175
CHAPTER 14		tichannel Transmission – Transmit Diversity	
CHAPTER 14	and	tichannel Transmission – Transmit Diversity Space-Time Coding	797
CHAPTER 14	and 14.1	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective	
CHAPTER 14	and 14.1	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic	797 799
CHAPTER 14	and 14.1	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective	797
CHAPTER 14	and 14.1 14.2	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple	797 799
CHAPTER 14	and 14.1 14.2	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two	797 799 800
CHAPTER 14	and 14.1 14.2	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple	797 799
CHAPTER 14	and 14.1 14.2 14.3	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two	797 799 800
CHAPTER 14	and 14.1 14.2 14.3	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas	797 799 800
CHAPTER 14	and 14.1 14.2 14.3 14.4	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas Generalization of Alamouti's Diversity Technique	797 799 800 803
CHAPTER 14	and 14.1 14.2 14.3 14.4	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas Generalization of Alamouti's Diversity Technique to Orthogonal Space-Time Block Code Designs	797 799 800 803
CHAPTER 14	and 14.1 14.2 14.3 14.4	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas Generalization of Alamouti's Diversity Technique to Orthogonal Space-Time Block Code Designs Alamouti's Diversity Technique Combined with	797 799 800 803 803
CHAPTER 14	and 14.1 14.2 14.3 14.4	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas Generalization of Alamouti's Diversity Technique to Orthogonal Space-Time Block Code Designs Alamouti's Diversity Technique Combined with Multidimensional Trellis-Coded Modulation	797 799 800 803 803
CHAPTER 14	and 14.1 14.2 14.3 14.4	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas Generalization of Alamouti's Diversity Technique to Orthogonal Space-Time Block Code Designs Alamouti's Diversity Technique Combined with Multidimensional Trellis-Coded Modulation 14.5.1 Evaluation of Pairwise Error Probability Performance on Fast Rician Fading Channels	797 799 800 803 803
CHAPTER 14	and 14.1 14.2 14.3 14.4	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas Generalization of Alamouti's Diversity Technique to Orthogonal Space-Time Block Code Designs Alamouti's Diversity Technique Combined with Multidimensional Trellis-Coded Modulation 14.5.1 Evaluation of Pairwise Error Probability Performance on Fast Rician Fading Channels 14.5.2 Evaluation of Pairwise Error Probability	 797 799 800 803 809 812
CHAPTER 14	and 14.1 14.2 14.3 14.4	 tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas Generalization of Alamouti's Diversity Technique to Orthogonal Space-Time Block Code Designs Alamouti's Diversity Technique Combined with Multidimensional Trellis-Coded Modulation 14.5.1 Evaluation of Pairwise Error Probability Performance on Fast Rician Fading Channels 14.5.2 Evaluation of Pairwise Error Probability Performance on Slow Rician Fading 	797 799 800 803 803 809 812 814
CHAPTER 14	and 14.1 14.2 14.3 14.4 14.5	tichannel Transmission – Transmit Diversity Space-Time Coding A Historical Perspective Transmit versus Receive Diversity—Basic Concepts Alamouti's Diversity Technique—a Simple Transmit Diversity Scheme Using Two Transmit Antennas Generalization of Alamouti's Diversity Technique to Orthogonal Space-Time Block Code Designs Alamouti's Diversity Technique Combined with Multidimensional Trellis-Coded Modulation 14.5.1 Evaluation of Pairwise Error Probability Performance on Fast Rician Fading Channels 14.5.2 Evaluation of Pairwise Error Probability	 797 799 800 803 809 812

	14.6.1	Evaluati	on of Pairwise Error Probability	
		Performa	ance on Fast Rician Fading	
		Channels	S	820
	14.6.2	Evaluati	on of Pairwise Error Probability	
		Performa	ance on Slow Rician Fading	
		Channels	S	821
	14.6.3	An Exar	nple	824
	14.6.4	Approxi	mate Evaluation of Average Bit	
		Error Pr	obability	827
		14.6.4.1	Fast-Fading Channel Model	827
			Slow-Fading Channel Model	829
	14.6.5		on of the Transfer Function Upper	
		Bound o	n Average Bit Error Probability	831
			Fast-Fading Channel Model	831
			Slow-Fading Channel Model	833
14.7	Other	Combinat	ions of Space-Time Block Codes	
			Trellis Codes	833
	-		rthogonal Space-Time Trellis Codes	834
	11.7.1		The Parameterized Class of	0.5 1
		11.7.1.1	Space-Time Block Codes and	
			System Model	834
		14712	Evaluation of the Pairwise Error	001
		1 1.7.11.2	Probability	836
		14.7.1.3	Extension of the Results to	000
		1	Super-Orthogonal Codes with	
			More than Two Transmit Antennas	844
		14.7.1.4	Approximate Evaluation of	
			Average Bit Error Probability	845
		14.7.1.5	Evaluation of the Transfer	
			Function Upper Bound on the	
			Average Bit Error Probability	846
		14.7.1.6	Numerical Results	848
	14.7.2		uasi-Orthogonal Space-Time Trellis	
		Codes		850
		14.7.2.1	Signal Model	850
			Evaluation of Pairwise Error	
			Probability	852
		14.7.2.3	Examples	853
			Numerical Results	857
14.8	Disclat	imer		858
1				
	Refere	nces		859

CHAPTER 15 Capad	863	
15.1 C	Channel and System Model	863

15.2 Optimum Simultaneous Power and Rate Adaptation	865
15.2.1 No Diversity	865
15.2.2 Maximal-Ratio Combining	866
15.3 Optimum Rate Adaptation with Constant Transmit	
Power	867
15.3.1 No Diversity	868
15.3.2 Maximal-Ratio Combining	869
15.4 Channel Inversion with Fixed Rate	869
15.4.1 No Diversity	870
15.4.2 Maximal-Ratio Combining	870
15.5 Numerical Examples	871
15.6 Capacity of MIMO Fading Channels	876
References	877
Appendix 15A. Evaluation of $\mathcal{J}_n(\mu)$	878
Appendix 15B. Evaluation of $\mathcal{I}_n(\mu)$	880

Index

883

PREFACE

Regardless of the branch of science or engineering, theoreticians have always been enamored with the notion of expressing their results in the form of closed-form expressions. Quite often the elegance of the closed-form solution is overshadowed by the complexity of its form and the difficulty in evaluating it numerically. In such instances, one becomes motivated to search instead for a solution that is simple in form and likewise simple to evaluate. A further motivation is that the method used to derive these alternative simple forms should also be applicable in situations where closed-form solutions are ordinarily unobtainable. The search for and ability to find such a unified approach for problems dealing with the evaluation of the performance of digital communication over generalized fading channels is what provided the impetus to write this textbook, the result of which represents the backbone for the material contained within its pages.

For at least four decades, researchers have studied problems of this type and system engineers have used the theoretical and numerical results reported in the literature to guide the design of their systems. While the results from the earlier years dealt mainly with simple channel models, such as Rayleigh or Rician multipath fading, the applications in more recent years have become increasingly sophisticated, thereby requiring more complex models and improved diversity techniques. Along with the complexity of the channel model comes the complexity of the analytical solution that enables one to assess performance. With the mathematical tools that were previously available, the solutions to such problems when possible had to be expressed in complicated mathematical form that provided little insight into the dependence of the performance on the system parameters. Surprisingly enough, not until 1998 had anyone demonstrated a unified approach that not only allows previously obtained complicated results to be simplified both analytically and computationally but also permits new results to be obtained for special cases that heretofore resisted solution in a simple form. This approach was first introduced to the public by the authors in a tutorial-style article that appeared in the September 1998 issue of the IEEE Proceedings. Since that time, it has spawned a large wave of publications on the subject in the technical journal and conference literature, by both the authors and many others and, based on the variety of applications to which it has already been applied, will no doubt continue well into the new millennium. The key to the success of this approach relies on employing alternative representations of classic functions arising in the error probability analysis of digital communication systems (e.g., the Gaussian Q-function¹ and the Marcum Q-function) in such a manner that the resulting expressions for various performance measures such as average bit or symbol error rate are in a form that is rarely more complicated than a single integral with finite limits and an integrand composed of elementary (e.g., exponential and trigonometric) functions. By virtue of replacing the conventional forms of the above-mentioned functions by their alternative representations, the integrand will contain the moment generating function (MGF) of the instantaneous fading SNR, and as such the unified approach is referred to as the *MGF-based approach*.

The first edition of this book was aimed at collecting and documenting the huge compendium of results contained in the myriad of contributions developed from the MGF-based approach that had been reported until that time and, by virtue of its unified notation and collocation in a single publication, would thereby be useful to both students and researchers in the field. In 1999 the manuscript for the first edition was submitted to the publisher. Since that time, a great deal of additional significant work on the subject has been performed and reported on in the literature, so much so that a second edition of the book is warranted and will be extremely beneficial to these same researchers and students in bringing them up to date on these new developments.

Perhaps the most significant of these new developments is the explosion of interest and research that has taken place in the area of transmit diversity and spacetime coding and the associated multiple-input/multiple-output (MIMO) channel, a subject that was briefly alluded to but not discussed in any detail in the first edition. One of the key elements of the second edition is a comprehensive chapter on this all-important subject that, in keeping with the main theme of the book, deals with the performance evaluation aspects of such systems. The performance of MIMO systems is also treated from other perspectives elsewhere in the text.

Aside from these developments, many new and exciting results have been developed by the authors as well as other researchers that (1) have led to new and improved diversity schemes and (2) allow for the performance analysis of previously known schemes operating in new and different fading scenarios not discussed in the first edition. A few of these developments are (1) new alternative forms for classic mathematical functions such as the second-order Gaussian Q-function and also higher powers of the first-order Gaussian Q-function; (2) improved diversity schemes such as threshold and postdetection generalized selection combining, switch-and-examine combining, and switch-and-wait combining; (3) new channel fading models of interest in wireless and mobile applications; (4) new bounds on system performance in the presence of fading; and (5) new mathematical results

¹The Gaussian *Q*-function Q(x) has a one-to-one mapping with the complementary error function [i.e., $Q(x) = \frac{1}{2} \operatorname{erfc} \left(\frac{x}{\sqrt{2}} \right)$] commonly found in standard mathematical tabulations. In much of the engineering literature, however, the two functions are used interchangeably, and as a matter of convenience we shall do the same in this book.

related to quadratic forms in Gaussian random variables and the difference in chisquare random variables with different degrees of freedom, allowing for the analysis of practical communication performance measures such as the outage probability of digital communication systems in the presence of multiple interferers. In fact, because of the importance of the latter issue in multiuser communication systems, a new chapter has been added on this subject. The list above is only a small sample of the voluminous amount of material (on the order of several hundred pages) that has been added to the second edition.

As in the first edition, in dealing with the application of the MGF-based approach, the coverage in this edition of the book is extremely broad in that coherent, differentially coherent, partially coherent, and noncoherent communication systems are all handled as well as a large variety of fading channel models typical of communication links of practical interest. Both single- and multichannel reception are discussed, and in the case of the latter, a large variety of diversity types are considered. In fact, the chapter on multichannel reception (Chapter 9) is by itself now over 325 manuscript pages long and, in reality, could stand alone as its own textbook. For each combination of communication (modulation/detection) type, channel fading model, and diversity type, expressions for various system performance measures are obtained in a form that can be readily evaluated.² All cases considered correspond to real practical channels, and in many instances the closed-form expressions obtained can be evaluated numerically on a handheld calculator.

In writing this book, our intent was to spend as little space as possible duplicating material dealing with basic digital communication theory and system performance evaluation that is well documented in many fine textbooks on the subject. Rather, this book serves to advance the material found in these texts and as such is of most value to those desiring to extend their knowledge beyond what ordinarily might be covered in the classroom. In this regard, the book should have a strong appeal to graduate students doing research in the field of digital communications over fading channels as well as practicing engineers who are responsible for the design and performance evaluation of such systems. With regard to the latter, the book contains copious numerical evaluations that are illustrated in the form of parametric performance curves (e.g., average error probability versus average signal-to-noise ratio). The applications chosen for the numerical illustrations correspond to practical systems and as such the performance curves provided will have far more than academic value. The availability of such a large collection of system performance curves in a single compilation allows researchers and system designers to perform tradeoff studies among the various communication type/fading channel combinations so as to determine the optimum choice in the face of their available constraints.

The structure of the book is composed of five parts, each with its own express purpose. The first part contains an introduction to the subject of communication system performance evaluation followed by discussions of the various types of fading channel models and modulation/detection schemes that together form the

²The terms *bit error probability* (BEP) and *symbol error probability* (SEP) are quite often used as alternatives to *bit error rate* (BER) and *symbol error rate* (SER). With no loss in generality, we shall employ both usages in this text.

overall system. Part 2 starts by introducing the alternative forms of the classic functions mentioned above and then proceeds to show how these forms can be used to (1) evaluate certain integrals characteristic of communication system error probability performance and (2) find new representations for certain probability density and distribution functions typical of correlated fading applications. Part 3 is the "heart and soul" of the book since, in keeping with its title, the primary focus of this part is on performance evaluation of the various types of fading channel models and modulation/detection schemes introduced in Part 1 both for single and multichannel (diversity) reception. Before presenting this comprehensive performance evaluation study, however, Part 3 begins by deriving the optimum receiver structures corresponding to a variety of combinations concerning the knowledge or lack thereof of the fading parameters: amplitude, phase, and delay. Several of these structures might be deemed as too complex to implement in practice; nevertheless, their performance serves as a benchmark against which many suboptimum but practical structures discussed in the remainder of the chapter might be compared. Part 4, which deals with multiuser communications, considers first the problem of outage probability evaluation followed by optimum combining (diversity) in the presence of cochannel interference. The unified approach is then applied to studying the performance of single- and multiple-carrier direct-sequence code-division multiple-access (DS-CDMA) systems typical of the current digital cellular wireless standard. Part 5 extends the theory developed in the previous parts for uncoded communication to error-correction-coded systems and then space-time-coded systems and concludes with a discussion of the capacity of fading channels.

Whereas the first edition has already established itself as the classic reference text on the subject with no apparent competition in sight, it is a safe bet that the second edition will continue to maintain that reputation for years to come. The authors know of no other textbook currently on the market that addresses the subject of digital communication over fading channels in as comprehensive and unified a manner as is done herein. In fact, prior to the publication of this book, to the authors' best knowledge there existed only two works (the textbook by Kennedy [1] and the reprint book by Brayer [2]) that, like our book, are totally dedicated to this subject, and both them are more than a quarter of a century old. While a number of other textbooks [3-11] devote part of their contents³ to fading channel performance evaluation, by comparison with our book, the treatment is brief and as such is incomplete. Because of this, we believe that our textbook is unique in the field.

By way of acknowledgment, the authors wish to express their personal thanks to Dr. Payman Arabshahi of the Jet Propulsion Laboratory, Pasadena, CA for providing his invaluable help and consultation in preparing the submitted electronic version of the manuscript. Mohamed-Slim Alouini would also like to also like to express his sincere acknowledgment and gratitude to his PhD advisor Prof. Andrea J. Goldsmith of Stanford University, Palo Alto, CA for her guidance, support, and constant encouragement. Some of the material presented in Chapters 9,

³Although Ref: 11 is a book that is entirely devoted to digital communication over fading channels, the focus is on error-correction-coded modulation and therefore would relate primarily only to Chapter 13 of our book.