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Foreword 

Semiconductor electronic properties are extremely sensitive to the presence of trace 
amounts of foreign substances. This fundamental property of doped semiconduc-
tors is the basis for the fabrication of electronic devices. From the dawn of semicon-
ductor based electronic devices, it has been clear that undesired impurities must 
be kept at very low levels and material purification methods were essential to the 
successful operation of such devices. 

In the 1950's and 1960's, the solid state device of choice was the bipolar junc-
tion transistor (BJT), which required a sufficiently long free-carrier recombina-
tion lifetime and thus, a low metallic impurity concentration. To achieve this, 
semiconductor surfaces were cleaned at critical steps in the manufacturing pro-
cess. In the early 1970's, the first systematic cleaning studies were carried out and 
resulted in the "RCA cleaning" process. The aqueous oxidizing mixtures (SC-1 
and SC-2) were found to be very efficient at removing a broad range of contami-
nants such as organics and metals. SC-1, in particular, very effectively removes 
particles. These mixtures were highly selective towards silicon because of the sta-
bility of the passivating SiOx on the silicon surface. 

Although the metal-insulator-semiconductor lateral-field effect transistor 
had been invented in the 1920's, it was not until the late 1970's that the metal-
oxide-semiconductor field-effect transistor (MOSFET) became a useful electronic 
device. It was only at that point that surface cleaning reached the capability 
needed to fabricate high-quality gate oxides with low levels of Na and K con-
tamination essential for making MOSFET devices with stable threshold voltages. 
This delayed introduction also reflects the thermodynamic propensity of surfaces 
and interfaces to be the preferred sites for impurities. Within a decade, MOSFET 
technology replaced the BJT in large scale integrated circuits. 

The field of cleaning is complicated by the fact that contamination is often near 
the edge of detectable limits; consequently, the progress of cleaning science has been 
tightly linked to advancements in metrology. For a long time, bulk semiconductor 
electronic properties, such as free carrier lifetime, were the primary measurement 
technique for contamination. Because MOSFET performance is in large part driven 
by the quality of its interfaces, more attention has been directed to surface quality 
and contamination. New metrology techniques such as high resolution electron 
energy loss spectroscopy (HR-EELS), high resolution X-ray photoelectron spec-
troscopy (HR-XPS), and Fourier transform infrared spectroscopy (FTIR) helped 
reveal a great deal about the nature of the chemical structure of a silicon surface 
and its relation to the aqueous chemical treatments. Surface inspection for particle 
contamination began in the 1980's with visual observation under collimated light 

xvii 
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and has evolved to scanning laser light scattering measurement tools capable of 
detecting particles only a few tens of nanometers in diameter. Total X-ray fluores-
cence (TXRF) was developed in the 1990's and evolved from a research method to 
a monitoring technique for fast inspection for low-levels of metal contaminants. 
Time-of-flight SIMS made it possible to detect trace amounts of organic and air-
borne molecular surface contamination. The availability of these surface mea-
surement techniques made contamination a measurable quantity transforming 
contamination control and cleaning from an experience-driven field into a science 
embraced by academic institutes and R&D centers. 

The functionality of circuits has increased while feature size has shrunk at an 
astonishingly high and steady pace. From the early 1990's, the major quest for 
yield improvements on megabit-level memory chips has significantly boosted the 
development of improved cleaning processes and cleaner chemicals. During this 
wave of substantial investigation, concerns were raised that wet cleaning would 
quickly run out of steam; consequently, various types of dry cleaning were inves-
tigated. Wet cleaning, however, has remained the method of choice because of a 
number of reasons including: excellent particle removal due to a reduction of van 
der Waals attractions; highly selective chemical reactions; and good dissolution 
and transport properties. 

The RCA clean has been the backbone in semiconductor cleaning because of 
its abovementioned properties. Current requirements for cleaning have become 
more constrained than at the time the RCA clean was introduced. Reduction in 
surface etching amounts and other issues require that the SC-1 mixtures be very 
dilute and at reduced temperatures. In many cases, the SC-2 step can be replaced 
by dilute HC1. These approaches have resulted in longer bath lifetimes, reduced 
chemical costs, and lower waste burdens. An acidified rinse has been used to fur-
ther suppress contamination. Alternative simple cleaning recipes have been intro-
duced, such as self-saturating chemical oxide growth using sulfuric acid spiked 
with ozone, followed by an HF-based mixture. 

Cleaning tools have evolved to keep up with ever-changing processes. Wet 
benches consisting of immersion tanks are now equipped with recirculation and 
filtration units, automated filling in situ concentration monitoring, and automatic 
spiking systems. Simplified recipes have resulted in wet benches with fewer tanks. 
Single tank tools have been introduced for use with very dilute chemicals. The 
biggest change has occurred since 2000; single wafer cleaning gradually replac-
ing batch tools for critical applications. Single wafer tools made it possible to treat 
both sides of a wafer differently and thus, provide isolation of the front and back 
surfaces allowing for high performance cleaning. For single wafer cleaning, pro-
cess time limitations favor the use of more concentrated chemicals. 

Currently wet cleaning has become more diverse and gained a very high level 
of sophistication. Cleaning is applied throughout the entire manufacturing pro-
cess of integrated circuits from incoming wafers to sawing and packaging or 
3D-integration. As technology progresses, cleaning requirements become more 
stringent with smaller margins. Often selectivity is a major challenge as the con-
taminants to be removed resemble more closely that of the layers to be cleaned. 
This has led to a variety of tailored cleaning processes for: incoming wafers, pre-
gate dielectrics, after-gate stack etch, pre-selective epitaxy, several photoresist 
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removal steps and post-strip cleans, pre-metal deposition for suicide formation, 
post-silicide metal removal, post-CMP clean, and post-etch residue removal and 
cleaning. Specialized cleaning solutions have been introduced consisting of rather 
complex mixtures of acids, bases, solvents, surfactants, and chelating agents. 

In recent years, high-κ metal gate stacks and alternative semiconductor mate-
rials such as SiGe, Ge, and even III-V compound semiconductors have been 
introduced or considered for future generation devices. Unlike Si, many of these 
materials tend to be attacked by "RCA"-like aqueous oxidizing cleaning mixtures. 
Therefore, alternatives must be developed such as solvent-based cleaning. 

As part of the large effort spent over the last decades in this field, major inter-
national forums and symposia have been set up for the large "cleaning R&D" 
community to enhance and share their collective knowledge base. Many of 
these findings are published in numerous articles and conference proceedings. 
Particularly in this highly dynamic environment, it is very important to keep track 
of this acquired knowledge. The collective wisdom of this field is mostly in the 
minds of the participating researchers. The mission of this book is to extend this 
knowledge - capturing and synthesizing the major results and state-of-the-art 
knowledge of individual researchers and experts in the field of cleaning, surface 
conditioning, and contamination control. 

This volume should become an essential part of a thorough training regimen on 
cleaning and surface preparation. It is a useful reference work for people active in 
the field and an absolute must for young engineers and researchers entering the 
dynamic and exciting discipline of cleaning and surface preparation. This hand-
book will help the industry avoid the unproductive and feared scenario of "re-
inventions" and provide a solid platform to build the new science and technology 
of cleaning and surface preparation for future applications far beyond the current 
scope of cleaning science. 

Paul W. Mertens 
Leuven, Belgium 

October 24,2010 
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Introduction 

Semiconductor manufacturing continuously faces the most demanding tech-
nical challenges of any industry. As features have scaled, one of the most 
problematic areas of fabrication has been cleaning. Over the last few decades, 
the art of cleaning has turned into the science of surface preparation, critical 
cleaning, post-etch residue removal, and particle removal. Years ago the inte-
grated circuit industry "borrowed" techniques from other industries - now the 
microelectronic engineers and scientists are the technology drivers. They work 
with the most advanced technology in the world making affordable micropro-
cessors, controllers, and memory devices, so everyone can afford the newest 
electronic gadgets. These engineers work on devices that have minute fea-
tures, rare materials, intricate equipment, and specialized processes. They help 
develop high-yielding, easily manufactured processes for the most sophisti-
cated devices at the minimal cost and with the lowest environmental impact. 
This handbook celebrates these individuals - those who develop processes 
that are not physically present on a finished device. The chemicals used are all 
washed away, along with the contaminating metals, organics, and particles, 
yielding a pristine surface. 

We have assembled authors with specific expertise to provide a thorough and 
thoughtful look at key range of cleaning topics in this field. The work is divided 
into three sections. The first six chapters address fundamental processes in 
chemical cleaning. Chapter 1 examines surface and colloid chemistry in clean-
ing, and Chapters 2 and 3 describe the chemistries of cleaning and etching pro-
cesses. Chapter 4 details the surface phenomenon of cleaning. While chapters 5 
and 6 discuss the design, delivery, and recycling of chemical formulations used in 
cleans. The second section (Chapters 7-14) covers a range of cleaning applications. 
Chapters 7, 8, 9, and 10 discuss cleaning and stripping of front end and back end 
of the line structures, Chapters 11 and 12 examine passivation and corrosion of 
copper and passivation of silicon and germanium. Wafer reclamation and wafer 
bonding preparation processes are discussed in Chapters 13 and 14. The last sec-
tion of the book offers insight into the trends in cleans technologies. Chapter 15 
details novel methods for evaluating the surface cleanliness and condition. The 
strip and cleans methods needed for the newest photolithography applications are 
discussed in Chapter 16. 
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Our book is dedicated to all the engineers past, present, and future that have 
and still toil feverishly and relentlessly to develop and utilize proven cleaning 
processes, and invent new ways to solve these crucial issues. 

Karen A. Reinhardt 
San Jose, California 

Richard F. Reidy 
Denton, Texas 

November 2010. 
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Surface and Colloidal Chemical 
Aspects of Wet Cleaning 

Srini Raghavan, Manish Keswani, and Nandini Venkataraman 

Department of Materials Science & Engineering 
The University of Arizona 

Tucson, Arizona, USA 

Abstract 
Surface and colloidal chemicals aspects relevant to wet chemical cleaning and drying of 
semiconductor surfaces are reviewed. Specific areas discussed in this chapter include sur-
face charging of metal oxide and nitride films, development of an electrical double layer, 
zeta potential of electrified interfaces and its effect on particulate contamination, adsorp-
tion of surfactants and metal ions on insulating surfaces, principles of surface tension gra-
dient drying, and wetting and penetration of high aspect ratio features. 

Key words: interfacial phenomena, wet cleaning, surface charging of metal oxide and 
nitride, electrical double layer, metal adsorption, high aspect ratio cleaning, surface 
tension gradient drying 

1.1 Introduction to Surface Chemical Aspects of Cleaning 

The fabrication of integrated circuits requires a myriad of liquid-based etching 
and cleaning processes that are followed by rinsing and drying steps. Interfacial 
phenomena such as wetting, spreading, adsorption, adhesion, and surface charge 
play a critical role in determining the feasibility and efficiency of a liquid-based 
process step. The objective of this chapter is to discuss the fundamental science 
of the key interfacial phenomena relevant to wafer etching, cleaning, and drying. 
Specific areas discussed in this chapter include: 

1. Surface charging of materials in aqueous cleaning and rinsing 
solutions - understanding of the physical phenomena related to the 
adhesion and removal of particulate contaminants and metal ions. 

2. High aspect ratio cleaning - understanding the physical limitations 
induced by surface wetting and capillary forces for processes that 
require liquid penetration into narrow features. 

K. Reinhardt & R. Rcidy (eds.) Handbook of Cleaning for Semiconductor Manufacturing, (3-38) 
© Scrivener Publishing LLC 
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3. Drying methods - understanding the physics of creating a surface 
tension gradient at the water/vapor interface through interfacial 
adsorption. 

The aforementioned concepts should be considered in unison to understand and 
explain cleaning processes and to control contamination. For example, to remove 
metallic and particulate contamination, the cleaning chemical must wet the sur-
face, desorb, and preferably complex the metal ion and create a surface which 
bears a charge of the same sign as that on the contaminant particles to prevent 
re-deposition. 

1.2 Chemistry of Solid-Water Interface 

Successful removal of colloidal particles from surfaces requires an understanding 
of the repulsive and attractive forces between the particle and the surface. The 
repulsive forces arise mainly from the interaction of charged double layer at the 
particle/solution and the wafer/solution interface. The degree of surface hydrox-
ylation and acid-base characteristics of these hydroxyl groups impact the charging 
of a surface. Sections 1.2.1 and 1.2.2 describe the surface charging of silicon dioxide 
and silicon nitride in aqueous media. 

1.2.1 Surface Charging of Oxide Films in Aqueous Solutions 

The surface of a semi-metal oxide film is terminated with hydroxyl (-OH) groups. 
A comprehensive discussion of hydroxylation of an oxide surface is provided by 
Yopps et al. [1]. The density of these hydroxyl groups is roughly two to three per 
square nm [2]. When this oxide surface is immersed in an aqueous solution, the 
hydroxyl groups react with H+ and OH ions. These interactions are represented 
using the following equilibrium equations [3]: 

M O H + H + H M O H ; κλ (l.i) 

MOH<->MCT+H + K2 (1.2) 

where M is a metal atom or an element such as Si. 
Using the equilibrium constants (ΚΊ and K2) for the reactions of the protonation 

(Eq. 1.1) and deprotonation (Eq. 1.2) of SiOH sites, the fraction of sites with posi-
tive, negative and zero charge, viz, 0+, Θ and 0g on Si02 can be calculated as a func-
tion of solution pH. The result of such a calculation is shown in Figure 1.1 for Si02 

using ΚΊ and K2 values of 1007 and 10 39 respectively [4]. The surface charge density 
(coulombs per square meter), σ , at any particular pH is given by the expression: 

σ$ιΙϊ(=Ν^Θ+-θ_) (1.3) 

where /V, represents the total number of surface sites per square meter, and a is the 
fundamental electronic charge (coulombs). 



SURFACE AND COLLOIDAL CHEMICAL ASPECTS OF WET CLEANING 5 

Figure 1.1. Fraction of positive, negative, and neutral sites on a Si02 surface immersed in water at 
various pH values calculated using Kt = 10"7 and K2 = 10 19. Used with permission of the authors. 

Figure 1.1 shows that the surface of SiOz is positively charged at low pH and 
negatively charged at high pH. At a pH of ~1.5, the fraction of positive sites is equal 
to the fraction of negative sites. This pH is called the point of zero charge (PZC) 
[5]. It is worth noting that at the PZC while the fractions of positively charged 
and negatively charged sites may be equal, each fraction may not be 0.5. The PZC 
value is roughly equal to the average of pKj and pKr Reference [6] outlines surface 
charging theory with respect to wafer cleaning. 

Oxides may be classified as acidic, basic, or amphoteric [7]. Acidic oxides are 
generally oxides of non-metals (e.g. Si02, As203) that are dissolved by bases. By con-
trast, basic oxides (e.g. alkaline earth oxides such as MgO, FeO) are oxides of met-
als that are dissolved by acids. Oxides that show both acidic and basic properties 
are referred to as amphoteric oxides (e.g. A1203, SnO). Acidic oxides exhibit a low 
PZC while basic oxides exhibit higher PZC. For example, Si02, an acidic material, 
exhibits a PZC close to a pH of 2 while Al2Oy a basic material, exhibits a PZC close 
to a pH of 9. Table 1.1 lists PZC of materials of interest to semiconductor processing. 

An acid- base mass titration technique is typically used to determine the PZC of 
materials. In this technique demonstrated by Schwarz, a suspension of oxide particles 
in an electrolyte is titrated with a standard acid/base solution [14]. The protonation/ 
deprotonation of the oxide surface causes the solution pH to increase/decrease from 
the original pH value. A mass balance from the added H+/OPT ions is then made 
to obtain the extent of adsorption of H+ and OH". The surface charge density, σ is 
given by: 

σ = F x ( r + - r ,-) (1.4) 
surf H OH x ' 

where ΓΗ+ and ΓΟΗ- are adsorption densities (moles per square meter) of H+ and 
OH , respectively, and F is the Faraday constant (96500 coulombs/gram equivalent). 

The use of this technique is described in many papers [15-18] and only works 
well for samples with large surface areas such as particles. For materials with low 
surface areas such as oxide films, the pH change due to adsorption/desorption is 
too small to be accurately measured causing large errors in mass balance [19]. 
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Table 1.1. Point of zero charge of materials of interest to wafer cleaning 

Material 

Si02 

Si,N4 

Ti02 

A1203 

Si 

PSL 

PZC at pH of 

2-4 

3-5.5 

5-6 

8-9 

3-4 

No PZC (negative 
charge at all pH 

values) 

Type 

Acidic 

Depends on relative proportion of 
NH2 and OH groups 

Weakly acidic 

Amphoteric/mildly basic 

Acidic 

Not applicable (organic) 

Reference 

[8] [9] 

[8] [9] 

[10] 

[11] [12] 

[8] 

[13] 

Figure 1.2. Charging of silicon nitride films in water; protonation of amine terminated surface sites 
leading to formation of positively charged sites that may react with water to form silanol groups 
[201. Used with permission from Martin Knotter, NXP. 

1.2.2 Surface Charging of Silicon Nitride Films 
in Aqueous Solutions 

Silicon nitride films are most commonly deposited using a chemical vapor deposition 
(CVD) technique in which silane (SiH) reacts with ammonia (NH3). Plasma-enhanced 
CVD (PECVD) forms SiNx and low pressure CVD (LPCVD) forms Si3N4. Consequently, 
silicon nitride films may contain up to 5-6 atomic % hydrogen, especially those 
formed with PECVD. As shown in Figure 1.2, these films typically have amine 
(-NH2) surface groups, which depending on their pKa value can be protonated 
leading to the formation of positively charged sites [20]. The negative sites on the 
surface of nitride films have been postulated [21, 22] to be created by the reaction of 
surface amine groups with water forming silanol (Si-OH) followed by deprotonation 
to form negatively charged SiO sites. The isoelectric point (defined in Section 1.2.3) of 
nitride films can vary widely depending on the hydrolytic strength of -NH2 groups, 
which in turn will depend on the solution pH, ionic strength, and temperature. 

1.2.3 Electrified Interfaces: The Double Layer and Zeta Potential 

A solid immersed in an aqueous solution produces a region of electrical inho-
mogeneity at the solid-solution interface. An excess charge at the solid-solution 


