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Preface 

When managing water resources we often seek to separate pattern from randomness. 
For example, is the quality of water in a lake really deteriorating? Is that because 
the land-use patterns in its watershed are intensifying? Just how sure can we be of a 
conclusion about that? What are the health risks from swimming in this river or at 
that beach? Is there an important change in stream benthic communities downstream 
of mine waste discharges? These are issues that statistical methods can shed light 
on. I hope this book will help water resources managers and scientists to formulate, 
implement and interpret better and more appropriate methods to address such matters. 

To do so, I have not sought to repeat material readily available in other texts.‘ 
Rather than being a “how to” compendium of the many procedures to be found in 
them, I have focused on material not generally available elsewhere, both in gen- 
eral (such as in Bayesian modes of inference) and in particular (such as percentile 
standards, water-related human health risk modeling, and MPN methodology for 
microbiological enumerations). 

This book’s origins lie in an invitation from my colleague, Dr Bryan Manly, to 
present a paper to the Joint Statistical Meetings held in 2000 at Indianapolis. The title 
of the paper (as suggested by him) was “Statistical Methods Helping and Hindering 
Environmental Science and Management.” It drew on experience I had gained over 
some years in using statistical methods to address practical questions that commonly 

‘Green (1979 [127]), Berthouex & Brown (1980 [23]), Snedecor & Cochran (1980 [291]), Sokal & Rohlf 
(1981 [292]), Jman &Conover (1983 [161]), Gilbert (1987 [118]), Krebs (1989 [176]), Wardetal. (1980 
[338]), Gibbons (1994 [117]), Zar (1996 13491). Manly (2001 [198]), Millard & Neerchal (2001 [226]), 
Helsel & Hirsch (2002 [147]), Townend (2002 [319]), Bolstad (2004 [28] ) .  

xxi 
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arise in managing water resources. For example: Just what does the analyst mean 
when stating that a result is “statistically significant”? How should one devise and 
document percentile standards for effluent discharges, drinking water, or environmen- 
tal standards? How many samples should be required in drinking water standards in 
order to provide a satisfactory level of assurance that the waters’ quality sufficiently 
protects public health? When and how can one take account of what we think we 
already know when framing compliance rules or when analyzing experiments? 

The Indianapolis paper, with its somewhat provocative title, was subsequently 
published (McBride 2002 [206]), and it resulted in an invitation to write this book. 
In doing so, I have attempted to give “lines of approach” (rather than “answers”) 
to a range of issues that arise in water management (and in water science), such as 
those given above. I say “lines of approach” very deliberately because I have so 
often been asked, “What is the statistically correct way of analyzing these data?’ 
In fact, there is seldom (if ever) one correct way, either for analysis of data or for 
design of sampling programs. We make judgments, not rules (Stewart-Oaten 1995 
[300]). There may be a number of alternative approaches, each with its merits and 
drawbacks, and awareness of these can only be beneficial. There are of course many 
more inappropriate and incorrect lines of approach. So a function of this book is to 
clarify the appropriateness of such methods for various issues. By doing so, I hope to 
alert scientists and water resources managers to the wide variety of fruitful statistical 
methods that can be used. For example, it can come as a surprise that statistical 
methods do not just deal with numbers; incorporation of nominal data can greatly 
enhance their utility (e.g., using water color, wind direction, and octants of cloud 
cover in models of near-shore contamination by fecal bacteria). 

In planning this book, I had first thought that it would be wise to introduce statistical 
concepts gradually, by way of a series of practical examples. As an instance of 
that, one could introduce Bayesian approaches to data analysis when considering the 
framing of percentile compliance rules. However, on reflection and discussion with 
colleagues, it became apparent that some general and pervasive issues needed first 
to be discussed in their own right. Accordingly, the book is in two parts. The first, 
Issues, consisting of six chapters, presents the material I consider to be important 
to be understood when contemplating using statistical methods for water resources 
management. It includes a number of practical examples. The five chapters in the 
second part, Problems and Solutions, draw on material given in the first part. They 
cover a range of topics that often arise but are not covered in most texts (formulating 
environmental standards, using percentile standards, microbiological water quality, 
“most probable numbers” (MPNs) and human health,and a catch-all chapter including 
material on trends, impacts, concordance and detection limits). Each chapter contains 
a number of set problems, for which full “answers” are give in the final (1 2th) chapter. 
Some of these problems are more difficult than others; some are discursive, in which 
case “answers” are longer than is usual in a statistics text. 

So what are those “general and pervasive issues”? Some are details-but impor- 
tant details (especially concerning correct usage of standard errors and explaining 
“error bars”). Others are substantial. They have to do with identifying management’s 
information needs, the role of various forms of hypothesis testing, and the types of 
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intervals that may be used to account for uncertainty (confidence intervals, tolerance 
intervals, and credible intervals). To set the scene for these issues, Chapter 1 dis- 
cusses the use of statistical populations and samples in water management. Chapter 
2 presents basic concepts of probability and statistics, including different modes of 
statistical inference, especially frequentist versus Bayesian (throughout the book I 
present the case for using both). Chapter 3 discusses and contrasts confidence inter- 
vals, tolerance intervals and credible intervals. Chapters 4 and 5 then cover general 
and specific issues to do with statistical hypothesis testing-these tests are widely 
used in water management, and not always appropriately. These chapters address 
questions such as: When are “one-sided” tests appropriate? What can we actually 
infer from a test of a single “null” hypothesis? When should we use nonparametric 
approaches? Is there a corresponding Bayesian test? What is the role of equivalence 
testing? How do we give effect to the precautionary approach? We also introduce, in 
Chapter 5 ,  the “detection probability” in the context of one-sided and two-sided tests. 
Detailed (though not rigorous) mathematical arguments and calculation routines are 
presented in Chapter 6-finer mathematical details are admirably covered in papers 
and other texts (e.g., Ferguson 1967 [90], Lehmann 1986 [183], Freund 1992 [loll ,  
Lee 1997 [179], Gelman et al. 2000 [ 1 lo], Casella & Berger 2002 [45], Wellek 2003 
[340]). This chapter can be skipped without losing too much of the main information 
presented. 

A number of these issues are seldom addressed in much detail in applied statistical 
texts. For example, most workers actually interpret confidence intervals in a Bayesian 
manner, yet the Bayesian view of probability and associated modes of inference 
are seldom presented. It is important for environmental professionals to grasp such 
matters and their consequences. I became aware of this in 1989 when, while browsing 
in the basement of the Colorado State University library, I stumbled across the 1970 
text by Momson & Henkel The Sign$cance Test Controversy ([232]). My response 
was one of surprise: “What controversy?” I read avidly, from a text arising not from 
environmental science, but from psychology (from where so many statistical advances 
have emanated). Many colleagues involved in water science and management (in 
my home country and abroad) have had the same response when confronted by the 
notion that statistical methodology, especially hypothesis testing, is accompanied (to 
this day) in the statistical literature by a degree of controversy. Some statisticians 
have even advocated that tests be abandoned altogether [e.g., in chapters of a recent 
book, edited by Harlow, Muliak, and Steiger (1997 [ 1361): What if there were no 
signi$cance tests?]. But, in water management at least, we cannot abandon tests- 
comparisons, hence tests, are often required (between sites, between treatment levels, 
with standards,. . .). 

Throughout I have made use of footnotes, giving detail that readers can pass over. 
More substantial- technical details are contained in Appendices to some chapters. 
These too can be passed over without compromising understanding of the text. Ref- 
erences are contained in a single list at the book’s end, along with an author index 
and a subject index. 
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Part I 

Issues 

‘Far better an approximate answer to the right question, which is often vague, than the exact 
answer to the wrong question, which can always be made precise.’ 

-John Tukey (1962 13211) 

‘It’s all in the mind, you know.’ 
-Wallace Greenslade and Spike Milligan, The Goon Show (1952-1960) 
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1 
Introduction 

1.1 CONVENTIONS 

Key statistical terms are written in bold type when they first appear. Italicized upper 
case Roman letters are used to denote data and the statistics derived from them, 
making it easier to distinguish them from text. For example X ,  refers to the ith 
numerical datum in a sample, and X is their arithmetic mean-usually just stated 
as the mean.’ Data do not have to be numbers, they can be categories (such as water 
color), but in that case a mean is not defined. Italicized lowercase Greek letters are 
used for population parameters such as the true mean, which is estimated by X 
(so the true mean is denoted by p). Samples are drawn from populations, and the 
parameters are a succinct way to summarize the shape of the populations. Lowercase 
italicized Roman letters (such as z and y) refer to the population random variables 
from which samples may be drawn. Particular values of those random variables are 
written in uppercase letters ( e g ,  X and Y). X ,  represents the 1OOpth percentile of 
the z distribution (so X 0 . 9 ~  is the 95th percentile-hereafter written as “95%ile”). 
Overbars always denote a mean; for example, the difference between the means of 
two independent samples drawn from z and y is written as X - Y, whereas if those 
samples were paired we would be contemplating the mean difference X - Y. 

Like any discipline, statistics has its own language conventions. While most can be 
explained as we go along, those to do with the words sample and error, the symbol 
p ,  and even the word statistics need some explanation (though the context should 
make the meaning of such phrases clear). 

‘Other types of means may be used, especially the geometric mean. 

1 



2 INTRODUCTION 

To an environmental professional a sample is a volume or mass of material taken 
from the environment-for example, a container of stream water for subsequent phos- 
phorus analysis in a laboratory, or a reading of pH from a probe. But to a statistician, 
a sample is a collection of results or observations-for example, phosphorus con- 
centrations in a set of water “samples.” So to a statistician one sample contains many 
data and the sample size is the number of data in the sample-not the volume of 
the container. Similarly, an environmental professional would regard an error as 
just that-a mistake. But to a statistician, sampling error is the natural variability 
inherent among data taken from a population and is therefore always present and to 
be accounted for. If there are errors in measurement (nothing in this world is perfect), 
these are referred to as measurement error. 

Then we have a standard error. This is not a recommended way to make a 
mistake! It is another measure of variability-not of the data, but of a parameter 
estimated from the data, such as the mean.’ Next, because of conventions in wide 
use, we are forced to use the symbol p ambiguously (it can mean p-value (an ex- 
ceedance probability) or proportion. Uppercase P generally denotes a cumulative 
probability, expressed as a percentage (e.g., the Pth percentile). 

Finally, the term “statistics” itself can have two meanings. The singular statistic 
is a number that characterizes some feature of a set of data-for example, the sample 
arithmetic mean as a measure of the central tendency of data. The plural statistics can 
also refer to the methods that use such numbers to make estimates and comparisons. 
In this text we generally use the term statistic for the former meaning and statistical 
methods for the latter. 

1.2 THE ESSENTIALS 

The measurements we make are taken from samples that are only a tiny proportion of 
the water body that we want information about. So any inferences drawn from the 
data are uncertain to some degree. Statistical methods are a means of handling this 
uncertainty, both in designing sampling programs and in obtaining useful information 
from the results of sampling. 

classical (frequentist) statistical methods allow us to draw inferences from sam- 
ple data with, under certain assumptions, a known degree of uncertainty. Furthermore, 
they can permit different data analysts to follow the same procedures, thus reaching 
the same conclusions from a given set of data.3 Statistical methods also provide a 
means of specifying how monitoring data should be analyzed before they are col- 
lected, thus ensuring that the information needs of management will be met from a 
planned monitoring program. 

21f that parameter is the mean the standard error is in fact the standard deviation ofthe mean of the data, 
no? of the data themselves. Importantly, it tends to get smaller as the number of data increases. More on 
that later (Section 2.13.1). 
3This is not the case for the Bayesian methods that we shall meet later-although these can have some 
definite advantages, as we shall see. 


