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1
Introduction

Communications protocol development has tended to follow two paths. One path has
emphasized integration with the current language model. The other path has emphasized

solving the problems inherent in distributed computing. Both are necessary, and successful
advances in distributed computing synthesize elements from both camps.

Waldo et al. [1]

This book is about programming-in-the-large, a term coined by DeRemer and
Kron [2] to distinguish the assembly of large applications from components, from
the task of implementing those components themselves. Many of the principles of
programming-in-the-large were earlier elucidated by Parnas in two articles [3, 4].
It is striking how many of the key ideas of programming-in-the-large that remain
relevant today were in Parnas’ seminal work.

In the 1980s, with the rise of local area networks (LANs) and object-oriented
programming, distributed software buses appeared as solutions to the growing com-
plexity of networked heterogeneous software systems. The synthesis of these trends
saw the emergence of the Common Object Request Broker Architecture (CORBA)
in the late 1980s. Long before then, industries such as banking and air travel
had developed on-line networked transactional systems that are still in heavy use
today. CORBA, as originally envisaged, was to be the glue for allowing those
legacy systems to be incorporated into modern applications. The use of systems
such as CORBA, and particularly of transaction processing monitors, as the back-
bone for enterprise middlewares has, indeed, been a success story in enterprise
software environments. Unfortunately, and perhaps predictably, the challenge of
heterogeneity remained, as a heterogeneous collection of software buses emerged
for application deployment.

Enterprise Software Architecture and Design: Entities, Services, and Resources,
First Edition. Dominic Duggan.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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2 INTRODUCTION

In the 1990s, a true sea change happened with the advent of the World Wide
Web. Besides making the uniform resource locator (URL) a part of the daily
culture, the spectacular success of the Web has required enterprises to consider
how their business model can adapt to this newly popular communication medium.
The first Netscape browser included support for the hypertext transfer protocol
(HTTP) for the Web, but also supported the safe execution of dynamically
downloaded Java applets in the Web browser. It also had support for the CORBA
communication protocol to enable those applets to connect back to the server
through sophisticated inter-object request broker protocols. Clearly, the thinking
here was that a simple protocol, such as the Web protocol, should just be an entry
point into the more sophisticated realm of distributed enterprise applications built
on modern middleware.

The vision of ubiquitous distributed object systems connecting the world together
did not materialize. It became impossible to ignore the significance of location
that distributed object systems were supposed to mask. No amount of middleware
layering can hide the fact that there is a network connecting the points together, and
that network has effects such as latency and failures that cannot be masked from
applications. At the same time, the Web protocols that were supposed to be just an
entry point into more sophisticated protocols showed amazing staying power, while
frustration grew with the complexity of the more “sophisticated” approaches. Most
importantly, connecting applications across enterprise boundaries remains a difficult
problem, perhaps inevitably so because market forces push against a standardized
solution to the problem.

The first decade of the 21st century saw the rise of Web services, an alternative
approach to distributed object systems for providing and consuming software ser-
vices outside the enterprise. Rather than run over proprietary protocol stacks, Web
services were proposed to operate over the same Web protocol that had been such
a spectacular success for business-to-consumer e-commerce. Although business-to-
business e-commerce over reliable messaging systems has been in use for many
years, the clear trend has been to vastly increase the scale of this inter-operation
by making use of the Web protocol stack. Enterprises must learn to leverage the
Internet for rapid and agile application development by continually striving for
the optimum mix of in-house expertise and outsourced software services. Thus,
service-oriented architecture (SOA) emerged: partly driven by the enabling technol-
ogy of Web services, partly building on work in component-based development for
programming-in-the-large, and partly seeking to align the information technology
(IT) architecture with the business goals of the enterprise.

The experience of the WS-* standardization effort has been an interesting one.
Developers in the field resisted adoption of the WS-* stack, essentially citing the
end-to-end argument underlying the original design of the Internet to decry the
complexity of the various layers in the stack. The controversy has had an evident
effect. Despite early enthusiasm for simple object access protocol (SOAP)- and
Web services description language (WSDL)-based Web services, many companies
have pulled back and are instead adopting so-called RESTful (representational
state transfer) Web services. As an indication of the “zeitgeist”, one IT writer
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went so far as to declare the SOAP protocol stack to be the worst technology of
the last decade [5].

Yet, despite the fact that difficult challenges remain, there is room for optimism.
For all of its flaws, asynchronous JavaScript and XML (AJAX) has clearly moved
the ball forward in terms of building responsive networked applications where
code is easily deployed to where it needs to be executed—essentially anywhere
on the planet. As we shall see in Chapter 5, this trend looks likely to intensify.
Meanwhile, tools such as jQuery have emerged to tame the complexities of clumsier
tools such as the Document Object Model (DOM), while RESTful Web services
have emerged as a backlash against the complexity of SOAP-based Web services. If
there is a lesson here, it may, perhaps, be in E. F. Schumacher’s famous admonition:
“Small is beautiful” [6]. Just because a multi-billion dollar industry is pushing a
technology, does not necessarily mean developers will be forced to use it, and there
is room for the individual with key insight and the transforming idea to make a
difference.

However, platforms such as the SOAP stack have at least had a real moti-
vation. Architects and developers tend to have opposing ideas on the subject of
SOAP versus REST. REST, or some derivative of REST, may be argued to be the
best approach for building applications over the internet, where challenges such as
latency and independent failures are unavoidable. Nevertheless, the issues of enter-
prise collaboration and inter-operation that motivated SOAP and WSDL, however
imperfect those solutions were, are not going away. Indeed, the move to cloud
computing, which increasingly means outsourcing IT to third parties, ensures that
these issues will intensify in importance for enterprises. The criticality of IT in
the lives of consumers will also intensify as aging populations rely on healthcare
systems that make increasing use of IT for efficiency, cost savings and personalized
healthcare. Similarly, IT will play a crucial role in solving challenges with popula-
tion pressure and resource usage that challenge all of mankind. For example, Bill
Gates has made the case for improved healthcare outcomes as critical to reducing
family size in developing countries; IT is a key component in delivering on these
improved outcomes.

The intention of this book is to cover the principles underlying the enterprise
software systems that are going to play an increasing part in the lives of orga-
nizations of all kinds and of individuals. Some of the issues that SOA claims to
address have been with us for decades. It is instructive, therefore, while discussing
the problems and proposed solutions, to also ensure that there is agreement on the
definition of the principles. However the book must also be relevant and discuss
current approaches. Part of the challenge is that, following the battles of the last
decade, it is not clear what role technologies such as Java Enterprise Edition (Java
EE) and Windows Communication Foundation (WCF), so central to the adoption
of SOA, will play in future enterprise systems. Therefore, this book emphasizes
principles in a discussion of some of the current practices, with a critical eye
towards how the current approaches succeed or fail to live up to those principles,
with passing speculation about how matters may be improved.



4 INTRODUCTION

In this text the focus is on data modeling and software architecture, particularly
SOA. SOA clearly dominates the discussion. This is not intended to denigrate
any of the alternative architectural styles, but SOA brings many traditional issues
in software engineering to the forefront in enterprise software architecture, and it
has ambitious goals for aligning IT strategy with business goals. Domain-driven
design is essentially object-oriented design, and it is principally discussed in order to
counterpoint it with SOA. There is reason to believe that domain-driven architecture
will play a more prominent role in enterprise software architecture, as experience
with mobile code progresses. Resource-oriented architecture (ROA) is certainly
the technology of choice for many developers, but it is not clear how well it will
address the needs of application architects attempting to deal with the issues in
enterprise applications. Many of the issues in software architecture highlighted by
SOA will also eventually need to be addressed by ROA.

As noted by Waldo et al., the development of enterprise applications has broadly
followed two courses: the “systems” approach, in which developers have focused
on the algorithmic problems to be solved in building distributed systems, and
the “programming environment” approach, which has attempted to develop suit-
able tools for enterprise application development. The success of the former has
been substantially greater than the latter, where the retreat from SOAP-based to
REST-based Web services can be viewed as the most recent failure to develop
an acceptable programming model. Much of the focus of the systems approach
has been on the proper algorithms and protocols for providing reliability and,
increasingly, security for enterprise applications. The use of these tools in appli-
cation development is still a challenge. Computer scientists, sometimes express
surprise when they learn of the importance of these tools in the infrastructure of
the cloud.

Service developers wrestle with the problems of network security and inde-
pendent failures every day—even if the solutions are sometimes flawed because
of imperfect understanding of the problems and solutions. While the last several
decades have seen attempts to build middleware platforms that encapsulate the
use of these tools, isolating application developers from the problems with dis-
tributed applications, the REST philosophy challenges the assumptions underlying
this approach, at least for applications that run over the Web, based on an end-to-end
argument that focuses responsibility for dealing with the issues on the application
rather than the system. This is a basic rejection of three decades of distributed
programming platforms, and challenges the research and developer community to
develop the appropriate abstractions that make this effort scalable. Certainly, the
application developer must have the appropriate tools provided in programming
frameworks. However, even with these tools, the developer still has the responsi-
bility of using and deploying these tools in their application. This approach is in
opposition to the traditional middleware approach, which purports to allow devel-
opers to build applications without regard to distribution and rely on the middleware
to handle the distribution aspects.

The material in this text comes primarily from two teaching courses: first, and
primarily, a course on software architecture for enterprise applications; secondly,


