

Handbook of Cleaning for Semiconductor Manufacturing

Fundamentals and Applications

Karen A. Reinhardt Cameo Consulting, San Jose, California Richard F. Reidy Dept of Materials Science and Engineering, University of North Texas, Denton TX

This page intentionally left blank

Handbook of Cleaning for Semiconductor Manufacturing

Scrivener Publishing

3 Winter Street, Suite 3 Salem, MA 01970

Scrivener Publishing Collections Editors

James E. R. Couper Richard Erdlac Pradip Khaladkar Norman Lieberman W. Kent Muhlbauer S. A. Sherif

Ken Dragoon Rafiq Islam Vitthal Kulkarni Peter Martin Andrew Y. C. Nee James G. Speight

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Handbook of Cleaning for Semiconductor Manufacturing

Fundamentals and Applications

Karen A. Reinhardt Cameo Consulting, San Jose, California Richard F. Reidy Dept of Materials Science and Engineering, University of North Texas, Denton TX

Copyright © 2011 by Scrivener Publishing LLC. All rights reserved.

Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

For more information about Scrivener products please visit www.scrivenerpublishing.com.

Cover design by Russell Richardson.

Library of Congress Cataloging-in-Publication Data:

ISBN 978-0-470-62595-8

Printed in the United States of America

For	Foreword xvii				
Int	rodu	ction		xxi	
Pa	rt 1:	Funda	amentals		
1.	Sur	face an	d Colloidal Chemical Aspects of Wet Cleaning	3	
	Srin	i Ragh	avan, Manish Keswani, and Nandini Venkataraman		
	1.1	Introd	luction to Surface Chemical Aspects of Cleaning	3	
	1.2	Chem	istry of Solid-Water Interface	4	
		1.2.1	Surface Charging of Oxide Films in Aqueous Solutions	4	
		1.2.2	Surface Charging of Silicon Nitride Films in Aqueous Solutions	6	
		1.2.3	Electrified Interfaces: The Double Layer and Zeta Potential	6	
			1.2.3.1 Oxide Films and Particles	7	
			1.2.3.2 Nitride Films and Particles	10	
1.3 Particulate Contamination: Theory and Measurements					
		1.3.1	Effect of the Electric Double Layer Formation on Particulate		
			Contamination	11	
		1.3.2	Direct Measurement of Interaction Forces between		
			Particles and Surfaces	13	
	1.4	Influe	nce of Surface Electrical Charges on Metal Ion Adsorption	17	
	1.5	Wetta	bility of Surfaces	22	
		1.5.1	Surface Tension and Surface Energy	22	
		1.5.2	Adsorption Characteristics and Wettability Modification	22	
	1.6	High .	Aspect Ratio Cleaning: Narrow Structures	26	
		1.6.1	Rate of Liquid Penetration into Narrow Structures	27	
		1.6.2	Enhancement of Liquid Penetration into Narrow Structures	30	
	1.7	Surfac	ce Tension Gradient: Application to Drying	30	
		1.7.1	Isopropyl Alcohol Surface Tension Gradient Drying	31	
		1.7.2	Water Layer After Drying	31	
		1.7.3	Alternate Chemicals for Drying	32	
	1.8	Sumn	nary	35	
		Refere	ences	35	
2.	The	Chem	istry of Wet Cleaning	39	
	D. N	lartin	Knotter		
	2.1	Introd	luction to Aqueous Cleaning	39	
		2.1.1	Background of Aqueous Cleaning Chemistry	39	

vi Contents

2.2	Overv	view of Aqueous Cleaning Processes	41
	2.2.1	RCA Cleaning	41
	2.2.2	Modified RCA Processes	41
	2.2.3	Other Cleaning Processes	41
2.3	The S	C-1 Clean or APM	42
	2.3.1	Electrochemistry of SC-1	43
	2.3.2	Molecular Mechanism	46
	2.3.3	Etching Rate in APM	48
	2.3.4	Concentration Variations	49
	2.3.5	Concentration Monitoring and Control	53
	2.3.6	APM-related Surface Roughening	55
		2.3.6.1 Vapor Etching	55
		2.3.6.2 Galvanic Etching and Masking	57
		2.3.6.3 Catalyzed H.O. Depletion	61
	2.3.7	Metal-ion Contamination and Complexing Agents	63
	2.3.8	Diluted APM	66
2.4	The SC	C-2 clean or HPM	67
	2.4.1	Particle Deposition	68
	2.4.2	Hydrogen Peroxide Decomposition in SC-2	68
	2.4.3	Hydrochloric Acid Fumes	70
	2.4.4	Diluted HCl	70
2.5	Sulfur	ric Acid-Hydrogen Peroxide Mixture	71
	2.5.1	Stripping and Cleaning Mechanism	73
		2.5.1.1 Dissolution Reaction	73
		2.5.1.2 Discoloration Reaction	74
	2.5.2	Particulate and Sulfate Contamination	76
	2.5.3	Alternatives	79
		2.5.3.1 Modification of SPM	79
		2.5.3.2 Sulfur Trioxide	79
2.6	Hydro	ofluoric Acid	80
	2.6.1	Hydrogen Passivation	80
	2.6.2	Etching Rate Control	85
	2.6.3	Bath Monitoring	86
		2.6.3.1 Conductivity	86
		2.6.3.2 Near Infrared	88
	2.6.4	Contamination	89
	Ackno	owledgments	91
	Refere	ences	91
The	e Chemi	istry of Wet Etching	95
D. N	Intera 1	notier	05
3.1		Definition of Etching	95
	3.1.1	The Druging of Wet Etching	90
	3.1.2	The Enysics of Wet Electing	96
		2.1.2.1 Difference in bond Strength	98
		3.1.2.2 Adsence of the Proper Keactant	99
		5.1.2.5 Formation of Innibiting Coatings	99

3.

	3.2	Silicor	n Dioxide Etching	99
		3.2.1	Hydrofluoric Acid Etching	100
		3.2.2	Water-based Etching	109
	3.3	Silicor	n Etching	111
		3.3.1	Hydrofluoric Acid and Nitric Acid Mixture	113
		3.3.2	Potassium Hydroxide and Alcohol Mixtures	116
		3.3.3	Tetramethyl Ammonium Hydroxide Etching	120
	3.4	Silicon	n Nitride Etching	122
		3.4.1	Hydrofluoric Acid-based Etching Solutions	123
		3.4.2	Hot Phosphoric Acid Etching	127
		3.4.3	Water Etching	138
		Ackno	owledgements	139
		Refere	ences	139
4.	Sur	face Ph	enomena: Rinsing and Drying	143
	Kar	en A. R	leinhardt, Richard F. Reidy, and John A. Marsella	
	4.1	The St	urface Phenomena of Rinsing and Drying	143
		4.1.1	Introduction to Surface Phenomena in Rinsing	144
		4.1.2	Introduction to Surface Phenomena in Drying	144
	4.2	Overv	view of Rinsing	144
		4.2.1	Wafer Charging	145
			4.2.1.1 Charging from Immersion in Water	145
			4.2.1.2 Wafer Charging During Spinning	146
		4.2.2	Wetting a Surface	148
			4.2.2.1 Surface Energy and Surface Tension	148
			4.2.2.2 Wetting and Rinsing Small Features	150
		100	4.2.2.3 Wetting Rough Surfaces	151
		4.2.3	Silica in Water	154
			4.2.3.1 Oxidation of Silicon in Water	155
	4.2	0	4.2.3.2 Precipitation of Silica in water	157
	4.3	Overv	The Chamisters and Physics of Watermarks	108
		4.5.1	A 2.1.1 Watermarks Formation	100
			4.3.1.1 Watermarks on Wafers Caused by Cleaning	100
			4.3.1.2 Watermarks on Waters Caused by Cleaning	101
			Immersion Lithography	167
		432	Drving High Aspect Ratio Features and Stiction	162
		433	Adhesion of Particles during Rinsing and	102
		1.0.0	Drving	164
		Ackno	owledgements	166
		Refere	ences	166
F	F		tal Davian of Chamical Formulations	1/0
э.	Rol	bert J. R	Rovito, Michael B. Korzenski, Ping Jiang,	109
	and	Karen	A. Reinhardt	
	5.1	Introd	luction and Overview	169

viii Contents

	5.2	Histo	prical Development of Formulations for the Integrated	
		Circu	uit Industry	170
		5.2.1	Chemical Formulation Generations	170
		5.2.2	First Generation Oxidizing Chemicals	171
		5.2.3	Second Generation Solvent-based Formulations	172
		5.2.4	Third Generation Amine-based Formulations	173
		5.2.5	Hydroxylamine Photoresist Residue Removers	173
		5.2.6	Fluoride-containing Strippers and Post-etch	
			Residue Removers	174
		5.2.7	Amine Post-etch Residue Removers for Copper	174
	5.3	Mech	anism of Stripping, Cleaning, and Particle Removal	175
	5.4	Com	ponents and Additives in Chemical Formulations	177
		5.4.1	Base Chemical and Active Ingredient	177
		5.4.2	Buffering Agents	177
		5.4.3	Surfactants	178
		5.4.4	Chelating Agents	180
		5.4.5	Oxygen Scavenging or Passivating Agent	180
	5.5	Creat	ing Chemical Formulations	180
		5.5.1	Överview of Techniques Used in Creating	
			Chemical Formulations	181
		5.5.2	Formulation Design Models and Parameters	181
			5.5.2.1 Solubility Parameters	182
			5.5.2.2 Selective Solvency	184
			5.5.2.3 Kinetic Salt Effects	185
		5.5.3	Practical Considerations	185
			5.5.3.1 Bath Life and Bath Life Extension	185
			5.5.3.2 Materials Compatibility	187
			5.5.3.3 Tool Configuration – Single Wafer vs. Batch	
			Processing	188
			5.5.3.4 Rinsability	188
			5.5.3.5 Shipping and Shelf Life	188
			5.5.3.6 Purity Level	188
	5.6	Envir	onmental, Safety, and Health Aspects	188
		Ackn	owledgments	190
		Refer	ences	190
6.	Filt	ering, l	Recirculating, Reuse, and Recycling of Chemicals	193
	Bar	ry Got	linsky, Kevin T. Pate, and Donald C. Grant	
	6.1	Över	view of Wet Chemical Contamination Control	193
		6.1.1	Contamination Control Challenges Relating	
			to Chemical Distribution	194
		6.1.2	Use of Filtration to Control Particle Contamination	194
		6.1.3	Metrology Techniques for Particles	194
		6.1.4	Metrology Techniques for Dissolved Contaminants	195
	6.2	Bulk	Chemical Distribution for Wet Cleaning Tools	195
		6.2.1	Bulk Chemical Delivery Systems	195
		6.2.2	Bulk Chemical Delivery System Design	196

	6.2.3	Particulate Purity Control for Bulk Chemical	
		Delivery Systems	197
	6.2.4	Metallic Ion Purity Control for Bulk Chemical	
		Delivery Systems	200
	6.2.5	Organic Purity Control for Bulk Chemical Delivery Systems	201
	6.2.6	Chemical Delivery Sub-systems	202
6.3	Cherr	nical Distribution, Filtering, and Recirculation	
	Requi	irements for Wet Cleaning Tools	202
	6.3.1	Recirculating Immersion Tools	202
	6.3.2	Single Wafer Tools	204
	6.3.3	Wafer Drying	206
6.4	Conta	amination Control Metrology	206
	6.4.1	Particle Measurement for Chemical Fluids	206
		6.4.1.1 Particle Measurement Methods	206
		6.4.1.2 Particle Sampling Locations	210
	6.4.2	Chemical Purity of Chemical Fluids	210
		6.4.2.1 Inorganic Contaminant Measurement Methods	211
		6.4.2.2 Inorganic Contaminant Sampling	212
	6.4.3	Chemical Handling System Component Purity	212
6.5	Effect	s of Contamination	213
	6.5.1	Particulate Contamination	213
	6.5.2	Ionic and Metallic Contamination	215
	6.5.3	Organic Contamination	215
6.6	Filtra	tion	217
	6.6.1	Filtration Mechanisms	217
	6.6.2	Filtration Design and Materials	220
	6.6.3	Characterization of Filter Performance	225
	6.6.4	Filtration for Bulk Chemical Delivery Systems	
		and Wet Clean Tools	229
6.7	Chem	nical Blending, Recycling, and Reuse	230
	6.7.1	Chemical Blending	230
		6.7.1.1 On-site blending case – 50:1 diluted HF	
		from 49 wt% HF:	231
	6.7.2	Reprocessing and On-site Waste Treatment	232
	6.7.3	On-site Treatment of Waste Streams	233
	6.7.4	Deionized Water Reuse and Reclamation	234
6.8	Sumn	nary	234
	Refere	ences	235

Part 2: Applications

7.	Cleaning Challenges of High-к/Metal Gate Structures					
	Muhammad M. Hussain, Denis Shamiryan, Vasile Paraschiv,					
	Ken	iichi Sano, and Karen A. Reinhardt				
	7.1	Introduction and Overview of High-κ/Metal Gate				
		Surface Preparation	239			
		7.1.1 High-κ Dielectric Evolution	240			

		7.1.2	Metal Gate Evolution	241
		7.1.3	High- κ /Metal Gate Integration and Structures	243
			7.1.3.1 Gate-First Process	243
			7.1.3.2 Gate-Last Process	245
			7.1.3.3 Comparison between Gate-First and Gate-Last	-
			Scheme	248
			71.34 Fully Silicided Process	251
	7.2	Surfa	ce Preparation and Cleaning	253
	,	7.2.1	Surface Cleaning Challenges Prior to High- κ Deposition	253
		7.2.2	Pre-interfacial Oxide Formation Cleaning	253
		7.2.3	Interfacial Oxide Formation	254
			7.2.3.1 Hydroxyl-terminated Surface	254
			7.2.3.2 Interfacial Oxide Formation	255
			7.2.3.3 Thermal Oxidation	258
			7.2.3.4 Nitrided Surfaces	259
			7.2.3.5 Hydrogen-terminated Surface	259
		7.2.4	High-K Deposition on Germanium	260
	7.3	Wet F	film Removal	261
		7.3.1	First Metal Gate Removal	262
		7.3.2	Replacement Gate Removal	264
	7.4	High-	-ĸ Removal	264
		7.4.1	Challenges of Removing High-ĸ Material after Etching	264
		7.4.2	Removal of High-ĸ Dielectric	265
		7.4.3	Dry Removal	266
		7.4.4	Wet Removal	269
		7.4.5	Corrosion	272
		7.4.6	Combination of Wet and Dry Removal	272
	7.5	Resist	t Stripping and Residue Removal	273
		7.5.1	Plasma Stripping	274
		7.5.2	Wet Stripping	276
		7.5.3	Cleanliness Prior to Anneal	278
		Ackne	owledgments	278
		Refere	ences	278
8.	Hig	h Dose	e Implant Stripping	285
	Kar	en A. F	Reinhardt and Michael B. Korzenski	
	8.1	Introc	fuction and Overview of High Dose Implant Stripping	285
		8.1.1	High Dose Implant	286
		8.1.2	Photoresist Modifications Due to Implant	288
		8.1.3	Post-photoresist Removal Residue	292
		8.1.4	Silicon Loss and Silicon Dioxide Formation and Loss	295
		8.1.5	Dopant Deactivation	298
	8.2	High	Dose Implant Cleaning and Stripping Processes	299
		8.2.1	Process Requirements	299
		8.2.2	Process Comparison: Wet and Dry	300
	8.3	Plasn	na Processing	301
		8.3.1	Photoresist Popping	301

		8.3.2 Plasma-induced Damage	304
		8.3.2.1 Charging Damage	304
		8.3.2.2 Physical Damage	305
		8.3.3 Stripping Process Chemistry	305
	8.4	Wet Processing	307
		8.4.1 Wet Processing after Plasma Processing	308
		8.4.2 Wet-only Processing Background	308
		8.4.3 Aqueous Wet-only Processing	309
		8.4.4 Semi-aqueous and Solvent Processes	312
		8.4.4.1 Selective Passivation	313
		8.4.4.2 Corrosion-free Compositions	315
		8.4.4.3 Crust Dissolution	316
	~ ~	8.4.4.4 Corrosion Inhibitors	316
	8.5	Other Processing	317
		8.5.1 Water-assisted and Solvent-based Crust Removal	317
		8.5.2 Supercritical Processing	317
		8.5.3 High-pressure Processing	320
		8.5.4 Cryoaerosol Process	320
		References	322
		References	522
9.	Alu	uminum Interconnect Cleaning and Drying	327
	Dav	vid J. Maloney	
	9.1	Introduction to Aluminum Interconnect Cleaning	327
	9.2	Source of Post-Etch Residues Requiring Wet Cleaning	329
		9.2.1 Post-tungsten Plug Etchback Cleaning	330
		9.2.2 Post-aluminum Line Etch Cleaning	331
		9.2.3 Post-via Etch Cleaning	336
	9.3	Chemistry Considerations for Cleans Following Etching	338
		9.3.1 Fluoride-based Cleaning Formulations	340
		9.3.1.1 Applications	342
		9.3.1.2 Process Conditions	343
		9.5.2 Cleaning with Hydroxylanine	344 246
		9.3.2.1 Applications	240
	94	Rinsing / Drying and Equipment Considerations	340
	7.4	941 Rinsing/Drying	347
		942 Fauipment	349
	9.5	Alternative and Emerging Cleaning Technologies	350
		Acknowledgements	351
		References	351
10	т		
10.	LOW	v-K/Cu Cleaning and Drying	355
	Kar	ren A. Keinnarat, Kicnara F. Keiay, and Jerome Daviot	255
	10.1	10.1.1. Coppor Intercomposite Packarsen J and Amelia the	355
		10.1.1 Copper interconnects: background and Applications	336

		10.1.2	Low-ĸ [Dielectrics: Background and Applications	356
		10.1.3	Copper	and Low-ĸ Integration	357
	10.2	Stripp	ing and P	ost-etch Residue Removal	359
		10.2.1	Plasma	Post-etch Stripping, Cleaning, Residue	
			Remova	l, and Passivation	362
		10.2.2	Wet Pos	t-etch Cleaning and Residue Removal	
			and Dry	ring	365
			10.2.2.1	Dilute Hydrofluoric Acid	365
			10.2.2.2	Semi-aqueous and Solvent Cleaning	366
			10.2.2.3	Fluoride-containing Aqueous Formulations	367
			10.2.2.4	Acidic Aqueous Formulations	367
			10.2.2.5	Semi-aqueous Alkaline Formulations	367
			10.2.2.6	Near-neutral Aqueous Formulations	368
	10.3	Pore S	ealing and	d Plasma Damage Repair	368
		10.3.1	Pore Sea	aling	368
			10.3.1.1	Plasma Treatments	369
			10.3.1.2	Thin Sealing Layers	370
			10.3.1.3	Graded Pores	370
			10.3.1.4	Chemical Modification	370
			10.3.1.5	Determination of Pore Sealing Effectiveness	371
		10.3.2	Plasma	Damage Repair	372
	10.4	Post-cl	hemical M	Iechanical Polishing Cleaning	373
		10.4.1	Post-CM	1P Cleaning Defectivity Challenges	373
			10.4.1.1	Corrosion	373
			10.4.1.2	Particulate Contamination Defectivity	376
			10.4.1.3	Metallic Contaminants	377
			10.4.1.4	Watermarks and Stains	378
			10.4.1.5	Detrimental Effects on Low-k Dielectric:	
				Cracks and Delamination	379
			10.4.1.6	Surface Conditioning and Material	
				Integrity	380
		10.4.2	Post-CM	IP Cleaning: Processes and	
			Formula	itions	380
			10.4.1.7	Particle Removal	381
			10.4.1.8	Megasonic	385
			10.4.1.9	Brush Scrubbing	386
			10.4.1.10	Corrosion Prevention	387
		10.4.3	Cost Eff	ectiveness and Environmentally	
			Friendly	Processing	389
		Refere	nces		389
11.	Corre	osion ar	nd Passiva	ation of Copper	395
	Darr	yl W. P	eters		
	11.1	Introd	uction and	d Overview	395
	11.2	Coppe	r Corrosio	on	396
		11.2.1	Pourbai	x and Stability Diagrams	396
		11.2.2	Copper	Corrosion and Oxidation	399
			11.2.2.1	Oxidation and Corrosion with Respect to pH	399

			11.2.2.2	Galvanic and Photo-induced Corrosion	400
			11.2.2.3	Examples of Corrosion – Post-etch	
				and Post-CMP	402
		11.2.3	Corrosion	Inhibitor Efficiency	402
	11.3	Coppe	r Corrosio	on Inhibitors	403
		11.3.1	Azole Co	prrosion Inhibitors	404
			11.3.1.1	Benzotriazole	404
			11.3.1.2	Carboxybenzotriazol	406
			11.3.1.3	5-aminotetrazole	406
			11.3.1.4	1,2,4-triazole	406
			11.3.1.5	Influence of Solution pH	407
			11.3.1.6	Process Results of Azole Cleaning	
				Solutions	412
		11.3.2	Oxygen S	Scavengers	414
		11.3.3	Diols, Tr	iols, and Carboxylic Acids	415
			11.3.3.1	Corrosion Inhibition Efficiency	415
		11.3.4	Mercapta	ans	420
	11.4	Coppe	r Cleaning	g Formulations	420
		11.4.1	Post-etch	n Cleaners	421
		11.4.2	Post-CM	IP Cleaners	423
		Ackno	wledgmei	nts	425
		Refere	nces		425
12.	Gern	nanium	Surface C	Conditioning and Passivation	429
	Sonj	a Sioncl	ke, Yves J.	Chabal, and Martin M. Frank	
	12.1	Introd	uction		429
		12.1.1	Germani	ium Use in Integrated Circuit Transistors	429
		12.1.2	Gate Sta	ck Interface Preparation and Passivation	430
		12.1.3	Need for	Passivation	430
	12.2	Germa	inium Clea	aning	431
		12.2.1	Wet Che	mical Compatibility and Etching Rates:	
			A Histor	ical Perspective	431
		12.2.2	Wet Che	mical Compatibility and Etching Rates:	
			Recent R	lesults	433
		12.2.3	Metal De	eposition on Germanium	434
		12.2.4	Metal Re	emoval from Germanium	437
		12.2.5	Particle I	Deposition on Germanium	439
		12.2.6	Particle I	Removal from Germanium	441
	12.3	Surfac	e Passivati	ion and Gate Stack Interface	
		Prepar	ation		442
		12.3.1	Thermoo	lynamic Stability of Native Oxides	442
		12.3.2	Oxidatio		443
		46 5 -	12.3.2.1	Gate Stacks on Oxidized Germanium	447
		12.3.3	Nitridati	on and Oxynitridation	448
			12.3.3.1	Gate Stacks on Nitrided or Oxynitrided	· - -
		10 -		Germanium	452
		12.3.4	Hydroge	enation	453
			12.3.4.1	Hydrogenation in Ultra High Vacuum	453

			12.3.4.2	Wet Chemical Treatment of Flat Single	
				Crystal Germanium Surfaces	454
			12.3.4.3	Electrochemistry on Flat Single Crystal	
			12.011.0	Germanium Surfaces	460
			12344	Hydrofluoric Acid-treated Germanium	200
			12.0.1.1	Gate Stacks	460
		1235	Chlorine	Passivation	462
		12.0.0	12 3 5 1	Gate Stacks on HCl-treated Germanium	463
		1236	Sulfur P	assivation	464
		12.0.0	Silicon F	Passivation	467
		Refere	nces		468
		iterere	need		100
13.	Wafe	er Reclai	im		473
10.	Mick	ael R K	 Corzenski	and Pino Iiano	110
	13.1	Introdu	uction to 1	Wafer Reclaim	473
	13.2	Introd	uction to 9	Silicon Manufacturing	170
	10.2	for Ser	niconduct	or Applications	474
	133	Energy	7 Requirer	nents for Silicon Wafer Manufacturing	478
	13.0	Test W	afor Hean	e and Wafer Reclaim	470
	15.4	12 / 1	Silicon N	Astorial Flow in a Wafor Fab	479
		13.4.1	Economi	ics of Reclaiming Waters	47)
	13 5	Requir	emonts fo	r Wafer Reclaim and Recycle	400
	15.5	13 5 1	Roclaim	Water Metrics	402
		13.5.1	Tochnicu	use for Moscuring Wafer Reclaim Space	402
	12.6	Nafor	Pooloim (Des for Measuring Water Rectain Specs	403
	13.0	12 6 1	Extornal	Paclaim	404
		12.0.1	Internal	Wafer Realaim Programs	400
	127	15.0.2 Types	of Mafor I	Valer Reclaim Flograms	407
	15.7	12 7 1	Convent	ional Paclaim Processos	400
		1272	Non ma	tal Reclaim Processes	400
		13.7.2	Motol D	valaim Processes	400
		13.7.3 12.7.4	Motal C	estamination	492
	12.0	15.7.4 Earmu	Interd Real	laim Colutions	494
	15.0	Aalma		anto	490
		Deferre	wiedgem	2105	490
		Keiere.	nces		499
1/	Dira	et Wafa	Bondino	Surface Conditioning	501
14.	Unt	ut Mori	Donumg	wick C. La Tiga Engult Fournal	501
	Tude		Ceuu, iun	Cábasticu I. F. Verdilàs David Delevet	
	Luuc	Classic F. L	. Ecarnol,	Sebustien L. E. Kerailes, Daniel Delprat,	
	ana (Christop	one Malet		F 01
	14.1		uction and	Overview of Bonding	501
		14.1.1	vvafer Bo	Ciliary and Ciliar Direct Parali	503
			14.1.1.1	Suicon and Suica Direct Bonding	503
			14.1.1.2	Silicon-on-insulator Structures	504
			14.1.1.3	3D Integration Water Level Packaging	504
			14.1.1.4	Diverse Material Stacking	505

			14.1.1.5	Patterned Silicon-on-insulator Wafers	506
			14.1.1.6	Germanium-on-insulator Wafers	506
		14.1.2	Wafer Bo	onding Surface Conditioning	507
	14.2	Planari	zation an	d Smoothing Prior to Bonding	507
		14.2.1	Chemica	I Mechanical Planarization	507
		14.2.2	Surface S	Smoothing	509
	14.3	Wet Cleaning and Surface Conditioning Processing			
		14.3.1	Process l	Flow	512
		14.3.2	Sulfuric	Acid-Hydrogen Peroxide Mixture	513
		14.3.3	Deionize	ed Water/Ozone Cleaning	513
		14.3.4	Standard	l Clean-1 Surface Conditioning	514
		14.3.5	Standard	l Clean-2 Cleaning	515
		14.3.6	Wafer Br	rush Scrubbing	515
		14.3.7	Wafer D	rying	516
			14.3.7.1	Equipment	516
			14.3.7.2	Analysis	517
	14.4	Dry Su	rface Con	ditioning Processing	519
		14.4.1	Process I	Flow	519
		14.4.2	Plasma A	Activation	520
			14.4.2.1	Background of Plasma Processing	520
			14.2.2.2	Plasma Activation Mechanism	521
			14.2.2.3	Plasma Subsurface Impact	524
		14.4.3	Ultravio	let-Ozone Cleaning	526
			14.4.3.1	Carbon Contamination	526
			14.4.3.2	Ultraviolet-Ozone Cleaning	527
			14.4.3.3	Oxidation by Ultraviolet-Ozone Processing	528
			14.4.3.4	Surface Hydrophilicity	528
	14 5	וידי	14.4.3.5	Ultraviolet-Ozone Defect Densities	529
	14.5	14.5 Thermal Treatments and Annealing			
		14.5.1	Pre-bond	aing Annealing	530
		14.5.2	Post-bor	a Annealing	532
			14.5.2.1	Degassing Species Limitation	532
			14.5.2.2	Effect of Interfacial Oxide Thickness on	500
	110	Condes	ating Dam	Jonaing Defect Densities	555
	14.0	14.6 Conductive Bonding			
		Keleren	ices		557
ъ		т р .			
Pa	rt 3: N	New Di	rections	6	
15.	Nove	el Analyi	tical Met	hods for Cleaning Evaluation	545
	Chri	s M. Spa	rks and A	Alain C. Diebold	
	15.1	Introdu	iction		545
	15.2 Novel Analytical Methods				
	15.3	Recent	Advance	s in Total Reflection X-ray Fluorescence	
		Cnostro	COOPY Ar		E47

Spectroscopy Analysis54715.3.1Alternative X-ray Sources for TXRF547

		15.3.2 Surface Coverage of the Wafer	549
		15.3.3 Edge Contamination Monitoring of the Wafer	551
		15.3.4 Front and Back Surface Monitoring of the Wafer	552
		15.3.5 Contamination Analysis on New Materials	553
	15.4	Advances in Vapor Phase Analysis	553
	15.5	Trace Metal Contamination on the Edge and Bevel of a Wafer	555
	15.6	Kelvin Probe Technologies	556
	15.7	Novel Applications of Electron Spectroscopy Techniques	558
	15.8	Novel X-ray Spectroscopy Techniques	561
15.9 Electrochemical Sensors		Electrochemical Sensors	561
	15.10	Summary	561
		Acknowledgments	561
		References	561
16.	Strip	ping and Cleaning for Advanced Photolithography Applications	565
	John.	A. Marsella, Dana L. Durham, and Leslie D. Molnar	
	16.1	Introduction to Advance Stripping Applications	565
	16.2	Historical Background	566
		16.2.1 Solvent-Based Strippers	566
		16.2.2 Hydroxylamine Photoresist Residue Removers	568
		16.2.3 Fluoride-containing Strippers	568
	16.3	Recent Trends for Photoresist Stripping and Post-etch	
		Residue Removal	569
		16.3.1 New Materials and Compatibility Issues	569
		16.3.2 Germanium	569
		16.3.3 Phase-change Memory Material	569
		16.3.4 Porous Low-к Materials	570
		16.3.5 High-κ Materials	570
		16.3.6 High Dose Ion Implanted Photoresist	571
	16.4	Single Wafer Tools	572
		16.4.1 Back End of the Line Processing	573
		16.4.2 Front End of the Line Processing	574
		16.4.3 Photoresist Rework	575
	16.5	Wetting in Small Dimensions and Cleaning Challenges	576
	16.6	Environmental Health and Safety	579
		16.6.1 Challenges to the Semiconductor Industry	579
		16.6.2 Solvents	580
	16.7	The Future of Advanced Photoresist Stripping and Cleaning	581
		Acknowledgements	581
		References	581

Index

Foreword

Semiconductor electronic properties are extremely sensitive to the presence of trace amounts of foreign substances. This fundamental property of doped semiconductors is the basis for the fabrication of electronic devices. From the dawn of semiconductor based electronic devices, it has been clear that undesired impurities must be kept at very low levels and material purification methods were essential to the successful operation of such devices.

In the 1950's and 1960's, the solid state device of choice was the bipolar junction transistor (BJT), which required a sufficiently long free-carrier recombination lifetime and thus, a low metallic impurity concentration. To achieve this, semiconductor surfaces were cleaned at critical steps in the manufacturing process. In the early 1970's, the first systematic cleaning studies were carried out and resulted in the "RCA cleaning" process. The aqueous oxidizing mixtures (SC-1 and SC-2) were found to be very efficient at removing a broad range of contaminants such as organics and metals. SC-1, in particular, very effectively removes particles. These mixtures were highly selective towards silicon because of the stability of the passivating SiO₂ on the silicon surface.

Although the metal-insulator-semiconductor lateral-field effect transistor had been invented in the 1920's, it was not until the late 1970's that the metaloxide-semiconductor field-effect transistor (MOSFET) became a useful electronic device. It was only at that point that surface cleaning reached the capability needed to fabricate high-quality gate oxides with low levels of Na and K contamination essential for making MOSFET devices with stable threshold voltages. This delayed introduction also reflects the thermodynamic propensity of surfaces and interfaces to be the preferred sites for impurities. Within a decade, MOSFET technology replaced the BJT in large scale integrated circuits.

The field of cleaning is complicated by the fact that contamination is often near the edge of detectable limits; consequently, the progress of cleaning science has been tightly linked to advancements in metrology. For a long time, bulk semiconductor electronic properties, such as free carrier lifetime, were the primary measurement technique for contamination. Because MOSFET performance is in large part driven by the quality of its interfaces, more attention has been directed to surface quality and contamination. New metrology techniques such as high resolution electron energy loss spectroscopy (HR-EELS), high resolution X-ray photoelectron spectroscopy (HR-XPS), and Fourier transform infrared spectroscopy (FTIR) helped reveal a great deal about the nature of the chemical structure of a silicon surface and its relation to the aqueous chemical treatments. Surface inspection for particle contamination began in the 1980's with visual observation under collimated light and has evolved to scanning laser light scattering measurement tools capable of detecting particles only a few tens of nanometers in diameter. Total X-ray fluorescence (TXRF) was developed in the 1990's and evolved from a research method to a monitoring technique for fast inspection for low-levels of metal contaminants. Time-of-flight SIMS made it possible to detect trace amounts of organic and airborne molecular surface contamination. The availability of these surface measurement techniques made contamination a measurable quantity transforming contamination control and cleaning from an experience-driven field into a science embraced by academic institutes and R&D centers.

The functionality of circuits has increased while feature size has shrunk at an astonishingly high and steady pace. From the early 1990's, the major quest for yield improvements on megabit-level memory chips has significantly boosted the development of improved cleaning processes and cleaner chemicals. During this wave of substantial investigation, concerns were raised that wet cleaning would quickly run out of steam; consequently, various types of dry cleaning were investigated. Wet cleaning, however, has remained the method of choice because of a number of reasons including: excellent particle removal due to a reduction of van der Waals attractions; highly selective chemical reactions; and good dissolution and transport properties.

The RCA clean has been the backbone in semiconductor cleaning because of its abovementioned properties. Current requirements for cleaning have become more constrained than at the time the RCA clean was introduced. Reduction in surface etching amounts and other issues require that the SC-1 mixtures be very dilute and at reduced temperatures. In many cases, the SC-2 step can be replaced by dilute HCl. These approaches have resulted in longer bath lifetimes, reduced chemical costs, and lower waste burdens. An acidified rinse has been used to further suppress contamination. Alternative simple cleaning recipes have been introduced, such as self-saturating chemical oxide growth using sulfuric acid spiked with ozone, followed by an HF-based mixture.

Cleaning tools have evolved to keep up with ever-changing processes. Wet benches consisting of immersion tanks are now equipped with recirculation and filtration units, automated filling *in situ* concentration monitoring, and automatic spiking systems. Simplified recipes have resulted in wet benches with fewer tanks. Single tank tools have been introduced for use with very dilute chemicals. The biggest change has occurred since 2000; single wafer cleaning gradually replacing batch tools for critical applications. Single wafer tools made it possible to treat both sides of a wafer differently and thus, provide isolation of the front and back surfaces allowing for high performance cleaning. For single wafer cleaning, process time limitations favor the use of more concentrated chemicals.

Currently wet cleaning has become more diverse and gained a very high level of sophistication. Cleaning is applied throughout the entire manufacturing process of integrated circuits from incoming wafers to sawing and packaging or 3D-integration. As technology progresses, cleaning requirements become more stringent with smaller margins. Often selectivity is a major challenge as the contaminants to be removed resemble more closely that of the layers to be cleaned. This has led to a variety of tailored cleaning processes for: incoming wafers, pregate dielectrics, after-gate stack etch, pre-selective epitaxy, several photoresist removal steps and post-strip cleans, pre-metal deposition for silicide formation, post-silicide metal removal, post-CMP clean, and post-etch residue removal and cleaning. Specialized cleaning solutions have been introduced consisting of rather complex mixtures of acids, bases, solvents, surfactants, and chelating agents.

In recent years, high-κ metal gate stacks and alternative semiconductor materials such as SiGe, Ge, and even III-V compound semiconductors have been introduced or considered for future generation devices. Unlike Si, many of these materials tend to be attacked by "RCA"-like aqueous oxidizing cleaning mixtures. Therefore, alternatives must be developed such as solvent-based cleaning.

As part of the large effort spent over the last decades in this field, major international forums and symposia have been set up for the large "cleaning R&D" community to enhance and share their collective knowledge base. Many of these findings are published in numerous articles and conference proceedings. Particularly in this highly dynamic environment, it is very important to keep track of this acquired knowledge. The collective wisdom of this field is mostly in the minds of the participating researchers. The mission of this book is to extend this knowledge – capturing and synthesizing the major results and state-of-the-art knowledge of individual researchers and experts in the field of cleaning, surface conditioning, and contamination control.

This volume should become an essential part of a thorough training regimen on cleaning and surface preparation. It is a useful reference work for people active in the field and an absolute must for young engineers and researchers entering the dynamic and exciting discipline of cleaning and surface preparation. This handbook will help the industry avoid the unproductive and feared scenario of "re-inventions" and provide a solid platform to build the new science and technology of cleaning and surface preparation for future applications far beyond the current scope of cleaning science.

Paul W. Mertens Leuven, Belgium

October 24, 2010

This page intentionally left blank

Introduction

Semiconductor manufacturing continuously faces the most demanding technical challenges of any industry. As features have scaled, one of the most problematic areas of fabrication has been cleaning. Over the last few decades, the art of cleaning has turned into the science of surface preparation, critical cleaning, post-etch residue removal, and particle removal. Years ago the integrated circuit industry "borrowed" techniques from other industries – now the microelectronic engineers and scientists are the technology drivers. They work with the most advanced technology in the world making affordable microprocessors, controllers, and memory devices, so everyone can afford the newest electronic gadgets. These engineers work on devices that have minute features, rare materials, intricate equipment, and specialized processes. They help develop high-yielding, easily manufactured processes for the most sophisticated devices at the minimal cost and with the lowest environmental impact. This handbook celebrates these individuals – those who develop processes that are not physically present on a finished device. The chemicals used are all washed away, along with the contaminating metals, organics, and particles, yielding a pristine surface.

We have assembled authors with specific expertise to provide a thorough and thoughtful look at key range of cleaning topics in this field. The work is divided into three sections. The first six chapters address fundamental processes in chemical cleaning. Chapter 1 examines surface and colloid chemistry in cleaning, and Chapters 2 and 3 describe the chemistries of cleaning and etching processes. Chapter 4 details the surface phenomenon of cleaning. While chapters 5 and 6 discuss the design, delivery, and recycling of chemical formulations used in cleans. The second section (Chapters 7–14) covers a range of cleaning applications. Chapters 7, 8, 9, and 10 discuss cleaning and stripping of front end and back end of the line structures, Chapters 11 and 12 examine passivation and corrosion of copper and passivation of silicon and germanium. Wafer reclamation and wafer bonding preparation processes are discussed in Chapters 13 and 14. The last section of the book offers insight into the trends in cleans technologies. Chapter 15 details novel methods for evaluating the surface cleanliness and condition. The strip and cleans methods needed for the newest photolithography applications are discussed in Chapter 16.

xxii Introduction

Our book is dedicated to all the engineers past, present, and future that have and still toil feverishly and relentlessly to develop and utilize proven cleaning processes, and invent new ways to solve these crucial issues.

> Karen A. Reinhardt San Jose, California

> > Richard F. Reidy Denton, Texas November 2010.

PART 1 FUNDAMENTALS

This page intentionally left blank

Surface and Colloidal Chemical Aspects of Wet Cleaning

Srini Raghavan, Manish Keswani, and Nandini Venkataraman

Department of Materials Science & Engineering The University of Arizona Tucson, Arizona, USA

Abstract

Surface and colloidal chemicals aspects relevant to wet chemical cleaning and drying of semiconductor surfaces are reviewed. Specific areas discussed in this chapter include surface charging of metal oxide and nitride films, development of an electrical double layer, zeta potential of electrified interfaces and its effect on particulate contamination, adsorption of surfactants and metal ions on insulating surfaces, principles of surface tension gradient drying, and wetting and penetration of high aspect ratio features.

Key words: interfacial phenomena, wet cleaning, surface charging of metal oxide and nitride, electrical double layer, metal adsorption, high aspect ratio cleaning, surface tension gradient drying

1.1 Introduction to Surface Chemical Aspects of Cleaning

The fabrication of integrated circuits requires a myriad of liquid-based etching and cleaning processes that are followed by rinsing and drying steps. Interfacial phenomena such as wetting, spreading, adsorption, adhesion, and surface charge play a critical role in determining the feasibility and efficiency of a liquid-based process step. The objective of this chapter is to discuss the fundamental science of the key interfacial phenomena relevant to wafer etching, cleaning, and drying. Specific areas discussed in this chapter include:

- 1. Surface charging of materials in aqueous cleaning and rinsing solutions understanding of the physical phenomena related to the adhesion and removal of particulate contaminants and metal ions.
- 2. High aspect ratio cleaning understanding the physical limitations induced by surface wetting and capillary forces for processes that require liquid penetration into narrow features.

K. Reinhardt & R. Reidy (eds.) Handbook of Cleaning for Semiconductor Manufacturing, (3–38) © Scrivener Publishing LLC

4 HANDBOOK OF CLEANING FOR SEMICONDUCTOR MANUFACTURING

 Drying methods – understanding the physics of creating a surface tension gradient at the water/vapor interface through interfacial adsorption.

The aforementioned concepts should be considered in unison to understand and explain cleaning processes and to control contamination. For example, to remove metallic and particulate contamination, the cleaning chemical must wet the surface, desorb, and preferably complex the metal ion and create a surface which bears a charge of the same sign as that on the contaminant particles to prevent re-deposition.

1.2 Chemistry of Solid-Water Interface

Successful removal of colloidal particles from surfaces requires an understanding of the repulsive and attractive forces between the particle and the surface. The repulsive forces arise mainly from the interaction of charged double layer at the particle/solution and the wafer/solution interface. The degree of surface hydroxylation and acid-base characteristics of these hydroxyl groups impact the charging of a surface. Sections 1.2.1 and 1.2.2 describe the surface charging of silicon dioxide and silicon nitride in aqueous media.

1.2.1 Surface Charging of Oxide Films in Aqueous Solutions

The surface of a semi-metal oxide film is terminated with hydroxyl (–OH) groups. A comprehensive discussion of hydroxylation of an oxide surface is provided by Yopps *et al.* [1]. The density of these hydroxyl groups is roughly two to three per square nm [2]. When this oxide surface is immersed in an aqueous solution, the hydroxyl groups react with H⁺ and OH⁻ ions. These interactions are represented using the following equilibrium equations [3]:

$$MOH + H^+ \leftrightarrow MOH_2^+ \qquad K_1 \tag{1.1}$$

$$MOH \leftrightarrow MO^- + H^+ \qquad K_2 \tag{1.2}$$

where *M* is a metal atom or an element such as Si.

Using the equilibrium constants (K_1 and K_2) for the reactions of the protonation (Eq. 1.1) and deprotonation (Eq. 1.2) of SiOH sites, the fraction of sites with positive, negative and zero charge, viz, θ_{\perp} , θ_{\perp} and θ_0 on SiO₂ can be calculated as a function of solution pH. The result of such a calculation is shown in Figure 1.1 for SiO₂ using K_1 and K_2 values of 10^{0.7} and 10^{-3.9} respectively [4]. The surface charge density (coulombs per square meter), σ_{surf} at any particular pH is given by the expression:

$$\sigma_{surf} = N_s q(\theta_+ - \theta_-) \tag{1.3}$$

where N_s represents the total number of surface sites per square meter, and q is the fundamental electronic charge (coulombs).

Figure 1.1. Fraction of positive, negative, and neutral sites on a SiO₂ surface immersed in water at various pH values calculated using $K_1 = 10^{0.7}$ and $K_2 = 10^{-3.9}$. Used with permission of the authors.

Figure 1.1 shows that the surface of SiO₂ is positively charged at low pH and negatively charged at high pH. At a pH of ~1.5, the fraction of positive sites is equal to the fraction of negative sites. This pH is called the point of zero charge (PZC) [5]. It is worth noting that at the PZC while the fractions of positively charged and negatively charged sites may be equal, each fraction may not be 0.5. The PZC value is roughly equal to the average of pK₁ and pK₂. Reference [6] outlines surface charging theory with respect to wafer cleaning.

Oxides may be classified as acidic, basic, or amphoteric [7]. Acidic oxides are generally oxides of non-metals ($e.g. SiO_2, As_2O_3$) that are dissolved by bases. By contrast, basic oxides (e.g. alkaline earth oxides such as MgO, FeO) are oxides of metals that are dissolved by acids. Oxides that show both acidic and basic properties are referred to as amphoteric oxides ($e.g. Al_2O_3$, SnO). Acidic oxides exhibit a low PZC while basic oxides exhibit higher PZC. For example, SiO₂, an acidic material, exhibits a PZC close to a pH of 2 while Al_2O_3 , a basic material, exhibits a PZC close to a pH of 9. Table 1.1 lists PZC of materials of interest to semiconductor processing.

An acid- base mass titration technique is typically used to determine the PZC of materials. In this technique demonstrated by Schwarz, a suspension of oxide particles in an electrolyte is titrated with a standard acid/base solution [14]. The protonation/deprotonation of the oxide surface causes the solution pH to increase/decrease from the original pH value. A mass balance from the added H⁺/OH⁻ ions is then made to obtain the extent of adsorption of H⁺ and OH⁻. The surface charge density, σ_{surf} is given by:

$$\sigma_{surf} = F \times (\Gamma_{H^{+}} - \Gamma_{OH^{-}}) \tag{1.4}$$

where Γ_{H^+} and Γ_{OH^-} are adsorption densities (moles per square meter) of H^+ and OH^- , respectively, and *F* is the Faraday constant (96500 coulombs/gram equivalent).

The use of this technique is described in many papers [15–18] and only works well for samples with large surface areas such as particles. For materials with low surface areas such as oxide films, the pH change due to adsorption/desorption is too small to be accurately measured causing large errors in mass balance [19].

6 HANDBOOK OF CLEANING FOR SEMICONDUCTOR MANUFACTURING

Material	PZC at pH of	Туре	Reference
SiO ₂	2–4	Acidic	[8] [9]
Si ₃ N ₄	3–5.5	Depends on relative proportion of NH ₂ and OH groups	[8] [9]
TiO ₂	5–6	Weakly acidic	[10]
Al ₂ O ₃	8–9	Amphoteric/mildly basic	[11] [12]
Si	3–4	Acidic	[8]
PSL	No PZC (negative charge at all pH values)	Not applicable (organic)	[13]

Table 1.1. Point of zero charge of materials of interest to wafer cleaning

Figure 1.2. Charging of silicon nitride films in water; protonation of amine terminated surface sites leading to formation of positively charged sites that may react with water to form silanol groups [20]. Used with permission from Martin Knotter, NXP.

1.2.2 Surface Charging of Silicon Nitride Films in Aqueous Solutions

Silicon nitride films are most commonly deposited using a chemical vapor deposition (CVD) technique in which silane (SiH₄) reacts with ammonia (NH₃). Plasma-enhanced CVD (PECVD) forms SiN_x and low pressure CVD (LPCVD) forms Si₃N₄. Consequently, silicon nitride films may contain up to 5–6 atomic % hydrogen, especially those formed with PECVD. As shown in Figure 1.2, these films typically have amine ($-NH_2$) surface groups, which depending on their pK_a value can be protonated leading to the formation of positively charged sites [20]. The negative sites on the surface of nitride films have been postulated [21, 22] to be created by the reaction of surface amine groups with water forming silanol (Si-OH) followed by deprotonation to form negatively charged SiO⁻ sites. The isoelectric point (defined in Section 1.2.3) of nitride films can vary widely depending on the hydrolytic strength of –NH₂ groups, which in turn will depend on the solution pH, ionic strength, and temperature.

1.2.3 Electrified Interfaces: The Double Layer and Zeta Potential

A solid immersed in an aqueous solution produces a region of electrical inhomogeneity at the solid-solution interface. An excess charge at the solid-solution